Способ определения аэродинамической деформации защитных конструкций одежды



Способ определения аэродинамической деформации защитных конструкций одежды
Способ определения аэродинамической деформации защитных конструкций одежды

 


Владельцы патента RU 2537122:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") (RU)

Изобретение относится к области швейного материаловедения, в частности к способу исследования процессов деформации защитных конструкций одежды под действием аэродинамической нагрузки. Способ определения аэродинамической деформации защитных конструкций одежды заключается в том, что объемно-упругие защитные конструкции одежды представляются моделью цилиндра и помещаются в дозвуковую аэродинамическую трубу с низкотурбулентным потоком воздуха и рабочей зоной, выполненной из прозрачного материала. Деформация объемно-упругих защитных конструкций одежды, происходящая под воздействием воздушного потока, фиксируется в рабочей зоне аэродинамической трубы с помощью цифровой фотосъемки, с последующей обработкой результатов с использованием программных продуктов. Заявленное изобретение позволит обеспечить исследование аэродинамической деформации защитной конструкции одежды в лабораторных условиях и прогнозирование теплового состояния человека в реальных условиях на основе полученных экспериментальных сведений, снизить стоимость при испытаниях, сократить время проведения испытаний, повысить точность экспериментальных результатов. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области швейного материаловедения, в частности к способу исследования процессов деформации защитных конструкций одежды под действием аэродинамической нагрузки.

Защитная конструкция одежды предназначена для обеспечения тепловой защиты человека в неблагоприятных условиях среды, от ее свойств зависит тепловое состояние человека. Защитная конструкция одежды представляет собой объемно-упругую оболочку, имеющую допустимую толщину δ=0,02-0,06 м и состоящую из слоев: ткань верха, объемно-упругий утеплитель и подкладка. Объемно-упругая защитная конструкция одежды под воздействием аэродинамической нагрузки деформируется, что влечет за собой изменение свойств одежды.

Из патентной литературы в области экспериментальной аэродинамики известны способы и устройства для определения аэродинамических характеристик, применяемые для изучения воздействия потока газа (в большинстве случаев воздуха) на обтекаемый объект - самолет, автомобиль, корабль, мост, здание и др., а также экспериментального изучения аэродинамических явлений (патент RU 2407998 C2, 27.12.2010; патент RU 2460982 C1, 10.09.2012; патент US 6820477 B2, 23.11.2004).

Перечисленные способы и установки характеризуются высоким уровнем технической сложности, материалоемкости конструкции, имеют ограниченную область испытаний.

В швейном материаловедении для определения деформационных свойств текстильных материалов и изделий из них известен стандартный метод определения толщины путем сжатия образца при постоянном давлении в течение определенного времени воздействия нагрузки (ГОСТ 12023-2003. Материалы текстильные и изделия из них. Метод определения толщины. Введен 01.12.2005 - М.: Стандартинформ, 2005. С 3-8). Однако известный способ не позволяет определить изменение толщины объемно-упругой защитной конструкции одежды как следствие воздействия аэродинамической нагрузки.

Известен способ определения деформационных свойств объемных теплоизоляционных материалов и готовых образцов (патент RU 2231788 C1, 27.06.2004). Способ заключается в определении изменений параметров исследуемых образцов при сжатии их составным пуансоном, состоящим из центрального и наружного пуансонов, а испытания проводятся последовательно: сначала центральный пуансон нагружают усилием F1, затем наружный пуансон нагружают усилием F2, обеспечивающим равенство осадки под центральным и наружным пуансонами. Способ позволяет определить величину осадки центрального пуансона и исходную высоту образца при заданных значениях усилия F1. К недостатку способа относится невозможность его использования для определения изменения толщины объемно-упругой защитной конструкции одежды как следствия воздействия аэродинамической нагрузки.

Известен способ определения миграции волокон утеплителя через пакет одежных материалов (патент SU 1716437 A1, 28.02.1989), заключающийся в формировании многослойного пакета, в виде полого цилиндра, состоящего из материалов подкладки, утеплителя и верха и размещении его на цилиндрической оправке из диэлектрического материала. Подготовленный таким образом образец помещают в замкнутую камеру со стенками из диэлектрического материала и подвергают неориентированному механическому воздействию. К недостатку способа относится невозможность его использования для определения изменения толщины объемно-упругой защитной конструкции одежды как следствия воздействия аэродинамической нагрузки.

