Высокочастотный аттенюатор

Изобретение относится к высокочастотным аттенюаторам. Технический результат заключается в расширении диапазона рабочих частот устройства и повышении его быстродействия при работе с импульсными сигналами большой амплитуды. Высокочастотный аттенюатор содержит вход и выход устройства, между которыми включен первый резистор, источник входного напряжения, включенный по переменному току между общей шиной и входом устройства, второй резистор, включенный по переменному току между выходом устройства и общей шиной, эквивалентная емкость нагрузки, включенная по переменному току между выходом устройства и общей шиной. В схему введен корректирующий конденсатор, включенный между входом устройства и входом дополнительного неинвертирующего усилителя тока, токовый выход которого соединен с выходом устройства. 1 з.п. ф-лы, 9 ил.

 

Предлагаемое изобретение относится к области измерительной техники, электротехники, радиотехники, связи и может использоваться в структуре различных интерфейсов и измерительных приборах.

В устройствах информационно-измерительной техники, связи, автоматики и радиотехники широкое применение находят резистивные делители напряжения - аттенюаторы (AT), обеспечивающие заданное деление (ослабление) входного напряжения (uBX) [1-16]. С повышением частоты uBX в таких аттенюаторах возникают существенные погрешности передачи сигнала, обусловленные влиянием паразитного конденсатора С0 цепи нагрузки, которая образуется, например, в параллельных АЦП входной емкостью компаратора. Снижение этих погрешностей - одна из проблем современной информационно-измерительной техники, которая решается сегодня как за счет схемотехники AT, так и за счет конструктивных особенностей входных цепей (например, специальных «щупов» СВЧ-вольтметров, осциллографов, антенных систем радиоприемников и т.п.).

В связи с достаточно широким применением резистивных аттенюаторов в различных областях техники они присутствуют в различных классах МПК (H03H 7/24, А61В, G01R 31/02, Н01Р 1/22, H03K 5/08, H03L 5/00, G01R 27/00, G05F 3/00, Н01Н 47/00, H03G 3/20).

Ближайшим прототипом заявляемого устройства является резистивный делитель напряжения фиг.1, представленный в патентной заявке US 2012/0086528, fig.8B. Он имеет вход 1 и выход 2 устройства, между которыми включен первый 3 резистор, источник входного напряжения 4, включенный по переменному току между общей шиной 5 и входом устройства 1, второй 6 резистор, включенный по переменному току между выходом устройства 2 и общей шиной 5, эквивалентная емкость нагрузки 7, включенная по переменному току между выходом устройства 2 и общей шиной 5.

Существенный недостаток аттенюатора-прототипа фиг.1 состоит в том, что с повышением частоты входного сигнала его коэффициент передачи существенно уменьшается из-за шунтирующего влияния эквивалентной емкости нагрузки 7. Это ограничивает частотный диапазон аттенюатора и, как следствие, быстродействие и частотный диапазон многих измерительных проборов.

Основная задача предлагаемого изобретения состоит в существенном расширении диапазона рабочих частот устройства и повышении его быстродействия при работе с импульсными сигналами большой амплитуды.

Поставленная задача достигается тем, что в аттенюаторе фиг.1, содержащем вход 1 и выход 2 устройства, между которыми включен первый 3 резистор, источник входного напряжения 4, включенный по переменному току между общей шиной 5 и входом устройства 1, второй 6 резистор, включенный по переменному току между выходом устройства 2 и общей шиной 5, эквивалентная емкость нагрузки 7, включенная по переменному току между выходом устройства 2 и общей шиной 5, предусмотрены новые элементы и связи - в схему введен корректирующий конденсатор 8, включенный между входом 1 устройства и входом 9 дополнительного неинвертирующего усилителя тока 10, токовый выход 11 которого соединен с выходом устройства 2.

На фиг.1 приведена схема аттенюатора - прототипа.

На фиг.2 представлена схема заявляемого устройства в соответствии с формулой изобретения.

На фиг.3 представлена схема заявляемого устройства в соответствии с п.2 формулы изобретения.

