Способ получения скандиевого концентрата из красных шламов

Изобретение относится к извлечению оксида скандия из красных шламов - отходов глиноземного производства. Способ включает выщелачивание красного шлама карбонатными растворами при одновременной газации шламовой пульпы газо-воздушной смесью, содержащей CO2, фильтрацию пульпы с получением скандийсодержащего раствора, последовательное отделение скандия от примесных компонентов, осаждение соединений скандия из очищенного раствора, фильтрацию, промывку и сушку осадка скандиевого концентрата. Выщелачивание красного шлама ведут с первоначальной виброкавитационной обработкой пульпы. Отделение скандия от примесных компонентов ведут сорбцией фосфорнокислыми ионитами. Десорбцию скандия из органической фазы ионитов осуществляют смешанными карбонатно-хлоридными растворами в пульсационном режиме с получением скандийсодержащего элюата, из которого осуществляют стадийное осаждение малорастворимых соединений скандия. При этом вначале ведут осаждение примесных компонентов с отделением осадка, являющегося титан-циркониевым концентратом, а затем проводят осаждение скандиевого концентрата. Техническим результатом является повышение степени извлечения скандия и упрощение процесса. 6 з.п. ф-лы, 5 табл., 5 пр.

 

Изобретение относится к области цветной металлургии, а именно к извлечению скандия из красных шламов - отходов глиноземного производства.

Известен способ извлечения скандия при переработке бокситов на глинозем, включающий выщелачивание исходного продукта с последующим отделением раствора от осадка, осаждение введением в раствор раствора, содержащего гидроксид амфотерного металла-коллектора, последующую фильтрацию осадка и его промывку (патент RU №2201988, C22B 59/00, 3/04, 3/20, опубл. 10.04.2003 г.). Выщелачивание проводят водой или 5-12%-ным раствором карбоната или гидрокарбоната натрия или их смесью не менее 3 раз при температуре не выше 50°C в течение не менее 2 ч при соотношении Т:Ж=1:2,5-5,0 с использованием каждый раз новых порций продукта переработки бокситов в качестве исходного сырья. В качестве раствора, содержащего гидроксид амфотерного металла-коллектора, при осаждении используют раствор оксида алюминия или цинка в гидроксиде натрия и после его введения раствор выдерживают при температуре не ниже 80°C в течение не менее 2 ч. Осадок отделяют, промывают и обрабатывают 10-25%-ным раствором гидроксида натрия при нагревании до кипения, фильтруют и промывают 1-5%-ным раствором гидроксида натрия, затем полученный осадок растворяют в 1-5%-ной соляной кислоте, фильтруют и фильтрат подвергают обработке раствором аммиака или плавиковой кислоты с получением осадка, его сушкой и прокалкой. Обработку ведут 10-25%-ным раствором аммиака или 2-10%-ным раствором плавиковой кислоты с избытком 1-3% от стехиометрии.

К недостаткам данного способа относятся, во-первых, низкая степень извлечения скандия из исходного продукта - красного шлама, составляющая не более 10% на каждой стадии от содержания Sc2O3 в исходном красном шламе, во-вторых, получение бедного скандиевого концентрата (2-5% Sc2O3), обогащенного рядом вредных примесей (оксиды титана, циркония, алюминия, железа).

Известен способ получения скандиевого концентрата из красных шламов, включающий выщелачивание скандия из красного шлама методом карбонизации исходной шламовой пульпы (отношение Т:Ж=1:3,0-4,0) углекислым газом (CO2) из баллонов при температуре 35-40°C в присутствии фосфорнокислых ионитов (КФП-12 и/или АНКФ-80) при соотношении ионит : красный шлам, равном 1:50-80 в течение 6-10 часов (Сабирзянов Н.А., Яценко С.П. Гидрохимические способы комплексной переработки бокситов. - Екатеринбург, ИХТТ УрО РАН, 2006 г., с.242-243). Затем ионит отделяют от пульпы на грохоте и проводят десорбцию Sc2O3 (извлечение Sc2O3 из фазы ионита) смешанным карбонатно-хлоридным раствором, и далее из полученного Sc-содержащего элюата проводят осаждение скандиевого концентрата кипячением при значениях pH 12,0-13,0 в течение 0,5-1,0 часа.

Данный способ позволяет увеличить извлечение оксида скандия из красного шлама до 15,0-20,0%. Однако содержание Sc2O3 в скандиевом концентрате остается на низком уровне и составляет 1,5-3,0%. Это связано со значительным содержанием в концентрате прочих примесей и, прежде всего титана и циркония, поскольку они переходят в раствор при выщелачивании и осаждаются на смолах в больших количествах, чем скандий.