Наиболее близким техническим решением является способ и устройство для определения конвективного теплообмена и скорости испарения влаги в системе человек-одежда-окружающая среда (патент RU 2205403 C1, 27.05.2003). Способ заключается в том, что для определения конвективного теплообмена и скорости испарения влаги в системе человек-одежда-окружающая среда используют измерительное устройство, оснащенное аэродинамическим приспособлением с воздухозаборниками, оснащенными приборами для измерения расхода, температуры и влажности воздуха до и после контакта с поверхностью теплообмена. Устройство включает в себя физическую модель элемента тела человека, выполненную в виде вертикального цилиндра, установленного в центре аэродинамического приспособления. Известным способом определяют конвективный теплообмен, скорость и интенсивность испарения влаги с поверхности, моделирующей элемент тела человека. Однако данный способ не позволяет определить изменение толщины объемно-упругой защитной конструкции одежды как следствие воздействия аэродинамической нагрузки.

Анализ существующих методов (Недина В.Т., Сухарев М.И., Филиппов П.А. Исследование аэродинамических свойств текстильных материалов. // Известия вузов. Технология текстильной промышленности. - 1983. - №1 (151). - С.15-18; Патрашев А.Н. Гидромеханика. М.: Военно-морское издательство Военно-морского министерства союза ССР, 1953. - С.637-705; Stolwijk, J.R. A mathematical model of Physiological temperature regulation in man // Washington: Nat. Aeronaut and Space Admin, 1971. - P.23-31) по исследованию особенностей обтекания тела человека в одежде,показал, что определение силового воздействия потока воздуха на поверхность одежды целесообразно проводить на основе изучения силовых характеристик цилиндра с оболочками из пакета материалов в условиях однородного воздушного потока малых дозвуковых скоростей. В большинстве моделей имитация тела человека представляется цилиндром или набором геометрических тел.

Известна концепция геометрической идеализации тела человека Столвийка (Stolwijk J.R. A mathematical model of Physiological temperature regulation in man // Washington: Nat. Aeronaut and Space Admin, 1971. - P.23-31; Бринк И.Ю., Лебедева Е.О. Исследование воздействия ветра на пакеты теплозащитной одежды // Швейная промышленность, №3. 2005. - С.34-36.).

В настоящем способе предлагается использовать модельное представление туловища человека в виде цилиндра как характерную часть тела, в наибольшей степени определяющую его тепловой баланс, поверх которого имеется равномерный слой защитной конструкции одежды.

В основу способа положена задача исследования аэродинамической деформации при обтекании образца цилиндрической модели объемно-упругой защитной конструкции одежды дозвуковым потоком воздуха. Величина деформации определяется как изменение толщины образца под воздействием аэродинамической нагрузки.

Задачей настоящего технического решения является исследование аэродинамической деформации объемно-упругих защитных конструкций одежды и повышение объективности результатов определения путем приближения условий испытаний к эксплуатационным.

Техническим результатом изобретения является возможность исследования аэродинамической деформации объемно-упругих защитных конструкций одежды в лабораторных условиях и прогнозирование теплового состояния человека в реальных условиях на основе полученных экспериментальных сведений, повышение точности экспериментальных результатов, снижение стоимости при испытаниях и сокращение времени проведения испытаний.

Указанный технический результат достигается тем, что в способе определения аэродинамической деформации защитных конструкций одежды, включающем определение деформации объемно-упругих защитных конструкций одежды путем обдува образца в дозвуковой аэродинамической трубе с низкотурбулентным потоком воздуха, деформация объемно-упругих защитных конструкций одежды, происходящая под воздействием воздушного потока, фиксируется в рабочей зоне аэродинамической трубы с помощью цифровой фотосъемки, с последующей обработкой результатов с использованием программных продуктов.

Кроме того, указанный технический результат достигается тем, что образец объемно-упругих защитных конструкций одежды представляется в виде полого цилиндра (тора), исходя из модельного представления тела человека, покрытого равномерным слоем защитной конструкции одежды в виде цилиндра.

