Способ получения пористых стекломатериалов


 


Владельцы патента RU 2537304:

Павлов Вячеслав Фролович (RU)
Мельников Владимир Павлович (RU)
Шабанов Василий Филиппович (RU)
Иванов Константин Сергеевич (RU)

Изобретение относится к пористым стекломатериалам. Технический результат изобретения заключается в снижении температуры и времени плавления шихты. Готовят шихту на основе кремнистых пород и доводят соотношение SiO2/CaO до 0,75-1,04. Шихту плавят при температуре 1500-1550°C, при следующем содержании компонентов, мас.%: SiO2 - 40,1-47, CaO - 44,9-53,2, Al2O3 - 2-15, MgO - 0,8-4, Fe2O3 - 0,2-5, Na2O - 0,6-1,5, K2O - 0,6-1,5, TiO2 - 0,2-1,5, SO3 - 0,01-0,3. 1 з.п. ф-лы, 4 пр.

 

Изобретение относится к области переработки нерудного кремнистого сырья (диатомиты, трепелы, опоки) в пористые теплоизоляционные стекломатериалы, используемые в строительной индустрии и при производстве фильтрующих материалов.

Благодаря осадочному происхождению кремнистые породы широко распространены по всему миру. Например, запасы кремнистых пород севера Тюменской области в районах городов Новый Уренгой и Салехард (Уренгойская силиконовая подкова) насчитывают около 110 млрд. тонн [Нестеров И.И., Генералов П.П., Подсосова Л.Л. Западно-Сибирская провинция кремнисто-опаловых пород, Советская геология, 1984, №3].

Известен способ получения пористых стекломатериалов [1. Патент Российской Федерации №2211811, МПК7 C03C 11/00, 2003] с насыпной плотностью 30-100 кг/м3 из нерудного сырья путем плавления шихты, включающей следующие компоненты, мас.%: SiO2 39,78-53,7; CaO 39,95-51,45; Al2O3 3,37-5,76; Fe2O3 0,05-0,8; MgO 0,4-1,21; SO3 0,26-0,32; Na2O 0,04-0,37; K2O 0,1-0,53. Плавление ведут в восстановительной среде, а последующее охлаждение силикатной части расплава проводят в режиме «термоудара».

Недостатком способа является то, что при таком соотношении окислов требуется перегрев расплава для более глубокого разделения металлической и силикатной частей расплава.

Известен способ получения стекломатериалов с насыпной плотностью 45-100 кг/м3 из мартеновских шлаков [2. Патент Российской Федерации №2132306, МПК6 C03C 11/00, 1999] путем плавления шихты при следующем содержании компонентов, мас.%: SiO2 - 20-25, CaO - 25-40, Al2O3 - 2-8, MgO - 7-15, MnO - 5-10, FeO - 12-18, F2O3 - 3-5, P2O5 - 0,3-0,7, Na2O - 0,3-0,5, K2O - 0,15-0,5, TiO2 - 0,2-0,5, SO3 - 0,05-0,09. Шихту плавят в восстановительной среде в течение часа при температуре 1580-1610°C, а затем полученный расплав "термоударом" охлаждают до образования стекломатериала.

Основным недостатком известного способа являются высокие энергозатраты на его проведение.

В основу заявленного изобретения положена задача разработки способа получения пористого стекломатериала из кремнистых пород со сниженными энергозатратами.

Поставленная задача решается тем, что в способе получения пористых стекломатериалов из кремнистых пород путем плавления шихты, включающей SiO2, CaO, Al2O3, MgO, Fe2O3, Na2O, K2O, TiO2, SO3 в восстановительной среде, и последующего охлаждения силикатной части расплава в режиме "термоудара", содержание CaO в шихте доведено до массового отношения SiO2/CaO, равного 0,75-1,04, а шихту плавят при температуре 1500-1550°C в течение 55±10 минут, при следующем содержании компонентов, мас.%: SiO2 - 40,1-47, CaO - 44,9-53,2, Al2O3 - 2-15, MgO - 0,8-4, Fe2O3 - 0,2-5, Na2O - 0,6-1,5, K2O - 0,6-1,5, TiO2 - 0,2-1,5, SO3 - 0,01-0,3.

Металлическую часть расплава выливают в изложницу.