На фиг.4 показана практическая схема аттенюатора фиг.2 при построении дополнительного неинвертирующего усилителя тока 10 на основе классического каскада с общей базой.

Пример построения аналоговой секции параллельного АЦП с дифференциальным входом и аттенюаторами фиг.3 представлен на фиг.5.

Вариант построения аттенюатора фиг.2 для случая, когда дополнительный усилитель тока имеет коэффициент передачи Ki>1, показан на фиг.6.

На фиг.7 показана схема заявляемого устройства фиг.2 в среде PSpice.

На фиг.8 приведена логарифмическая зависимость отношения выходного напряжения AT к входному напряжению при сопротивлениях резисторов R1=R2=10 кОм и коэффициенте передачи Ki дополнительного неинвертирующего усилителя тока 10 Кi=1.

На фиг.9 приведена логарифмическая зависимость отношения выходного напряжения AT к входному напряжению при сопротивлениях резисторов R1=10 кОм, R2=1 кОм и коэффициенте передачи дополнительного неинвертирующего усилителя тока 10 Кi=1.

Высокочастотный аттенюатор фиг.2 содержит вход 1 и выход 2, между которыми включен первый 3 резистор, источник входного напряжения 4, включенный по переменному току между общей шиной 5 и входом устройства 1, второй 6 резистор, включенный по переменному току между выходом устройства 2 и общей шиной 5, эквивалентная емкость нагрузки 7, включенная по переменному току между выходом устройства 2 и общей шиной 5. В схему введен корректирующий конденсатор 8, включенный между входом 1 устройства и входом 9 дополнительного неинвертирующего усилителя тока 10, токовый выход 11 которого соединен с выходом устройства 2.

На фиг.3, в соответствии с п.2 формулы изобретения, между входом устройства 1 и корректирующим конденсатором 8 включен дополнительный неинвертирующий повторитель напряжения 12.

На фиг.4 дополнительный неинвертирующий усилитель тока 10 выполнен на основе резистора 13, транзистора 14, резистора 15, разделительного конденсатора 16. Схема также содержит первую 17 и вторую 18 шины питания.

В схеме фиг.5, соответствующей фиг.3, дополнительные неинвертирующий повторитель напряжения 12 выполнен на транзисторе 19, причем неинвертирующий усилитель тока 10 реализован на основе каскада с общей базой, статический режим которого устанавливается источником напряжения смещения 20. Эмиттерный ток транзистора 19 устанавливается токостабилизирующим двухполюсником 21. Напряжение питания схемы подается на третью 23 и четвертую 24 шины.

На фиг.6 дополнительный неинвертирующий усилитель тока 10 выполнен на транзисторах 25, 26, 27, 28, а также p-n переходах 29, 30. Статический режим транзисторов 25 и 28 устанавливается резисторами 31 и 32. Эмиттерный ток всех транзисторов схемы определяется током токостабилизирующего двухполюсника 33.

Рассмотрим работу устройства фиг.2.

Коэффициент передачи аттенюатора фиг.2 в операторной форме может быть представлен выражением

K П ( p ) = K 0 1 + K i τ с к K 0 1 P 1 + τ c 0 P ( 1 ) ,

где τск=R36C8,

τc0=R36C7,

R 36 = R 3 R 6 R 3 + R 6 ,

Ki - коэффициент передачи по току дополнительного неинвертирующего усилителя тока 10,

K 0 = R 6 R 6 + R 3 - коэффициент передачи AT в диапазоне низких частот.

Из формулы (1) для частотной области можно получить

K ˙ П ( j ω ) = K 0 1 + j ω K i τ с к K 0 1 1 + j ω τ с 0 ( 2 ) .

Из (2) можно найти условие независимости коэффициента передачи и полосы пропускания AT от численных значений C8 и C7:

C 8 = C 7 K i K 0 = C 7 K i 1 1 + R 3 / R 6 ( 3 ) .