Наиболее близким к заявленному способу является способ получения оксида скандия из красного шлама - отхода производства глинозема, включающий многократное последовательное выщелачивание красного шлама смесью растворов карбоната и гидрокарбоната натрия, промывку и отделение осадка, введение в полученный раствор оксида цинка, растворенного в гидроксиде натрия, выдержку раствора при повышенной температуре и перемешивании, отделение осадка и его обработку раствором гидроксида натрия при температуре кипения, отделение, промывку и сушку полученного продукта с последующим извлечением оксида скандия известными методами (патент RU №2247788, C22B 59/00, C22B 3/04, C22B 3/20, C01F 17/00, опубл. 10.03.2005 г.). При выщелачивании через смесь растворов карбоната натрия и гидрокарбоната натрия пропускают газовоздушную смесь, содержащую 10-17% CO2 (по объему), выщелачивание повторяют до получения раствора с концентрацией по оксиду скандия не менее 50 г/м3, вводят в раствор твердый гидроксид натрия до концентрации 2-3,5 кг/м3 по Na2Oкаустическому и выдерживают при температуре не выше 80°C с последующим введением флокулянта, выдержкой и отделением осадка, являющегося титановым концентратом, полученный раствор подвергают электролизу с твердыми электродами при катодной плотности 2-4 А/дм2 и температуре 50-75°C в течение 1-2 ч для очистки от примесей, раствор оксида цинка в гидроксиде натрия добавляют в очищенный после электролиза раствор до соотношения ZnO:Sc2O3=(10÷25):1 и вводят флокулянт, выдержку раствора ведут при 100-102°C в течение 4-8 ч, обработку отделенного осадка ведут 5-12%-ным раствором гидроксида натрия при температуре кипения, снова вводят флокулянт, выдерживают и отделяют осадок.

Данный способ позволяет получить из 1 т красного шлама 58,0 г более богатого скандиевого концентрата с массовой долей Sc2O3 в среднем 30,0%, при извлечении в него оксида скандия 13,9%. Таким образом, при решении технологических задач получения богатых скандиевых концентратов из красного шлама по данному способу достигнут лишь один положительный технический результат - повышение содержания Sc2O3 в целевом продукте до 30,0%. Однако степень извлечения скандия остается низкой и не превышает 13,90%. Кроме того, для получения такого содержания Sc2O3 в концентрате (~30,0%) требуется многократное, не менее 10-ти раз, оборачивание первичного Sc-содержащего раствора на новый цикл выщелачивания свежей порции красного шлама, что снижает производительность технологического процесса в целом.

В основу изобретения положена задача, заключающаяся в разработке способа получения скандиевого концентрата из красного шлама, обеспечивающего, во-первых, увеличение степени извлечения скандия из красного шлама в первичный Sc-содержащий раствор при карбонизационном выщелачивании, во-вторых, получение очищенного от сопутствующих примесей и более концентрированного по скандию продуктивного раствора перед осаждением скандиевого концентрата.

Техническим результатом является повышение степени извлечения скандия из красного шлама в концентрат и упрощение технологического процесса получения целевого продукта.

Достижение вышеуказанного технического результата обеспечивается тем, что в способе получения скандиевого концентрата из красного шлама, включающем последовательное выщелачивание красного шлама карбонатными растворами при одновременной газации шламовой пульпы газо-воздушной смесью, содержащей CO2, фильтрацию карбонизированной шламовой пульпы с получением скандийсодержащего раствора, последовательное отделение скандия от сопутствующих примесных компонентов с соответствующим концентрированием, осаждение малорастворимых соединений скандия из очищенного раствора, фильтрацию, промывку и сушку осадка с получением скандиевого концентрата, карбонизационное выщелачивание красного шлама ведут с первоначальной виброкавитационной обработкой шламовой пульпы, отделение скандия от примесных компонентов с соответствующим концентрированием из полученного скандийсодержащего раствора ведут сорбцией фосфорнокислыми ионитами, десорбцию скандия из органической фазы ионитов осуществляют смешанными карбонатно-хлоридными растворами в пульсационном режиме с получением скандийсодержащего элюата, из которого осуществляют стадийное осаждение малорастворимых соединений скандия, при этом вначале ведут осаждение малорастворимых соединений примесных компонентов с отделением осадка, являющегося титан-циркониевым концентратом, а затем проводят осаждение скандиевого концентрата.

Выщелачивание скандия из красного шлама может быть проведено раствором гидрокарбоната натрия (NaHCO3) концентрацией 100-150 г/дм3 при температуре 55-65°C и продолжительности 4-6 часов, с первоначальной виброкавитационной обработкой шламовой пульпы при значениях окружной скорости при перемешивании 20-40 м/с и продолжительности 45-60 мин.

Сорбция скандия из полученного скандийсодержащего раствора фосфорнокислыми ионитами может быть проведена при температуре 70-80°C и удельной нагрузке по раствору 3-4 дм3/дм3 ионита в час, а десорбция скандия может быть осуществлена смешанным карбонатно-хлоридным раствором при концентрации компонентов 130-150 г/дм3 Na2CO3 и 40-60 г/дм3 NaCl, удельной нагрузке по раствору 3-4 дм3/дм3 ионита в час, и в пульсационном режиме при интенсивности пульсации 800-1000 кол/мин·мм.

Карбонатный раствор после сорбционного извлечения скандия может быть возвращен в начало процесса для осуществления последующего цикла карбонизационного выщелачивания скандия из красного шлама.

Полученный после десорбции скандийсодержащий элюат может быть возвращен на стадию десорбции необходимое количество раз до получения равновесной концентрации скандия в элюате.

Осаждение примесных компонентов из скандийсодержащего элюата, включая титан и цирконий, может быть проведено при температуре 80-90°C, значениях pH 9,0-10,0 и продолжительности 2-3 часа.

Осаждение малорастворимых соединений скандия из очищенного элюата может быть проведено при значениях pH 11,5-12,5, температуре 100-110°C и продолжительности 2-3 часа.

