Способ волочения полиметаллических многослойных прутковых и проволочных изделий



Способ волочения полиметаллических многослойных прутковых и проволочных изделий
Способ волочения полиметаллических многослойных прутковых и проволочных изделий
Способ волочения полиметаллических многослойных прутковых и проволочных изделий
Способ волочения полиметаллических многослойных прутковых и проволочных изделий
Способ волочения полиметаллических многослойных прутковых и проволочных изделий
Способ волочения полиметаллических многослойных прутковых и проволочных изделий

 


Владельцы патента RU 2536849:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" (RU)

Изобретение относится к обработке металлов давлением и предназначено для производства полиметаллических многослойных прутковых и проволочных изделий волочением. Способ включает предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через рабочий канал монолитной волоки. Снижение напряжения волочения и энергоемкости процесса волочения обеспечивается за счет того, что используют волоку, угол наклона образующей рабочего канала к оси волочения которой регламентируют математической зависимостью, учитывающей влияние таких факторов как сопротивление деформации материала наружного слоя, напряжение противонатяжения, соотношение площадей сечения слоев и др., что позволяет повысить единичные обжатия и качество протягиваемых изделий.

 

Изобретение относится к обработке металлов давлением и предназначено для производства полиметаллических многослойных прутковых и проволочных изделий волочением.

Известно, что прутки и проволоку изготавливают по технологической схеме, совмещающей прокатку или прессование заготовки с последующим волочением полиметаллической многослойной заготовки через конические волоки.

При деформировании в волочильном инструменте заготовки возникает напряжение волочения, которое может приводить к обрыву переднего конца заготовки (см. Перлин И.Л., Ерманок М.З. Теория волочения. - М.: Металлургия, 1971. - с.17).

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ волочения изделий (см. патент РФ №2310533 от 20.11.2007, кл. В21С 1/00), включающий предварительное формирование захватки с заостренным и коническим участками и последующее волочение через рабочий канал монолитной волоки. Используют волоку, угол наклона образующей рабочего канала которой составляет

α в = a r c t g ( 1 , 414 ln λ f ) ,                                            ( 1 )

где λ = d 0 2 / d 1 2 - вытяжка при волочении; d0, d1 - внешний диаметр прутка или проволоки до и после деформации соответственно; f - коэффициент внешнего трения в очаге деформации при волочении. Данный способ принят в качестве прототипа.

Признаки прототипа, совпадающие с признаками заявляемого решения, - предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через рабочий канал монолитной волоки.

Недостатком известного способа, принятого за прототип, является то, что процесс волочения имеет повышенные напряжение и энергоемкость. Это объясняется тем, что способ не обеспечивает минимальное значение напряжения волочения и приводит к повышенной энергоемкости процесса волочения. Кроме того, известный способ не учитывает влияние геометрических соотношений слоев полиметалла и их механических свойств на напряжение, поскольку в зависимости от геометрических соотношений слоев полиметалла и их механических свойств напряжение волочения будет различным.

Задачей изобретения является снижение напряжения волочения и энергоемкости процесса волочения полиметаллических многослойных прутковых и проволочных изделий, повышение единичных обжатий и качества протягиваемых полиметаллических многослойных изделий за счет оптимизации угла наклона образующей рабочего канала волочильного инструмента.

Поставленная задача была решена за счет того, что в известном способе, включающем предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через рабочий канал монолитной волоки, используют волоку, угол наклона образующей рабочего канала к оси волочения которой составляет

α в о п т = a r c t g 1 , 41 f ln λ ( σ s n σ 0 ) F n ¯ i = 1 n σ s i F i ¯ ,                               ( 2 )

где f - коэффициент внешнего трения между волокой и наружной поверхностью заготовки;

λ=F0/F1 - вытяжка при волочении;

F0 и F1 - площадь сечения заготовки до и после прохода соответственно;

σsn - сопротивление деформации материала наружного слоя;

σ0 - напряжение противонатяжения;

F n ¯ = F n / F 1 - относительная площадь наружного слоя заготовки;

Fn - площадь сечения наружного слоя заготовки;

σsi - сопротивление деформации материала i-того слоя заготовки;

F i ¯ = F i / F 1 - относительная площадь сечения i-того слоя заготовки;

Fi - площадь сечения i-того слоя заготовки.

Признаки заявляемого способа, отличительные от прототипа, используют волоку, угол наклона образующей рабочего канала к оси волочения которой определяют по приведенной выше формуле 2.