Сущность заявляемого способа заключается в том, что более высокое по сравнению с прототипом содержание в составе кремнистых пород окислов Na2O и K2O приводит к снижению температур плавления шихты и образования карбида кремния в расплаве, взаимодействие которого с водой в процессе выработки расплава, обуславливает его вспенивание. Снижение температуры и времени плавления шихты способствуют снижению энергозатрат по сравнению с прототипом. Нижепредлагаемый способ получения пористых стекломатериалов из диатомита поясняется конкретными примерами его осуществления.

Пример 1. В 200 г шихты из диатомита состава, мас.%: SiO2 - 40,1; CaO - 53,2; Al2O3 - 3,7; MgO - 0,9; Fe2O3 - 0,3; NaO - 0,7; K2O - 0,5; TiO2 - 0,4; SO3 - 0,2 с соотношением SiO2/CaO=0,75 вводят 0,5 мас.% углерода и плавят в восстановительной среде при температуре 1500-1550°C в течение 50 минут. Затем полученную силикатную часть расплава охлаждают отливом в воду, при этом происходит вспенивание силикатной части расплава, а металлическую часть сливают в изложницу. Полученный материал имеет насыпную плотность 125 кг/м3.

Пример 2. В 200 г шихты состава, мас.%: SiO2 - 44,1; CaO - 47,8; Al2O3 - 4,8; MgO - 1,0; Fe2O3 - 0,4; Na2O - 0,6; K2O - 0,6; TiO2 - 0,5; SO3 - 0,2, вводят 1 мас.% углерода и доводят отношение SiO2/CaO до 0,92, плавят в восстановительной среде при температуре 1500-1550°C в течение 50 минут. Затем полученную силикатную часть расплава охлаждают отливом в воду, при этом происходит вспенивание расплава, а металлическую часть сливают в изложницу. Полученный материал имеет насыпную плотность 69 кг/м3.

Пример 3. В 200 г шихты состава, мас.%: SiO2 - 47,0; CaO - 44,9; Al2O3 - 4,6; MgO - 1,2; Fe2O3 - 0,4; Na2O - 0,7; K2O - 0,5; TiO2 - 0,5; SO3 - 0,2, доводят отношение SiO2/CaO до 1,04, вводят углерод, плавят и охлаждают аналогично примеру 2. Полученный материал имеет насыпную плотность 88 кг/м3.

Пример 4. В 200 г шихты состава, мас.%: SiO2 - 47,0; CaO - 43,5; Al2O3 - 5,8; MgO - 1,4; Fe2O3 - 0,4; Na2O - 0,7; K2O - 0,5; TiO2 - 0,5; SO3 - 0,2, доводят отношение SiO2/CaO до 1,1, вводят углерод, плавят и охлаждают аналогично примеру 2. Полученный расплав имеет большую вязкость и исключает возможность охлаждения его в режиме "термоудара".

1. Способ получения пористых стекломатериалов из кремнистых пород путем плавления шихты, включающей SiO2, CaO, Al2O3, MgO, Fe2O3, Na2O, K2O, TiO2, SO3 в восстановительной среде, и последующего охлаждения силикатной части расплава в режиме "термоудара", отличающийся тем, что содержание CaO в шихте доведено до массового отношения SiO2/CaO, равного 0,75-1,04, а шихту плавят при температуре 1500-1550°C, при следующем содержании компонентов, мас.%: SiO2 - 40,1-47, CaO - 44,9-53,2, Al2O3 - 2-15, MgO - 0,8-4, Fe2O3 - 0,2-5, Na2O - 0,6-1,5, K2O - 0,6-1,5, TiO2 - 0,2-1,5, SO3 - 0,01-0,3.

2. Способ по п.1, отличающийся тем, что металлическую часть расплава выливают в изложницу.



 

Похожие патенты:

Изобретение относится к получению блочного термостойкого пеностекла. Технический результат изобретения заключается в сокращении времени вспенивания, снижении энергозатрат, в повышении термостойкости, прочности пеностекла.

Изобретение относится к комплексной переработке железистых редкометальных руд с получением пористого стекломатериала. Технический результат изобретения заключается в расширении сырьевой базы для получения стекломатериала.

Изобретение относится к области получения блочного термостойкого пеностекла. Технический результат изобретения заключается в повышении термостойкости, прочности конечного продукта, снижении энергозатрат и сокращении времени отжига.
Изобретение относится к теплоизоляционным материалам. Технический результат изобретения заключается в снижении ресурсоемкости технологии получения гранулированного пеношлакостекла и температуры вспенивания гранулированного пеношлакостекла до 800-850 С°.
Изобретение относится к производству гранулированного пеностекла. Технический результат изобретения заключается в расширении сырьевой базы, упрощении способа производства гранулированного пеностекла при сохранении высокой щелочностойкости получаемого гранулированного пеностекла.