Благодаря карбонизационному выщелачиванию красного шлама с первоначальной виброкавитационной обработкой шламовой пульпы, отделению скандия от примесных компонентов с соответствующим концентрированием из полученного скандийсодержащего раствора сорбцией фосфорнокислыми ионитами, десорбции скандия из органической фазы ионитов смешанными карбонатно-хлоридными растворами в пульсационном режиме с получением скандийсодержащего элюата, из которого осуществляют стадийное осаждение малорастворимых соединений скандия, при этом вначале ведут осаждение малорастворимых соединений примесных компонентов с отделением осадка, являющегося титан-циркониевым концентратом, а затем проводят осаждение скандиевого концентрата, обеспечивается, во-первых, увеличение извлечения скандия из красного шлама в первичный Sc-содержащий раствор при карбонизационном выщелачивании, во-вторых, получение очищенного от сопутствующих примесей и более концентрированного по скандию продукционного раствора перед осаждением скандиевого концентрата, что в целом, существенно повышает извлечение скандия из красного шлама в целевой продукт - скандиевый концентрат.

Ведение выщелачивания оксида скандия из красного шлама раствором гидрокарбоната натрия (NaHCO3) концентрацией 100-150 г/дм3 при температуре 55-65°C и продолжительности 4-6 часов с первоначальной виброкавитационной обработкой шламовой пульпы при значениях линейной скорости перемешивания 20-40 м/с и продолжительности 45-60 мин способствует увеличению извлечения оксида скандия из красного шлама в первичный Sc-содержащий раствор.

За счет сорбции скандия из полученного скандийсодержащего раствора фосфорнокислыми ионитами при температуре 70-80°C при удельной нагрузке по раствору 3-4 дм3/дм3 ионита в час и десорбции скандия в пульсационном режиме при пульсации 800-1000 кол/мин·мм, смешанным карбонатно-хлоридным раствором с концентрацией компонентов 130-150 г/дм3 Na2CO3 и 40-60 г/дм3 NaCl при удельной нагрузке по раствору 3-4 дм3/дм3 ионита в час, исключаются промежуточные технологические операции - электролитическая очистка первичного скандийсодержащего раствора от примесей, необходимость использования коллектора (оксид цинка) для осаждения оксида скандия из первичного раствора с последующей щелочной обработкой осадка для получения скандиевого концентрата, а также обеспечивается получение более концентрированного (соответственно ~140 мг Sc2O3/дм3 и ~50 мг/дм3 у прототипа) продукционного раствора перед осаждением концентрата.

Возврат карбонатного раствора после сорбционного извлечения скандия в начало процесса для последующего цикла карбонизационного выщелачивания обеспечивает минимизацию потерь оксида скандия, т.к. недоизвлеченный на стадии сорбции (степень осаждения на смолу ~94,0%) ценный компонент находится в технологическом цикле в динамическом равновесии.

Повторное направление элюата на стадию десорбции до достижения равновесной концентрации Sc2O3 способствует, во-первых, повышению концентрации оксида скандия в продукционном растворе до 135-175 мг/дм3, что в два-три раза выше, чем у прототипа (~50 мг Sc2O3/дм3), и при этом значительно снижает продолжительность процесса осаждения скандиевого концентрата, а во-вторых, способствует сокращению материальных потоков, т.к. объем находящегося в обороте элюата для повышения в нем концентрации скандия примерно в 8-10 раз меньше, чем объем первичного Sc-содержащего раствора, оборачиваемого (по прототипу) не менее 10 раз, на стадии карбонизационного выщелачивания скандия.

Проведение первоначального осаждения примесных компонентов титана и циркония из скандийсодержащего элюата при температуре 80-90°C, значениях pH 9,0-10,0 и продолжительности 2-3 часа способствует сокращению материальных потоков при осаждении и фильтрации скандиевого концентрата, а также повышению в нем содержания оксида скандия.

Осаждение из очищенного от малорастворимых примесей продукционного раствора с повышенной концентрацией скандия при значениях pH 11,5-12,5 и продолжительности 2-3 часа способствует увеличению извлечения скандия в концентрат до ~70,0 г/т красного шлама относительно такового значения у прототипа, равного соответственно 58,0 г/т.

Способ получения скандиевого концентрата из красного шлама подтверждается следующими примерами.

Карбонизационное выщелачивание скандия проводят из производственной пульпы исходного красного шлама, имеющего следующий, средний химический состав:

твердая фаза, масс.%: 45,0 Fe2O3общ; 13,0 Al2O3; 9,0 CaO; 8,5 SiO2; 4,50 TiO2; 4,5 Na2O; 0,0125 Sc2O3; 0,16 ZrO2;

жидкая фаза, г/дм3: 5,0 Na2Oобщ; 4,0 Na2Oку; 3,0 Al2O3; значение pH 12,5 ед; отношение Т:Ж в пульпе равно, в среднем, 1,0:3,5.

Пример 1. В карбонизаторе (VРаб=30,0 дм3), имеющем газовый барботер и мешалку, работающую в нескольких режимах (в т.ч. - в виброкавитационном), проводится выщелачивание скандия из красного шлама гидрокарбонатом натрия при дозировке NaHCO3 100-150 г/дм3 пульпы, при температуре 55-65°C, при одновременной газации шламовой пульпы газо-воздушной смесью, содержащей 10-17% (объемных) CO2; общая продолжительность процесса выщелачивания (газации) составляет 4-6 часов, при этом производится первоначальная виброкавитационная обработка шламовой пульпы при значениях линейной скорости перемешивающего устройства 20-40 м/с и продолжительности 40-60 мин.