Предложенная модель поясняется фиг.1. Геометрические характеристики цилиндрической модели защитной конструкции одежды определяются его высотой h, м, внешним R, м и внутренним R0, м радиусами. Разность между внешним и внутренним радиусами представляет толщину δ такого цилиндра, то есть δ=R-R0, м; 1 - внешняя оболочка образца из покровной ткани, 2 - внутренняя оболочка образца из подкладочной ткани, 3 - объемный утеплитель.

Обработка результатов заключается в получении данных об изменении толщины образца на различных его участках. За изменение толщины образца принимается изменение геометрии торцевой поверхности образца цилиндрической модели объемно-упругой защитной конструкции одежды, контуры которой снимаются с фотоснимков в графическом редакторе. Полученные контуры торцевой поверхности, изображенные на фиг.2, представляют сечение образцов цилиндрической модели в горизонтальной плоскости. С помощью программного продукта измеряют расстояние между двумя точками образца, то есть его толщину. Измерения проводятся с точностью до 0,001 м.

Предлагаемый способ опробован в лабораторных условиях.

Заявленное изобретение позволит обеспечить исследование аэродинамической деформации защитной конструкции одежды в лабораторных условиях и прогнозирование теплового состояния человека в реальных условиях на основе полученных экспериментальных сведений, снизить стоимость при испытаниях, сократить время проведения испытаний, повысить точность экспериментальных результатов.

Источники информации

1. Патент RU 2407998 C2, 27.12.2010.

2. Патент RU 2460982 C1, 10.09.2012;

3. Патент US 6820477 B2, 23.11.2004;

4. ГОСТ 12023-2003. Материалы текстильные и изделия из них. Метод определения толщины [Текст]. - М.: Стандартинформ, 2005. 11 с.

5. Патент RU 2231788 C1, 27.06.2004.

6. Патент SU 1716437 Al, 28.02.1989.

7. Патент RU 2205403 C1, 27.05.2003.

1. Способ определения аэродинамической деформации защитных конструкций одежды, включающий определение деформации объемно-упругих защитных конструкций одежды путем обдува образца в дозвуковой аэродинамической трубе с низкотурбулентным потоком воздуха, отличающийся тем, что деформация объемно-упругих защитных конструкций одежды, происходящая под воздействием воздушного потока, фиксируется в рабочей зоне аэродинамической трубы с помощью цифровой фотосъемки, с последующей обработкой результатов с использованием программных продуктов.

2. Способ определения аэродинамической деформации защитных конструкций одежды по п.1, отличающийся тем, что образец объемно-упругих защитных конструкций одежды представляется в виде полого цилиндра, при этом геометрические характеристики цилиндрической модели защитной конструкции одежды определяются его высотой h, м, внешним R, м и внутренним R0, м радиусами, причем разность между внешним и внутренним радиусами представляет толщину δ такого цилиндра, то есть δ=R-R0, м, при этом величину аэродинамической деформации определяют как толщину δ образца под действием аэродинамической нагрузки.



 

Похожие патенты:

Изобретение относится к судостроению и касается проектирования экранопланов. При определении аэродинамических характеристик горизонтального оперения экраноплана с установленными на нем работающими маршевыми двигателями изготавливают геометрически подобную модель горизонтального оперения и двигателей силовой установки.

Изобретения относятся к области экспериментальной аэродинамики летательных аппаратов и могут быть использованы для определения статических и нестационарных аэродинамических производных моделей летательных аппаратов в аэродинамической трубе.

Изобретение относится к экспериментальному оборудованию для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе, в том числе вблизи экрана.

Изобретение относится к экспериментальному оборудованию для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе, в том числе вблизи экрана.

Изобретение относится к области экспериментальной аэродинамики летательных аппаратов, преимущественно к разработке методов воспроизведения в аэродинамических трубах условий обтекания летательных аппаратов и разработке методов повышения аэродинамического качества летательных аппаратов.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при проведении испытаний в трансзвуковых аэродинамических трубах. .

Изобретение относится к области испытаний на прочность, в частности к изготовлению и конструкции образцов лопасти модели воздушного винта, предназначенных для таких испытаний.

Изобретение относится к области приборостроения и может быть использовано, в частности, в устройствах нагрева газа для импульсных установок. .