Способ и устройство для изготовления пористого остеклованного блока могут найти применение в строительстве для изготовления крупноблочных теплоизоляционных и стеновых конструкций и в качестве наполнителей легких бетонов.
Изобретение относится к производству пеностекла. Технический результат изобретения заключается в упрощении технологии изготовления пеностекла.

Изобретение относится к производству теплоизоляционных строительных материалов. Технический результат изобретения заключается в упрощении технологии получения вспененного материала, снижении температуры вспенивания шихты, снижении термических напряжений в изделии.
Изобретение относится к гранулированному пеношлакостеклу. Технический результат изобретения заключается в расширении сырьевой базы, снижении себестоимости, утилизации золошлаковых отходов ТЭС, снижении температуры вспенивания до 850-870°С.
Изобретение относится к производству пеностекла. Технический результат изобретения заключается в упрощении способа получения цветного пеностекла.

Изобретение относится к составам для получения теплоизоляционных материалов. Технический результат изобретения заключается в расширении сырьевой базы, снижении себестоимости, снижении ресурсоемкости технологии получения гранулированного пеношлакостекла. Шихта для гранулированного пеношлакостекла содержит следующие компоненты, мас.%: шлак ТЭС - 20-30; металлургический шлак - 10-20; бой стекла - 40-60; бура - 3-7; антрацит - 3-7. 5 пр., 1 табл.
Изобретение относится к гранулированным вспененным материалам. Технический результат изобретения заключается в снижении реакционной способности пеностекла. Шихта для получения пеностекла содержит, мас.%: жидкое стекло - 10-20; глицерин - 0,5-3; диатомит - 0,5-15; глина, или каолин, или бентонит - 3-25; стеклобой - остальное. 3 табл., 3 пр.

Изобретение относится к области создания пористых теплозвукоизоляционных материалов и может быть использовано в строительстве, судостроении и энергетической промышленности. Технический результат изобретения заключается в улучшении звукоизолирующих характеристик и снижении водопоглощения теплоизоляционного материала. Указанный технический результат достигается тем, что ячеистый теплозвукоизоляционный материал получают из смеси, включающей углеродсодержащий газообразователь - сажу 0,5-1 мас.%, тонкомолотый стекловидный материал в количестве 99-99,5 мас.%, который содержит более 79% стеклофазы и в количестве от 5 до 20% кристаллической фазы с размером частиц менее 0,5 мкм. 1 табл.