После общего окончания процесса выщелачивания скандия карбонизированную шламовую пульпу фильтруют, и полученный первичный Sc-содержащий раствор, имеющий следующий химический состав, г/дм3:

60,0 Na2Oобщ; 110,0 NaHCO3; 0,015 Al2O3; 0,007 Sc; 0,140 Ti; 0,080 Zr; 0,014 Fe; значение pH 8,0-8,5 - направляют на сорбционное извлечение и концентрирование скандия (см. Пример 2).

В табл.1 приведены результаты опытов по карбонизационному выщелачиванию красного шлама - содержание Sc+3 и извлечение скандия в раствор - в соответствии с параметрами заявляемого изобретения, а также при выходе за оптимальные пределы параметров.

Оптимальные условия процесса карбонизационного выщелачивания оксида скандия из красного шлама (оп.1-4) следующие: концентрация гидрокарбоната натрия NaHCO3 в жидкой фазе шламовой пульпы 100-150 г/дм3, продолжительность 4-6 часов, значение линейной скорости при виброкавитационной обработке ω=20÷40 м/с и продолжительность 45-60 мин.

При этом достигается существенное, на ~4,0-7,0%, увеличение извлечения Sc2O3 из красного шлама по сравнению с прототипом.

При выходе за оптимальные пределы параметров в меньшую сторону (оп.5-7) отсутствует положительный эффект - извлечение Sc2O3 из красного шлама составляет 12,0-14,0%, т.е. либо меньше таковой величины, чем у прототипа (оп.5-6), либо как у прототипа (оп.7).

При выходе за оптимальные пределы параметров в большую сторону (оп.10-12) при определенном увеличении извлечения Sc2O3 до 14,3-16,0%, ведение процесса нецелесообразно вследствие необходимости значительного увеличения концентрации NaHCO3 до 165 г/дм3 и продолжительности виброкавитационной обработки, т.е. увеличения энергетических затрат.

Таблица 1
Результаты экспериментов по извлечению скандия при оптимальном режиме карбонизационного выщелачивания красного шлама при прочих равных условиях (см. в тексте)
№ опыта Параметры выщелачивания Извлечение Sc2O3, %
Концентрация NaHCO3, г/дм3 Значение ω, м/с Время виброкавитац. обработки, мин Время выщелачивания, ч
По прототипу 13,90
Оптимальные пределы параметров
1 100 40 60 6,0 18,0
2 125 30 50 6,0 24,0
3 125 40 50 5,0 21,0
4 150 20 45 4,0 20,5
При выходе за оптимальные пределы параметров
5 85 40 60 6,0 13,0
6 100 40 60 3,0 12,0
7 125 30 35 5,0 14,0
8 125 40 60 3,0 13,7
9 150 нет нет 6,0 12,5
10 150 15 45 4,0 14,3
11 165 15 30 3,0 13,5
12 165 50 75,0 7,0 16,0

Пример 2. На первой стадии осуществляется получение Sc-содержащего раствора при оптимальных условиях, приведенных в примере 1.

На второй стадии из раствора, содержащего, г/дм3: 60,0 N2Oобщ; 110,0 ; 0,015 Al2O3; 0,007 Sc; 0,140 Ti; 0,080 Zr; 0,014 Fe; значение pH 8,0-8,5 - производят сорбцию скандия на фосфорсодержащих ионитах - катионит марки КФП-12, амфолит АНКФ-80.

Прочие равные условия:

- Оптимальный режим карбонизационного выщелачивания оксида скандия из красного шлама;

- Условия десорбции скандия: элюирующий раствор 150 г/дм3 Na2CO3 + 50 г/дм3 NaCl, удельная нагрузка по раствору 3,5 дм3/дм3·ч, интенсивность пульсации 900 кол/мин·мм, кратность рециркуляции (к)-4; (см. табл.3);

- Условия осаждения Ti-Zr концентрата следующие: t=85°C, значение pH 9,5, τ=2,5 час. (см. табл.4);

- Условия осаждения Sc-концентрата: значение pH 11,5, t=110°C, τ=3,0 час.

В таблице 2 приведены результаты опытов по сорбционному извлечению - удельная нагрузка по исходному раствору, содержание Sc2O3 в концентрате и выход последнего - в соответствии с параметрами заявляемого изобретения, а также при выходе за оптимальные пределы параметров.

Согласно данным, приведенным в табл.2, оптимальные условия сорбции скандия из первичного раствора, следующие:

- удельная нагрузка по исходному Sc-содержащему раствору 3,0-4,0 дм3 раствора/дм3 ионита в час;

- температура процесса 70-80°C.

При этом содержание Sc2O3 в первичном концентрате составляет ~24,5-27,8% при извлечении Sc2O3 - у прототипа ~17,4 мг Sc2O3/т красного шлама, т.е., в среднем, в 1,4 раза меньше, чем в заявленном изобретении.

При выходе за оптимальные параметры процесса сорбции в меньшую сторону - по удельной нагрузке и температуре процесса (оп.5, 6, 8 и 9) - сквозное извлечение оксида скандия в целевой продукт (концентрат) - составляет лишь 15,5-17,5%, что меньше или равно таковой величине у прототипа (оп.8), но при меньшем содержании Sc2O3 в концентрате, равном 24,0%, при 30,0% у прототипа.