Если обеспечить K ˙ i = 1 , то, как следует из (3), условием существенного уменьшения влияния эквивалентной емкости нагрузки 7 (C7) на амплитудно-частотную характеристику аттенюатора фиг.2 будет равенство

C 8 = C 7 1 + R 3 R 6 ( 5 )

В этом идеальном случае сомножители при jω в (2) будут одинаковы и, как следствие, коэффициент передачи аттенюатора становится не зависящим от частоты K ˙ П ( j ω ) = K 0 .

Входное сопротивление AT фиг.2 на высоких частотах будет определяться емкостью конденсатора 8 (C8). В тех случаях, когда численные значения эквивалентной нагрузки емкости 7 в формуле (3) получаются сравнительно большими, следует использовать дополнительный усилитель тока 10 с Ki>1. Это позволит минимизировать входное сопротивление AT на высоких частотах. Пример построения AT с данной архитектурой показан на фиг.5.

Для дальнейшего увеличения входного сопротивления заявляемого устройства целесообразно использовать схему фиг.3, в которой емкость конденсатора 8 «изолируется» от входной цепи AT (2) дополнительным неинвертирующим повторителем напряжения 12, который должен иметь входную емкость СВХ<C8.

Таким образом, в схеме фиг.2 создаются условия для существенного расширения малосигнального диапазона рабочих частот, который на практике будет определяться (или ограничиваться) инерционностью дополнительного неинвертирующего повторителя тока 10.

Из графиков фиг.8, в частности, следует, что диапазон рабочих частот предлагаемого аттенюатора (при С72=2 пФ, С8к=1 пФ и K0=0,5) расширяется до 10÷20 ГГц, в то время как верхняя граничная частота классического аттенюатора (по уровню - 3 дБ) имеет значение 8,3 МГц.

Графики фиг.9 показывают, что при K0 ≈0,1 оптимальная емкость корректирующего конденсатора С8к=0,18 пФ.

Выполненный выше анализ, а также результаты компьютерного моделирования показывают, что в схеме фиг.2 решена одна из проблем современной аналоговой микросхемотехники - расширение частотного диапазона и повышение быстродействия аттенюаторов сигналов, являющихся базовым узлом аналоговых и аналого-цифровых преобразователей.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 5867018.

2. Патент US 5363070, fig.2a.

3. Патент US 4912394.

4. Патент US 8076995.

5. Патент US 4050055, fig.5.

6. Патент US 4198988, fig.1.

7. Патентная заявка US 2007/0176664, fig.2.

8. Патент US 4839611, fig.2.

9. Патент US 4670723, fig.2.

10. Патент US 4272739, fig.1.

11. Патент JTP 10-211-0068595.

12. Патент JP 2010-252241.

13. Патент ЕР 2337219, fig.2.

14. Патент ЕР 0753937,fig.1.

15. Патент ЕР 0612982.

16. Патент US 7477085, fig.1.

1. Высокочастотный аттенюатор, содержащий вход (1) и выход (2) устройства, между которыми включен первый (3) резистор, источник входного напряжения (4), включенный по переменному току между общей шиной (5) и входом устройства (1), второй (6) резистор, включенный по переменному току между выходом устройства (2) и общей шиной (5), эквивалентная емкость нагрузки (7), включенная по переменному току между выходом устройства (2) и общей шиной (5), отличающийся тем, что в схему введен корректирующий конденсатор (8), включенный между входом (1) устройства и входом (9) дополнительного неинвертирующего усилителя тока (10), токовый выход (11) которого соединен с выходом устройства (2).

2. Высокочастотный аттенюатор по п.1, отличающийся тем, что между входом устройства (1) и корректирующим конденсатором (8) включен дополнительный неинвертирующий повторитель напряжения (12).



 

Похожие патенты:

Изобретение относится к области электронной техники. Диодная сборка относится к элементам, предназначенным для использования в сверхвысокочастотных защитных устройствах.

Изобретение относится к устройству дифференциального аттенюатора. Техническим результатом является повышение быстродействия устройства при работе с импульсными противофазными сигналами большой амплитуды.