Изобретение относится к гранулированной пеностеклокерамике. Технический результат изобретения заключается в упрощении технологии, расширении сырьевой базы при получении пеностеклокерамики с высокими эксплуатационными свойствами вплоть до 620-700°С. Осуществляют совместный помол предварительно подготовленных стекольного сырья, глины, углеродного газообразователя. К полученной шихте добавляют воду и формуют из нее гранулы. Гранулы смешивают с тонкоизмельченными опилками, вспенивают в газовой среде с содержанием СО 1-3% при температуре 830-850°С во вращающей печи с углом ее наклона 18-20°. После процесса вспенивания гранулы в пиропластичном состоянии формуют в полосу заданной геометрии. Затем полосу отжигают при начальной температуре 300-400°С с понижением до конечной температуры 80-90°С, режут, упаковывают и складируют. 7 з.п. ф-лы, 1 ил.
Изобретение относится к области получения пеностекла. Технический результат изобретения заключается в расширении сырьевой базы и улучшении экологии окружающей среды за счет утилизации отходов производств энергонасыщенных материалов - тротила и нитробензола. Шихта для получения пеностекла изготавливается из мелкоизмельченного силикатного стекла следующего состава, мас.%: SiO2 - 60-72,5; СаО - 4,5-7,0; MgO - 1,5-3,5; Аl2O3 - 1,0-2,5; Na2O - 12,5-16,5. Стекло изготовлено на основе отходов производств тротила и нитробензола. К стеклу добавляют доломит в количестве 1,5-2,2% от общей массы шихты. 3 табл.
Изобретение относится к области получения пеностекла. Технический результат изобретения заключается в расширении сырьевой базы и улучшении экологии окружающей среды за счет утилизации отходов производства тротила. Шихта для получения пеностекла изготавливается из мелкоизмельченного силикатного стекла следующего состава, масс. %: SiO2 - 60-72,5; СаО - 4,5 - 7,0; MgO - 1,5-3,5; Аl2O3 - 1,0-2,5; Na2O - 12,5-16,5. Стекло изготовлено на основе отходов производства тротила. К стеклу добавляют доломит в количестве 1,5-2,2% от общей массы шихты. 3 табл.
Изобретение относится к пеностеклу. Технический результат изобретения заключается в повышении прочности и однородности крупногабаритного пеностекла, снижении брака и сведении к минимуму процесса механической обработки пеностекла. Заготовки формуют из композиции, содержащей порошок стекла, вяжущее, силикат натрия и воды, методом прессования, или экструзии, или литья. Проводят предварительный нагрев заготовок при температуре 50-100 градусов до твердения композиции. Готовое изделие в виде блока формируют из прямоугольных сырцовых заготовок малых размеров, расположенных правильными рядами и/или слоями, при этом в печи расстояние между заготовками соответствует 0,75-1,2 раза от линейного размера заготовки. 4 з.п. ф-лы, 11 пр.
Изобретение относится к гранулированному пеностеклу. Технический результат изобретения заключается в упрощении технологии производства. Стеклобой измельчают в шаровой или любой другой мельнице до удельной поверхности 6000-20000 см2/г. В процессе измельчения осуществляют гидроксилирование стеклобоя в течение 30-60 минут. Одновременно измельчают диатомит до размера частиц 250-300 мкм. Затем измельченный диатомит отдельно или в смеси с молотым стеклобоем подвергают механоактивации в течение 1-5 минут в планерной мельнице. Затем добавляют порообразователь, содержащий глицерин и раствор жидкого стекла, и воду до получения пластичного теста с влажностью массы 15-18%. Формуют гранулы, высушивают их при температуре 100-150°C до влажности 2-5%, затем обжигают в печи при температуре 750-800°C. 3 пр., 2 табл.

Полезная модель относится к производству строительных материалов, а именно к производству гранулированных материалов на силикатной основе, используемых в качестве заполнителя, в частности, легких и особо легких бетонов, а также для насыпной тепло-звукоизоляции. Полезная модель направлена на расширение фракционного состава производимых гранул, на производство гранул сферической формы, на комплексную механизацию технологической линии производства гранулированных материалов на основе кремнистых пород (диатомитов, опок, трепелов), а также на снижение себестоимости гранулированных пеностеклокристаллических материалов. Указанный технический результат достигается тем, что в состав технологической линии для производства гранулированных пеностеклокристаллических материалов, входит смесительное устройство, состоящее из производственного блока смешения и формования сырцовых гранул и из производственного блока смешения и вспенивания сырцовых гранул, фракционирования и хранения готовой продукции. Смесительное устройство технологической линии содержит приемные и расходные бункера с дозаторами, накопительные устройства, тарельчатый смеситель-гранулятор, установленный на производственном блоке смешения и формования сырцовых гранул и размещенный за смесителем-гранулятором скоростного типа, барабанную вращающуюся печь на производственном блоке смешения и вспенивания сырцовых гранул. Кроме того на блоке смешения и вспенивания сырцовых гранул, фракционирования и хранения готовой продукции предусмотрена закрытая система технологического транспорта и сортировки готового продукта, состоящая из системы непрерывного пневмотранспорта, в которую входят трубопроводы, разгрузочные циклоны и вентиляторы. Применение данного смесительного устройства на технологической линии для производства гранулированных материалов позволило снизить среднюю насыпную плотность с 210 до 180 кг\м3, при этом коэффициент теплопроводности снизился на 15%. Применение комплексной механизации позволило существенно снизить энергозатраты, затраты сырья на 1 м3 готовой продукции, понизить себестоимость готовой продукции. Повысилась надежность работы оборудования, снизились затраты на обслуживание линии, улучшились экологические показатели производства.

Изобретение относится к получению блочного термостойкого пеностекла. Технический результат изобретения заключается в повышении качества конечного продукта, снижения энергозатрат и сокращения времени вспенивания. Пенообразующая смесь содержит медицинские стекла XT, АБ и тарное стекло марки ЗТ-1 в соотношении 1:1:2. Затем указанную смесь нагревали в металлических формах со скоростью 3,7°C/мин с выдержкой при 815°C в течение 40 минут с последующим резким охлаждением с 600°C до 400°C со скоростью 0,6°C/мин и с 400°C до 50°C со скоростью 0,8°C/мин. 4 табл.
Наверх