При выходе за оптимальные параметры процесса сорбции в большую сторону - по удельной нагрузке или температуре процесса (оп.7 и 10) - сквозное извлечение Sc2O3 из красного шлама в концентрат находится либо незначительно больше, чем у прототипа (оп.7), либо меньше (оп.10) - при меньшем содержании оксида скандия в целевом продукте-концентрате: 23,0-25,0% относительно 30,0% у прототипа.

Таблица 2
Результаты экспериментов по сорбции скандия из карбонатного раствора катионитом КФП-12 в оптимальном режиме при прочих равных условиях (см. в тексте)
№ опыта Параметры процесса Характеристика скандиевого концентрата Извлечение Sc2O3, %
Удельная нагрузка по раствору, дм3/дм3·ч Температура, °C Содержание Sc2O3, % Выход концентрата, г/т КШ
1 2 3 4 5 6
По прототипу 30,0 58,0 17,4
Оптимальные пределы параметров
1 3,0 70 24,5 82,8 20,3
2 3,5 80 26,5 105,0 27,8
3 3,5 75 24,7 98,8 25,0
4 4,0 80 27,0 86,7 23,4
При выходе за оптимальные пределы параметров
5 2,5 60 21,5 72,0 15,5
6 2,5 70 22,0 75,0 16,5
7 4,5 70 25,0 74,0 18,5
8 2,5 80 24,0 73,0 17,5
9 3,5 60 23,5 71,0 16,7
10 4,5 90 23,0 74,0 17,0

Пример 3. Проводится получение Sc-содержащего раствора при оптимальных условиях, приведенных в примере 1, и сорбция скандия из данного раствора на катионите КФП-12 в оптимальных условиях, приведенных в примере 2.

В табл.3 приведены результаты опытов по десорбции скандия из фазы катионита КФП-12 элюирующим раствором, содержащим 150 г/дм3 Na2CO3 + 50 г/дм3 NaCl, в пульсационном режиме при следующих параметрах процесса: удельная нагрузка по раствору, интенсивность пульсации и кратность рециркуляции элюата на повторную десорбцию - в оптимальном режиме в соответствии с параметрами заявляемого изобретения, а также при выходе за оптимальные пределы параметров.

Таблица 3
Результаты экспериментов по десорбции скандия карбонатно-хлоридным раствором в оптимальном режиме при прочих равных условиях (см. в тексте)
№ опыта Параметры процесса Концентрация оксида скандия в элюате, Sc2O3, % Извлечение Sc2O3 в элюат, %
Удельная нагрузка по раствору, дм3/дм3·ч Интенсивность пульсации, I - кол/мин·мм Кратность рециркуляции (n)
Оптимальные значения параметров
1 3,0 900 4 135,0 92,5
2 3,5 800 3 105,0 91,0
3 3,5 1000 5 160,5 93,5
4 4,0 1000 5 175,0 94,0
5 4,0 800 4 145,0 91,5
При выходе за оптимальные пределы параметров
6 2,0 700 3 92,0 84,0
7 2,0 1000 2 85,5 87,0
8 3,0 700 4 105,0 86,0
9 3,5 1000 2 80,0 90,0
10 4,0 700 5 125,0 86,0
11 5,0 700 3 94,0 83,0
12 5,0 900 2 75,0 84,5

Оптимальные условия процесса десорбции скандия:

- удельная нагрузка по элюирующему раствору (130-150 г/дм3 Na2CO3 + 40-60 г/дм3 NaCl) равна 3-4 дм3/дм3·час,

- интенсивность пульсации J=800-1000 кол/мин·мм,

- кратность рециркуляции n=3-5 (оп.1-5).

При выходе за оптимальные пределы параметров в меньшую сторону (оп.6, 7, 8, 9, 10) существенно снижается концентрация скандия в получаемом элюате, а также извлечение в элюат меньше 90,0% - минимально допустимая технологическая норма степени извлечения ценного компонента при десорбции. Это связано как с недостаточной удельной нагрузкой элюирующего раствора на десорбцию (2,0 дм3 раствора/дм3 ионита в час - оп.6, 7), так и с недостаточностью интенсивности пульсации - оп.8, 10 и кратности рециркуляции - оп.9.

При выходе за оптимальные пределы в большую сторону (оп.11, 12) также недостаточны как концентрация Sc2O3 в элюате, так и степень извлечения в элюат ≤85%, что связано уже с чрезмерно высокой удельной нагрузкой по элюирующему раствору, УН=5 ч-1, что приводит, во-первых, к снижению концентрации Sc2O3 в элюате из-за увеличения объема элюирующего раствора, а также к размыванию фронта процесса десорбции.

Пример 4. Проводится получение Sc-содержащего раствора, приведенных в примере 1, сорбция скандия катионитом КФП-12 в оптимальных условиях, приведенных в примере 2, десорбция скандия из фазы катионита смешанным карбонатно-хлоридным раствором в оптимальных условиях, приведенных в примере 3.

Из полученного элюата после десорбции, содержащего, мг/дм3: 82,5 Ti, 25,5 Zr и 35,0 Sc - проводится процесс предварительной очистки от сопутствующих скандию примесных элементов (Ti, Zr) для получения в последующем целевого продукта - скандиевого концентрата - с повышенным содержанием Sc2O3.

В табл.4 приведены результаты экспериментов по очистке Sc-содержащего элюата в оптимальном режиме согласно заявляемому изобретению, а также при выходе за оптимальные пределы параметров.