Изобретение относится к технике СВЧ. Технический результат - увеличение крутизны ската амплитудно-частотной характеристики фильтра.

Изобретение относится антенной технике и может быть использовано в радиоприемных и радиопередающих устройствах систем связи, в том числе в аппаратуре потребителей спутниковых радионавигационных систем Glonass, GPS для разделения сигналов, принятых общей антенной приемника.

Изобретение относится к области спутниковых телекоммуникаций. Техническим результатом является уменьшение плотности теплового потока на поверхности раздела канала, работающего в режиме вне полосы.

Изобретение относится к радиолокации и предназначено для измерения радиолокационных характеристик целей. Технический результат изобретения - устранение погрешностей измерения элементов матрицы рассеяния, вызванных условиями двухпозиционного приема, за счет применения волноводного направленного разделителя поляризаций и приемно-передающей антенны с вертикальной и горизонтальной поляризациями излучения, которые обеспечивают однопозиционные условия измерения матрицы рассеяния с абсолютной фазой цели.

Изобретение относится к СВЧ технике. В соответствии со схемным решением и принципом действия устройство является коаксиальным СВЧ выключателем прямого типа.

Изобретение относится к технике СВЧ, а именно к диодным ограничителям мощности, служащим для защиты входа приемного устройства от воздействия СВЧ сигнала собственного передатчика и мощного стороннего СВЧ сигнала.

Изобретение относится к области радиотехники. Технический результат - получение направленного потока волн, энергия которых в свободном пространстве не будет ослабляться (зависеть) обратно пропорционально квадрату пройденного пути и будет самофокусироваться.

Изобретение относится к технике сверхвысоких частот и может использоваться в селективных трактах приемных и передающих систем. Технический результат - увеличение уровня подавления в полосах заграждения.

Изобретение относится к радиоэлектронике, в частности к аттенюаторным устройствам. Технический результат заключается в расширении диапазона регулировки мощности выходного сигнала за счет использования двухканальной системы регулировки мощности. Устройство состоит из предвыходного усилителя 1, первого 2 и второго 3 коммутаторов, канала без затухания 4, канала с затуханием 5. Вход предвыходного усилителя 1 предназначен для подключения к источнику сигнала, а выход соединен с входом первого коммутатора 2. Первый выход первого коммутатора 2 соединен с входом канала без затухания 4, второй - с входом канала с затуханием 5. Первый вход второго коммутатора 3 соединен с выходом канала без затухания 4, второй вход - с каналом с затуханием 5. Канал без затухания 4 содержит последовательно соединенные выключатель 6 и выходной усилитель 7. Канал с затуханием 5 содержит последовательно включенные корректирующий аттенюатор 8 и предвыходной переменный аттенюатор 9. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники, электротехники, радиотехники, связи и может использоваться в структуре различных интерфейсов, измерительных приборах, быстродействующих аналого-цифровых (АЦП) и цифроаналоговых (ПАП) преобразователях. Технический результат - существенное расширение диапазона рабочих частот устройства и повышение его быстродействия при работе с импульсными сигналами большой амплитуды. Причем достижение данных качественных показателей обеспечивается в широком диапазоне изменения коэффициентов передачи AT (K0), который определяется отношением K0=R6/(R6+R3). Это является одной из замечательных особенностей предлагаемого устройства, которая расширяет области его применения, например, в широкополосных цифроуправляемых аттенюаторах, R-2R делителей напряжения быстродействующих аналого-цифровых преобразователей и т.п. Широкополосный аттенюатор с управляемым коэффициентом передачи содержит вход (1) и выход (2) устройства, между которыми включен первый (3) резистор, источник входного напряжения (4), включенный по переменному току между общей шиной (5) и входом устройства (1), второй резистор (6), включенный по переменному току между выходом устройства (2) и общей шиной (5), конденсатор цепи нагрузки (7), включенный по переменному току между выходом устройства (2) и общей шиной (5), корректирующий конденсатор (8). Выход устройства (2) связан по переменному току со входом неинвертирующего усилителя напряжения (9), между выходом неинвертирующего усилителя напряжения (9) и выходом (2) устройства включен корректирующий конденсатор (8). 1 з.п. ф-лы, 7 ил.