В большинстве случаев волочения полиметаллических многослойных заготовок принудительное противонатяжение отсутствует (σ0=0), поэтому формула (2) принимает вид

α в = a r c t g 1 , 414 f ln λ σ s n F n ¯ i = 1 n σ s i F i ¯ .                                         ( 3 )

В реальных условиях волочения напряжение волочения полиметаллической многослойной заготовки определяется по формуле (см. Механика композиционных материалов и конструкций. 2010 - Том 18, №2. С.-267-272)

σ в о л = ( ln λ + 4 3 3 t g α в ) [ i = 1 n σ s i F i ¯ + f c t g α П ( σ s n σ 0 ) F n ¯ ] + σ 0 ,                ( 4 )

где σsi - сопротивление деформации материала i-того слоя заготовки;

σsn - сопротивление деформации материала наружного слоя;

F i ¯ = F i / F 1 - относительная площадь сечения i-того слоя заготовки;

F n ¯ = F n / F 1 - относительная площадь наружного слоя заготовки;

λ=F0/F1 - вытяжка при волочении;

F0 и F1 - площадь сечения заготовки до и после прохода соответственно;

αв - угол наклона образующей инструмента к оси волочения;

αП - приведенный угол волоки tgαП=0,65tgαв; f - коэффициент внешнего трения между волокой и наружной поверхностью заготовки;

Σ - знак суммирования;

σ0 - напряжение противонатяжения.

Минимальное значение напряжения волочения и соответственно усилия волочения полиметаллической многослойной заготовки, а также энергоемкости процесса, обеспечивается из условия равенства нулю производной от напряжения волочения по тангенсу угла наклона образующей рабочего канала волочильного инструмента, а именно

d σ в о л d ( t g α в ) = 0                                                 ( 5 )

Продифференцировав выражение (4) согласно условию (5), после преобразований получим уравнение для определения оптимального значения tgαв

t g α в = 1 , 41 f ln λ ( σ s n σ 0 ) F n ¯ i = 1 n σ s i F i ¯ ,                      ( 6 )

и соответственно

α в о п т = a r c t g 1 , 41 f ln λ ( σ s n σ 0 ) F n ¯ i = 1 n σ s i F i ¯ .                            ( 7 )

Соотношение (7) обеспечивает минимальное значение напряжения волочения и минимальную энергоемкость процесса волочения полиметаллической многослойной заготовки.

В случае отсутствия противонатяжения (σ0=0) из формулы (6) получим оптимальный угол наклона образующей рабочего наклона волоки

α в о п т = a r c t g 1 , 41 f ln λ σ s n F n ¯ i = 1 n σ s i F i ¯ .                                      ( 8 )

Пример конкретной реализации предлагаемого способа.

Предлагаемый способ использован для волочения полиметаллической заготовки низкотемпературного сверхпроводника, состоящего из медного сердечника, промежуточных слоев из сверхпроводникового ниобия и медной стабилизирующей оболочки. При этом геометрические и физические соотношения составляли: F 1 ¯ = 0 , 1 ; F n ¯ = F 1 ¯ * i ( i = 1 n ) , σsisi-2=310 МПа; σsn-1=250 МПа. При волочении заготовки через волочильный инструмент с αв=10° без противонатяжения и вытяжки λ=1,15 при коэффициенте трения f=0,1 среднее напряжение полиметаллической заготовки волочения составило 117 МПа.

По формуле (2) предлагаемого способа определили оптимальный угол конусности волочильного инструмента, получили α в о п т = 5 , 7 . После изготовления инструмента с оптимальной конусностью провели волочение заготовки с прежними технологическими параметрами, среднее напряжение волочения при этом оказалось равным 97 МПа.

Таким образом, снижение среднего напряжения волочения при использовании предлагаемого способа составило 17%.

При снижении напряжения волочения появляется возможность повышения обжатий при волочении и снижения кратности маршрутов волочения. Снижение напряжения волочения уменьшает также вероятность обрыва переднего конца заготовки и разрушения компонентов полиметаллической многослойной заготовки, повышая тем самым качество протягиваемых изделий.

Способ волочения полиметаллических многослойных прутковых и проволочных изделий, включающий предварительное формирование на изделии захватки с заостренным и коническим участками и последующее волочение через рабочий канал монолитной волоки, отличающийся тем, что используют волоку, угол наклона образующей рабочего канала к оси волочения которой составляет
,
где f - коэффициент внешнего трения между волокой и наружной поверхностью заготовки;
λ=F0/F1 - вытяжка при волочении;
F0 и F1 - площадь сечения заготовки до и после прохода соответственно;
σsn - сопротивление деформации материала наружного слоя;
σ0 - напряжение противонатяжения;
- относительная площадь наружного слоя заготовки;
Fn - площадь сечения наружного слоя заготовки;
σsi - сопротивление деформации материала i-того слоя заготовки;
- относительная площадь сечения i-того слоя заготовки;
Fi - площадь сечения i-того слоя заготовки.