Оптимальные условия процесса осаждения Ti-Zr концентрата (оп.1-5):

- температура = 80-90°C;

- значение pH 9,0-10,0;

- продолжительность 2-3 часа.

При этом достигается максимальный коэффициент очистки - отношение концентрации скандия в очищаемом элюате к суммарной концентрации примесных компонентов (Ti+Zr) - равный 1,5÷2,0 - относительно такового в исходном элюате, равном 0,32.

Таблица 4
Результаты экспериментов по очистке Sc-содержащего элюата от примесных компонентов (титана и циркония) в оптимальном режиме при прочих равных условиях (см. в тексте)
№ опыта Параметры процесса Концентрация компонентов, мг/дм3 Соотношение Me:Sc Коэф-т очистки*)
t, °C ед. pH τ, ч Ti Zr Sc Sc:Ti Sc:Zr
Исходный элюат 82,5 25,5 35,0 0,42 1,37 0,32
1 80 10,0 2,0 14,0 8,5 33,5 2,4 3,94 1,49
2 85 9,5 3,0 13,0 5,5 33,0 2,54 6,0 1,78
3 85 10,0 2,5 11,5 6,0 33,0 2,87 5,5 1,89
4 90 9,0 2,5 12,0 6,5 32,5 2,71 5,0 1,76
5 90 10,0 3,0 10,0 5,8 31,5 3,15 4,2 2,00
При выходе за оптимальные пределы параметров
6 75 8,5 2,0 47,5 15,5 34,5 0,73 2,23 0,55
7 80 8,5 2,0 38,0 12,5 32,0 0,84 2,56 0,63
8 85 9,0 1,5 27,5 10,0 32,8 1Д9 3,28 0,88
9 85 8,5 2,0 32,5 13,7 32,0 0,99 2,34 0,69
10 90 8,5 2,0 25,0 11,5 31,7 1,27 2,76 0,87
11 90 10,0 1,5 20,4 7,7 30,3 1,58 3,94 1,08
12 95 10,5 3,5 9,0 6,0 25,0 2,78 4,17 1,67
*) Коэффициент очистки - отношение концентрации скандия в элюате к суммарной концентрации примесных компонентов (Ti+Zr)

При выходе за оптимальные пределы параметров в меньшую сторону (оп.6, 7, 8, 9) процесс очистки Sc-содержащего элюата от примесных компонентов (Ti, Zr) идет неэффективно: коэффициент очистки находится на уровне ~0,6÷0,9, что обуславливает получение в дальнейшем целевого продукта (концентрата) с пониженным содержанием Sc2O3.

Превышение технологических параметров процесса очистки выше оптимального предела (оп.10, 11, 12) хотя и обуславливает определенное повышение коэффициента очистки с ~0,9 до 1,67, однако, проведение процесса при прочих равных условиях при pH 8,5 (оп.10) и продолжительности 1,5 часа (оп.11) дает коэффициент очистки, не превышающий значение 1,0. Проведение процесса очистки Sc-содержащего элюата при повышенных значениях параметров: t=95°C, pH 10,5 и продолжительность 3,5 часа - дает значительный коэффициент очистки, равный 1,67, однако вызывает одновременно значительные потери скандия: концентрация Sc в элюате снижается с 35,0 мг/дм3 до 25,0 или на 28,5%.

Пример 5. Проводится получение Sc-содержащего раствора из красного шлама в оптимальных условиях, приведенных в примере 1, сорбцию и десорбцию скандия в оптимальных условиях, приведенных соответственно в примерах 2 и 3, предварительную очистку полученного Sc-содержащего элюата от примесных компонентов в оптимальных условиях, приведенных в примере 4.

Далее из полученного очищенного Sc-содержащего элюата, содержащего, мг/дм3: 11,5 Ti, 6,0 Zr и 33,0 Sc, значение pH 11,0 - проводили осаждение первичного скандиевого концентрата.

В табл.5 приведены результаты опытов по осаждению скандия (получение целевого продукта-концентрата) при оптимальном значении параметров процесса - значение pH, температура и продолжительность, - а также при выходе за оптимальные пределы параметров.

Таблица 5
Результаты экспериментов по осаждению скандия из очищенного элюата при прочих равных условиях (см. в тексте)
№ опыта Параметры процесса Характеристика скандиевого концентрата Извлечение Sc2O3, в концентрат, %
Значение pH, ед. t, °C Продолжительность, ч Содержание Sc2O3, масс.% Выход концентрата, г/т КШ
По прототипу 30,0 58,0 17,4
Оптимальные пределы параметров
1 11,5 110 3,0 32,0 70,0 22,5
2 12,0 100 3,0 33,0 71,2 23,5
3 12,5 110 3,0 34,5 69,6 24,0
4 12,5 100 2,0 31,5 73,0 23,0
5 11,5 100 2,0 31,0 67,7 21,0
При выходе за оптимальные пределы параметров
6 11,0 90 2,0 35,6 45,0 16,0
7 11,5 90 3,0 32,3 52,0 16,8
8 12,0 90 2,0 30,0 56,5 17,0
9 11,5 115 1,5 35,0 50,0 17,5
10 12,5 90 1,5 27,5 48,5 13,4
11 12,0 100 1,5 31,5 50,0 15,8
12 12,5 115 3,5 25,0 88,0 22,0

Оптимальными условиями процесса получения первичного скандиевого концентрата являются:

- температура 100-110°C;

- значение pH 11,5÷12,5;

- продолжительность процесса 2,0÷3,0 часа.