Изобретение относится к радиоэлектронике и измерительной технике и может быть использовано для заданного ослабления СВЧ сигнала большой мощности в широкой полосе рабочих частот. Технический результат - повышение допустимой мощности входного СВЧ сигнала в полосе рабочих частот. Для этого СВЧ аттенюатор содержит диэлектрическую подложку 1, три пленочных резистора 2, 4 и 5, соединенные между собой в виде симметричной Т-образной структуры, в которой значения крайних резисторов 2 и 5 равны друг другу, а значение среднего резистора 4 выбрано из условия обеспечения режима согласования. При этом пленочные резисторы 2, 4 и 5 выполнены в виде резистивной пленки, нанесенной на одну сторону диэлектрической подложки, на другой стороне которой расположено металлизированное основание. В области высоких частот пленочные резисторы 2, 4 и 5 представляют собой отрезки микрополосковых линий передачи одинаковой длины с продольными диссипативными потерями, причем крайние пленочные резисторы 2 и 5 симметричной Т-образной структуры соединены между собой отрезком микрополосковой линии передачи без диссипативных потерь 3, длина которого равна длине крайних пленочных резисторов 2 и 5 и к середине которого подключен один конец среднего пленочного резистора 4, другой конец которого соединен с металлизированным основанием. 7 ил.

Изобретение относится к технике сверхвысоких частот и может быть использовано в селективных трактах приемных и передающих систем. Достигаемый технический результат - расширение полосы рабочих частот и улучшение селективных свойств. Микрополосковый широкополосный полосно-пропускающий Фильтр содержит диэлектрическую подложку, на одну сторону которой нанесено заземляемое основание, а на вторую нанесены полосковые проводники, один из полосковых проводников выполнен в виде нерегулярного меандра, причем, вдоль его длинных сторон параллельно нанесены заземляемые на основание со стороны свободных концов меандра протяженные полосковые проводники, связанные электромагнитно как с меандром, так и с крайними, протяженными полосковыми проводниками, отличающиеся от последних длиной и шириной. 2 ил.

Изобретение относится к технике СВЧ и может использоваться при испытаниях ферритовых циркуляторов. Технический результат - расширение функциональных возможностей путем оценки роста прямых потерь ферритовых приборов при высоких уровнях мощности. Для этого измерение прямых потерь ферритовых циркуляторов производится на высоком уровне мощности при помощи подачи на вход первого канала ферритового циркулятора СВЧ-сигнала, величину которого выбирают равной 0,25÷0,33 от уровня рабочей мощности, второй канал ферритового циркулятора закорачивают, а значение прямых потерь измеряют отношением мощностей в третьем и первом каналах ферритового циркулятора, деленным пополам. 2 ил.

Изобретение относится к области радиотехники и электроники и может быть использовано, в частности, для поглощения электромагнитной волны на выходе СВЧ-волноводного тракта. Технический результат - расширение рабочей полосы частот и уменьшение продольных размеров согласованной нагрузки. Для этого микрополосковая согласованная нагрузка, состоящая из последовательно соединенных отрезков микрополосковой линий передачи, содержит не менее семи чередующихся отрезков микрополосковой линии передачи с различным поверхностным сопротивлением, крайними из которых являются отрезки с малым поверхностным сопротивлением, и не менее двух пар разомкнутых шлейфов, расположенных симметрично по разные стороны от микрополосковой линии, каждый из которых выполнен в виде двух последовательно соединенных отрезков микрополосковой линии передачи с большим и малым поверхностным сопротивлением. Поглощающие свойства согласованной нагрузки определяются совокупностью как поглощающих свойств отрезков микрополосковой линии и шлейфов с большим поверхностным сопротивлением, так и топологией структуры. Количество отрезков полосковых линий, их топология и электрические параметры выбираются таким образом, чтобы в выбранном частотном диапазоне величины коэффициентов стоячей волны и прохождения были меньше заданных значений. 19 ил.