Изобретение относится к области экспериментальной аэродинамики, а именно к способам определения аэродинамических характеристик воздушных судов. .
Изобретение относится к области охраны труда и технике безопасности и предназначено для индивидуальной защиты от воздействия электростатического поля. Изобретение позволяет повысить эффективность индивидуальной защиты работников современных электростатических и взрывоопасных производств при эксплуатации защитных текстильных изделий (одежды) за счет непрерывного отвода накопленных зарядов статического электричества с человека на электроды элемента электрохимической защиты, который представляет собой герметичный пакет с двумя электродами, выполненными из углеродной ткани с нанесенным на ее поверхность активным слоем, содержащим оксид/гидроксид никеля, полимерным электролитом и сепаратором.

Изобретение относится к текстильной промышленности и касается тканей, имеющих участки с разными функциональными свойствами. Примеры осуществления настоящего изобретения относятся в основном к экипировке для тела, имеющей заданные эксплуатационные характеристики, и, в частности, к способам и устройствам, в которых используют массив элементов с первыми эксплуатационными характеристиками, соединенных с базовым материалом для направления тепла, поглощения тепла, испускания тепла и/или выведения влаги с сохранением требуемых передающих свойств базового материала.

Изобретение относится к области средств индивидуальной защиты и предназначено для создания локальной защиты пожарного, работающего как в дыхательном аппарате, так и без него, от тепловых факторов пожара.

Изобретение относится к медицине, конкретно к области нетканых материалов, предназначенных для изготовления одноразовых изделий медицинского и санитарно-гигиенического назначения, фильтровальных материалов.

Заявляется куртка, в которой карманы с обеих сторон выполнены с возможностью соединения и разъединения, характеризующаяся тем, что в обычной куртке, которая может быть расстегнута и застегнута с помощью застегивающего элемента типа молнии или пуговицы, выполнен карман, расположенный слева и справа от застегивающего элемента соответственно так, чтобы пользователь мог поместить руки в левый и правый карманы, которые могут быть соединены в один удлиненный карман, а также имеется трубчатый канал, проходящий от обоих карманов через спинку куртки, и нагревательный элемент, размещенный либо в обоих карманах, либо в трубчатом канале для эффективного подогрева как рук пользователя, так и его тела.

Изобретение относится к снаряжению спасателей в сфере чрезвычайных ситуаций, в частности для экипировки спасателей при проведении аварийно-спасательных работ в условиях природных и техногенных ЧС, вызывающих разрушение объектов, а также в условиях дорожно-транспортных происшествий.

Настоящее изобретение относится к теплорегулирующему материалу, предназначенному для использования в средствах защиты тела, содержащему: базовый материал, обладающий передающей способностью так, что он обеспечивает возможность, препятствует и/или ограничивает прохождение через него природного элемента; матрицу из теплонаправляющих элементов, соединенных с первой стороной базового материала, причем теплонаправляющие элементы расположены так, чтобы направлять тепло в заданном направлении, причем расположение теплонаправляющих элементов и промежутки между ними таковы, что базовый материал способен выполнять функцию передачи природного элемента.
Изобретение относится к модификации поверхностных свойств тканых и нетканых текстильных материалов методом магнетронного распыления и может быть использовано для изготовления материалов, обладающих электрической проводимостью и экранирующих электромагнитное излучение.

Изобретение относится к снаряжению спасателей в сфере чрезвычайных ситуаций, в частности для экипировки спасателей при проведении аварийно-спасательных работ в условиях природных и техногенных ЧС, вызывающих разрушение объектов, а также в условиях дорожно-транспортных происшествий.

Изобретение относится к снаряжению спасателей в сфере чрезвычайных ситуаций, в частности для экипировки спасателей при проведении аварийно-спасательных работ в условиях природных и техногенных ЧС, вызывающих разрушение объектов, а также в сейсмически опасных условиях.

Изобретение относится к текстильной промышленности и касается охлаждающих тканей. Ткани имеют массив охлаждающих элементов, соединенных с базовым материалом для поглощения тепла с одновременным сохранением желаемых свойств базового материала. Возможно использование охлаждающих элементов, содержащих охлаждающий гель, или полимер, или материал с фазовым переходом, при этом под воздействием влаги охлаждающие элементы претерпевают химическое или физическое изменение, благодаря чему обеспечивается поглощение тепла. Изобретение обеспечивает создание тканей, обеспечивающих охлаждение тела. 2 н. и 18 з.п. ф-лы, 18 ил.
Наверх