При этом достигаются следующие технологические показатели: содержание Sc2O3 в получаемом концентрате составляет, в среднем, 31,0-34,5%, при извлечении 21,24-24,0%, при соответствующих показателях прототипа: 30,0% и 17,8%

При выходе за оптимальные пределы параметров - значение pH, температура и продолжительность процесса в меньшую сторону (оп.6, 7, 8, 9) хотя и достигается значительное содержание Sc2O3 в концентрате, 30,0-35,0%, превышающие, в среднем, таковое значение прототипа (30,0%), однако сквозное извлечение из красного шлама, в среднем равное 16,8%, меньше, чем извлечение по прототипу, равное 17,4%.

При проведении процесса при оптимальных значениях pH, по пониженной температуре - 90°C и продолжительности процесса - 1,5 часа (оп.10, 11) - происходит не только снижение содержания Sc2O3 в концентрате до 27,5% (оп.10), но и снижение извлечения, в среднем, до 14,8%.

Проведение процесса осаждения при повышенных значениях параметров процесса - значение pH 12,5, температура 115°C и продолжительность 3,5 часа - вызывает существенное снижение содержания в концентрате до 20,0%. Это связано со значительным соосаждением в целевой продукт примесных компонентов, присутствующих в элюате (Ti, Zr и другие), что существенно увеличивает выход (количество) получаемого концентрата.

Таким образом, благодаря карбонизационному выщелачиванию красного шлама с первоначальной виброкавитационной обработкой шламовой пульпы, отделению скандия от примесных компонентов с соответствующим концентрированием из полученного скандийсодержащего раствора сорбцией фосфорнокислыми ионитами, десорбции скандия из органической фазы ионитов смешанными карбонатно-хлоридными растворами в пульсационном режиме с получением скандийсодержащего элюата, из которого осуществляют стадийное осаждение малорастворимых соединений скандия, при этом вначале ведут осаждение малорастворимых соединений примесных компонентов с отделением осадка, являющегося титан-циркониевым концентратом, а затем проводят осаждение скандийсодержащего концентрата, обеспечивается повышение извлечения оксида скандия в целевой продукт (концентрат), в среднем, до 23,5% относительно 17,4% по прототипу или на 32,0% больше, при обеспечении содержания на уровне ~32,5% (у прототипа 30,0%).

1. Способ получения скандиевого концентрата из красного шлама, включающий последовательное карбонизационное выщелачивание красного шлама карбонатными растворами при одновременной газации шламовой пульпы газо-воздушной смесью, содержащей CO2, фильтрацию карбонизированной шламовой пульпы с получением скандийсодержащего раствора, последовательное отделение скандия от сопутствующих примесных компонентов с соответствующим концентрированием, осаждение малорастворимых соединений скандия из очищенного раствора, фильтрацию, промывку и сушку осадка с получением скандиевого концентрата, отличающийся тем, что карбонизационное выщелачивание красного шлама ведут с первоначальной виброкавитационной обработкой шламовой пульпы, отделение скандия от примесных компонентов с соответствующим концентрированием из полученного скандийсодержащего раствора ведут сорбцией фосфорнокислыми ионитами, десорбцией скандия из органической фазы ионитов, при этом десорбцию осуществляют смешанными карбонатно-хлоридными растворами в пульсационном режиме с получением скандийсодержащего элюата, из которого осуществляют стадийное осаждение малорастворимых соединений скандия, при этом вначале ведут осаждение малорастворимых соединений примесных компонентов с отделением осадка, являющегося титан-циркониевым концентратом, а затем проводят осаждение скандиевого концентрата.

2. Способ по п.1, отличающийся тем, что карбонизационное выщелачивание скандия из красного шлама ведут раствором гидрокарбоната натрия (NaHCO3) концентрацией 100-150 г/дм3 при температуре 55-65°C и продолжительности 4-6 часов, с первоначальной виброкавитационной обработкой шламовой пульпы при линейной скорости перемешивания 20-40 м/с и продолжительности 45-60 мин.

3. Способ по п.1, отличающийся тем, что сорбцию скандия из полученного скандийсодержащего раствора фосфорнокислыми ионитами ведут при температуре 70-80°C и удельной нагрузке по раствору 3-4 дм3/дм3 ионита в час, а десорбцию скандия осуществляют смешанным карбонатно-хлоридным раствором при концентрации компонентов 130-150 г/дм3 Na2CO3 и 40-60 г/дм3 NaCl, удельной нагрузке по раствору 3-4 дм3/дм3 ионита в час, и в пульсационном режиме при интенсивности пульсации 800-1000 кол/мин.мм.

4. Способ по п.1, отличающийся тем, что карбонатный раствор после сорбционного извлечения скандия возвращают в начало процесса для осуществления последующего цикла карбонизационного выщелачивания скандия из красного шлама.

5. Способ по п.1, отличающийся тем, что полученный после десорбции скандийсодержащий элюат возвращают на стадию десорбции необходимое количество раз до достижения равновесной концентрации скандия в элюате.

6. Способ по п.1, отличающийся тем, что осаждение примесных компонентов из скандийсодержащего элюата, включая титан и цирконий, проводят при температуре 80-90°C, значениях pH 9,0-10,0 и продолжительности 2-3 часа.

7. Способ по п.1, отличающийся тем, что осаждение малорастворимых соединений скандия из очищенного элюата ведут при значениях pH 11,5-12,5, температуре 100-110°C и продолжительности 2-3 часа.