 

Похожие патенты:

Изобретение предназначено для увеличения срока службы калиброванных валков, уменьшения количества перевалок, увеличения производительности устройства для производства холоднодеформируемых труб прокаткой и волочением.

Изобретение предназначено для повышения физико-механических свойств арматурной высокопрочной проволоки преимущественно 9 группы диаметров (более 8,0 мм) при одновременном снижении затрат на ее производство.

Изобретение предназначено для снижения себестоимости арматурной высокопрочной проволоки. Способ включает деформацию заготовки путем приложения тянущей силы с одновременным приложением дополнительной деформации сдвига вращением.

Изобретение предназначено для уменьшения усилий при обработке давлением технически чистого алюминия. Снижение микротвердости материала заготовки обеспечивается за счет того, что перед волочением на заготовку воздействуют импульсным магнитным полем, индукция которого не превышает 0,7 Тл, создаваемым посредством установленного перед волокой индуктора, на который подают импульсы тока регламентированных параметров от источника токовых импульсов.

Изобретение предназначено для повышения точности формы и размеров высокопрочной арматурной проволоки больших диаметров, производимой методом холодного волочения и термомеханической обработкой из высокоуглеродистой стали.

Изобретение относится к обработке металлов давлением и предназначено для производства триметаллических прутковых и проволочных изделий волочением. .

Изобретение относится к обработке металлов давлением, в частности к волочению провода контактного из меди и ее сплавов с площадью поперечного сечения 65, 85, 100, 120, и 150 мм, и может быть использовано в метизной промышленности для изготовления фасонных профилей с вогнутыми и выпуклыми поверхностями.

Изобретение относится к обработке металлов давлением и предназначено для производства биметаллических прутковых и проволочных изделий волочением. .

Изобретение относится к оборудованию для производства проволоки веерным способом, т.е. .
Изобретение относится к обработке металлов давлением и предназначено для производства высокопрочной проволоки волочением для армирования железобетонных изделий.

Изобретение относится к области волочения при производстве прутков и проволоки. Способ включает формирование на изделии захватки с заостренным и коническим участками и последующее волочение через монолитную волоку. Снижение напряжения волочения и энергоемкости процесса обеспечивается за счет оптимизации угла наклона образующей рабочего канала волоки, регламентируемого математической зависимостью, учитывающей такие параметры, как коэффициент внешнего трения в очаге деформации, длину очага деформации, длину калибрующего пояска волоки, сопротивление деформации материала протягиваемой заготовки, напряжение противонатяжения, коэффициент вытяжки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к обработке металлов давлением. Биметаллическую заготовку получают путем оборачивания сердечника лентой и соединения кромок ленты. Исключение применения сварки, как следствие, разогрева и оплавления кромок и стержня, появления интерметаллидов, снижающих прочность соединения компонентов при плакировании, обеспечивается за счет того, что предварительно в сердечнике делают V-образный врез глубиной не более половины диаметра сердечника и углом 30-60° и выполняют правку сердечника для придания ему прямолинейной формы по длине, затем края ленты заправляют в V-образный врез и сжимают заготовку, устраняя врез, при этом ширина ленты регламентирована математической зависимостью. 4 ил.

Изобретение относится к обработке металлов давлением и предназначено для производства осесимметричных прутковых и проволочных изделий волочением. Способ включает предварительное формирование на изделии захватки и последующее многопереходное волочение через монолитные волоки. Исключение вероятности разрушения изделия от осевых, радиальных и окружных остаточных напряжений обеспечивается за счет того, что предельная суммарная вытяжка регламентирована исходя из условия сохранения прочности металлоизделия математической зависимостью. 1 пр.

Способ относится к обработке металлов давлением в прокатном и волочильном производстве. Способ включает многоступенчатую деформацию заготовки в ряде калибров, образованных ручьями смежных валков роликовой волоки при сопряжении их контактных поверхностей, путем формирования профиля на отдельных ступенях деформации с разворотом калибров в последующей ступени и чистовое формирование профиля в монолитной волоке. Повышение точности профилей и уменьшение усилия волочения обеспечивается за счет того, что на поверхности профиля формуют не менее трех параллельных его продольной оси равновеликих валика путем выдавливания металла в клиновидные компенсационные полости калибров между участками контактных поверхностей смежных роликов, прилегающими к контуру калибра, разворот калибров производят на половину угла между соседними компенсационными полостями относительно их положения в предыдущем калибре. Суммарная площадь поперечного сечения валиков регламентирована математической зависимостью. 3 ил., 1 пр.
Наверх