Изобретение относится к волноводным аттенюаторам и может быть использовано в волноводной, антенной и СВЧ измерительной технике. Технический результат - уменьшение массы поглощающего сопротивления при работе в низкочастотных диапазонах и обеспечение оптимального согласования входа и выхода аттенюатора. Волноводный аттенюатор состоит из отрезка прямоугольного волновода и помещенного в него объемного поглощающего сопротивления, состоящего из основной прямоугольной призмы и согласующих элементов в виде дополнительных прямоугольных призм. Основная прямоугольная призма и согласующие элементы могут быть выполнены в виде одной детали, причем объемное поглощающее сопротивление выполнено в виде основной прямоугольной призмы, при этом основная призма хотя бы с одной из сторон, параллельной поперечному сечению прямоугольного волновода, сопряжена с согласующим элементом в виде дополнительной прямоугольной призмы, конструктивно объединенным с основной призмой и выполненным из материала основной призмы, при этом плоскость основания дополнительной призмы совпадает с плоскостью сопряжения основной призмы с волноводом. 4 з.п. ф-лы, 2 ил.

Изобретение относится к устройству беспроводной связи. Технический результат состоит в уменьшении энергопотребления, уменьшении количества составных частей и улучшении производительности при приеме сигнала, что достигается отсутствием модуля переключения антенны. Для этого устройство беспроводной связи включает в себя усилитель мощности (31), который усиливает сигнал передачи, схему (37) передачи, которая обрабатывает усиленный сигнал передачи, антенну (13) и блок (10e) управления, который поочередно активирует и деактивирует усилитель мощности (31), причем схема (37) передачи сконфигурирована для согласования импеданса между схемой (37) передачи и антенной (13), когда активируется усилитель мощности (31), и приведения импеданса, наблюдаемого от антенны (13) в направлении схемы (37) передачи, в высокоимпедансное состояние, когда деактивируется усилитель мощности (31). 4 н. и 14 з.п. ф-лы, 52 ил.

Изобретение относится к электронной технике, а именно к аттенюаторам СВЧ на полупроводниковых приборах. Технический результат - снижение прямых потерь СВЧ и расширение функциональных возможностей за счет увеличения количества уровней затухания. Для этого аттенюатор СВЧ содержит линии передачи на входе и выходе с одинаковым волновым сопротивлением, шесть резисторов, четыре полевых транзистора с барьером Шотки, два отрезка линии передачи длиной, равной четверти длины волны в линии передачи, и волновым сопротивлением, превышающим волновое сопротивление линий передачи на входе либо на выходе, два источника постоянного управляющего напряжения. 3 ил.

Изобретение относится к области радиотехники, а именно к волноводной и антенной технике, и может быть использовано в качестве устройства в длинных магистральных волноводных линиях связи. Техническим результатом заявляемого возбудителя волны H01 является его конструктивное упрощение при одновременном улучшении его технических характеристик. Для этого возбудитель волны H01 состоит из Е-плоскостного Т-образного разветвления 1, боковые плечи 2 которого изогнуты в Е-плоскости по окружности, центр которой совпадает с осью отрезка круглого волновода 3. Каждое из боковых плеч 2 Е-плоскостного Т-образного разветвления 1 соединено с отрезком круглого волновода 3 через прямоугольные волноводы 4, расположенные с шагом λв. С одного конца отрезка круглого волновода 3 установлен короткозамыкатель 5. В отрезок круглого волновода 3 установлен модовый фильтр 6. Размеры узких стенок прямоугольных волноводов 4 выбраны из условия равноамплитудного возбуждения элементов питания отрезка круглого волновода 3. Для данной реализации возбудителя волны H01: b1=1.2b, b2=b, где b - размер узкой стенки бокового плеча 2 Е-плоскостного Т-образного разветвления 1. 5 з.п. ф-лы, 2 ил.
Наверх