 

Похожие патенты:

Изобретение относится к переработке фосфатного редкоземельного концентрата (ФРЗК), полученного при азотно-кислотной переработке апатита. Способ переработки ФРЗК, выделенного при нейтрализации азотно-фосфорнокислого раствора, полученного после вскрытия апатита азотной кислотой, включает обработку ФРЗК азотной кислотой и отделение нерастворимого остатка из полученного нитратно-фосфатного раствора редкоземельных элементов (РЗЭ).

Изобретение относится к способам извлечения церия(IV) из сульфатных растворов методом экстракции и может быть использовано для концентрирования церия(IV) из руд, производственных растворов сложного солевого состава и в аналитических целях.

Изобретение относится к способу извлечения редкоземельных элементов из фосфорной кислоты при переработке хибинских апатитовых концентратов на удобрения. Способ включает сорбцию с помощью сильно-кислотного макропористого катионита Purolite С-150, осуществляемую в диапазоне температур 40-80°C, промывку насыщенного суммой редкоземельных элементов сорбента водой, десорбцию раствором нитрата аммония с получением товарного десорбата и дополнительную экстракционную очистку полученного десорбата 100% трибутилфосфатом.

Изобретение относится к способу комплексной переработки апатита с извлечением и получением концентрата редкоземельных металлов (РЗМ) и строительного гипса из фосфогипса - отхода сернокислотной технологии получения фосфорной кислоты из апатита.
Изобретение относится к способу извлечения редкоземельных металлов (РЗМ) и строительного гипса из фосфогипса - отхода сернокислотной технологии получения фосфорной кислоты из апатита.

Способ извлечения редкоземельных элементов из фосфогипса включает сернокислотное выщелачивание РЗМ из пульпы фосфогипса с наложением ультразвуковых колебаний, разделение пульпы выщелачивания на продуктивный раствор РЗМ и кек, осаждение коллективного концентрата РЗМ из продуктивного раствора с получением водной фазы.

Изобретение относится к переработке лопаритового концентрата. Способ включает измельчение концентрата и пирометаллургическое вскрытие концентрата в два этапа.

Изобретение относится к способу извлечения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты. Экстракционную фосфорную кислоту с концентрацией 27-45 мас.%, содержащую РЗЭ и торий, пропускают через сульфоксидный катионит с образованием обедненного по РЗЭ торийсодержащего фосфорнокислого раствора и катионита, насыщенного РЗЭ.
Изобретение относится к технологии переработки фосфогипса - отхода предприятий, производящих фосфорные удобрения. Способ включает вскрытие фосфогипса серной кислотой, последующее извлечение редкоземельных элементов (РЗЭ) и обработку очищенного фосфогипса оксидом кальция.

Изобретение относится к способу вскрытия перовскитовых концентратов. Способ включает предварительную механообработку перовскитовых концентратов и последующую обработку активированных концентратов раствором азотной кислоты HNO3.

Изобретение относится к разделению и концентрированию металлов и может быть использовано для разделения платины, родия и никеля. Способ отделения платины (II, IV) и родия (III) от никеля (II) в хлоридных растворах, включает сорбцию платины (II, IV) и родия (III) и последующую десорбцию этих металлов.

Изобретение относится к способу извлечения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты. Экстракционную фосфорную кислоту с концентрацией 27-45 мас.%, содержащую РЗЭ и торий, пропускают через сульфоксидный катионит с образованием обедненного по РЗЭ торийсодержащего фосфорнокислого раствора и катионита, насыщенного РЗЭ.
Изобретение относится к обогащению полезных ископаемых и может быть использовано для извлечения тонкодисперсного золота из глинистых отложений. Способ включает приготовление суспензии из глинистых отложений, улавливание из суспензии тонкодисперсного золота сорбцией введением сорбента на основе растительного материала, предварительно измельченного до крупности 0,3 мм, в суспензию и перемешиванием.

Изобретение относится к способу извлечения ионов серебра из низкоконцентрированных растворов. Способ включает пропускание раствора через полимерное волокно для сорбции ионов серебра.
Изобретение относится к сорбционной гидрометаллургии урана и рения и может быть использовано для извлечения рения из растворов и пульп. Способ извлечения рения из урансодержащих растворов включает сорбцию рения на анионах.

Изобретение относится к способу переработки фосфогипса для производства концентрата редкоземельных металлов (РЗМ) и гипса. Способ включает приготовление пульпы фосфогипса, выщелачивание РЗМ и фосфора серной кислотой.
Изобретение относится к способу извлечения урана из маточных растворов. Способ включает получение смолы, модифицированной аминофосфоновыми группами, и получение маточного раствора, содержащего от 25 до 278 г/л сульфата и уран.
Изобретение относится к области извлечения чистого пентаоксида ванадия из шлака, полученного при его производстве. В данном способе берут предварительно измельченный ванадийсодержащий шлак, сплавляют его с едким натром с получением метаванадата натрия.

Сорбционное извлечение ионов железа из кислых хлоридных растворов относится к области извлечения веществ с использованием сорбентов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.

Изобретение относится к сорбционному извлечению ионов кобальта Со2+ из кислых хлоридных растворов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.
Изобретение относится к переработке вольфрамсодержащего сырья. В автоклав загружают вольфрамсодержащее сырье и раствор карбоната натрия концентрацией 220 г/л.
Наверх