Способ сорбционной очистки проточных промышленных сточных и питьевых вод на концентрате глауконита от катионов свинца (ii)



Способ сорбционной очистки проточных промышленных сточных и питьевых вод на концентрате глауконита от катионов свинца (ii)
Способ сорбционной очистки проточных промышленных сточных и питьевых вод на концентрате глауконита от катионов свинца (ii)
Способ сорбционной очистки проточных промышленных сточных и питьевых вод на концентрате глауконита от катионов свинца (ii)

 


Владельцы патента RU 2537313:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тамбовский государственный университет имени Г.Р. Державина" ФГБОУ ВПО "Тамбовский государственный университет имени Г.Р. Державина" (RU)

Изобретение относится к сорбционной очистке сточных и питьевых вод. Очистку воды, имеющей концентрацию катионов свинца до 200 мг/л, проводят путем сорбции 95%-ным концентратом глауконита, который предварительно подвергнут кислотной обработке. Высота слоя сорбента составляет 0,5 м, линейная скорость потока от 0,38 до 1 м/ч. Очистку проводят в течение 20 часов. Изобретение позволяет повысить степень очистки воды. 1 табл., 1 ил.

 

Изобретение относится к сорбционной очистке сточных и питьевых вод от катионов свинца (II) из проточных водных растворов и может быть использовано на заводах, изготавливающих металлоконструкции различного назначения, на предприятиях горно-обогатительной, химической и машиностроительной промышленности, а также в коммунальном хозяйстве. Очистку проточных вод различного происхождения от катионов свинца (II) проводят сорбцией 95%-ным концентратом глауконита Бондарского месторождения Тамбовской области, подвергнутого кислотной обработке при высоте слоя сорбента 0,5 м, линейной скорости потока до 1 м/ч, pH=6…9, без «проскока» по ионам свинца до 20-ти часов. Способ позволяет достичь степень очистки проточных сточных и питьевых вод от катионов свинца (II) до 99,99%.

Глауконит как природный минерал относится к слоистым силикатам с жесткой структурной ячейкой типа 2:1. В нем сетка октаэдров заключена между двумя сетками тетраэдров. Этот минерал характеризуется существенными различиями в количественном соотношении октаэдров, образующих его структуру и поэтому различной сорбционной способностью и емкостью в зависимости от того или иного месторождения. Химический состав глауконитов различных месторождений меняется в широких пределах: K2O 4,4…9,7%, Na2O 0…4,5%, Al2O3 5,5…22,6%, Fe2O3 6,1…27,9%, FeO 0,8…8,6%, MgO 0…4,5%, SiO2 47,6…52,9%, P2O5 0…3%, H2O 4,9…13,5%. Обычно концентрация основного продукта составляет 30-40 масс.%. Концентраты глауконита получают специальным обогащением.

Глауконит Бондарского месторождения Тамбовской области имеет следующий химический состав, масс.%: K2O - 9,5; Na2O - 4,1; Al2O3 - 14,8; Fe2O3 - 11,5; FeO - 5,3; SiO2 - 48,1; H2O - 6,7.

Его фракционный состав представлен в таблице.

Известен способ сорбционной очистки сточных вод от Pb (II) с использованием цеолита. Рекомендуется применять этот природный сорбент, измельченный до эффективного размера частиц порядка 0,3 мм. В среду предварительно необходимо вводить известковое молоко и сульфат железа [1]. После предварительной сорбции воду следует отстаивать, деаэрировать, затем обработать импульсным барьерным разрядом из расчета не менее 50 Вт·ч/м3 и фильтровать. Метод эффективен, но малотехнологичен, требует больших финансовых затрат.

Предлагается [2] использовать также сорбционную очистку с использованием цеолита, гидроксида железа и бемита следующего состава, масс.%: нанофазный гидроксид железа - 12-18%; нанофазный бемит - 5-13%, цеолит - остальное. Метод не нашел серьезного применения в связи с высокими финансовыми затратами за счет необходимости использования наноматериалов.

Другим известным способом [3] является сорбционное извлечение Pb (II) из кислых хлоридных и хлоридно-сульфатных растворов анионитами марок типа АМП и АМ-2б. Метод не нашел достаточно широкого применения, так как практически не разработан.

Предложен сорбционный метод очистки от соединений свинца с использованием в качестве сорбента кремнийсодержащего белого шлама - продукта, образующегося при автоклавном удалении кремния из алюминатных растворов глиноземного производства [4], в частности по технологии, используемой на Богословском алюминиевом заводе (г. Краснотурьинск, Свердловской области). Состав шлама, масс.%: SiO2 (20-25), Al2O3 (25-35), оксид железа (3-10), оксид кальция (3-10), оксид натрия (15-20), оксид серы (3-6), оксид калия (0,5-2), свободная щелочь - не более 0,02, остальное влага. Сорбент вводят в массовом соотношении со свинцом (5,0-50):1. Сорбция ведется при механическом перемешивании в течение 6-32 часов.

Еще одним способом очистки воды от ионов свинца является сорбция катионов тяжелых металлов посредством использования смеси сильноосновного анионита на полистирольной основе в OH-форме и слабокислого карбоксильного катионита в H-форме [5]. При этом анионит с гелевой структурой предварительно отмывают водой до ХПК 2 мг O2/дм3. Используют анионит с заданной пористостью по фракциям и с соотношением катионит:анионит, равным 1:2.

Сущность изобретения [6], в котором описывается осадительный метод очистки сернокислых сточных вод, в следующем: сернокислотные сточные воды подвергают обработке дефекатом - отходом сахарного производства при соотношении жидкой и твердой фаз Ж:Т, равном 100:1-5. Степень очистки составляет по железу 99,3, по свинцу 99,995%, по сурьме 99,5%, но требуется дорогостоящее оборудование для организации последующих стадий фильтрации и организация уничтожения или утилизации фильтров.

По достигаемому результату и технической сущности наиболее близким к описываемому способу является способ очистки питьевой воды от ионов свинца, предложенный в [7]. Изобретение относится к составам фильтрующих материалов, используемых для очистки питьевой воды. Фильтрующий материал содержит активированный уголь, импрегнированный 1-10 масс. фосфата титана и/или циркония в Na и/или Ca форме, в качестве активированного угля используется сульфоуголь.

Недостатками вышеприведенного способа очистки питьевой воды от ионов свинца является необходимость использования только низких исходных концентраций (0,15 мг/л), в связи с чем их применение нецелесообразно для очистки сточных вод на предприятиях, концентрации стоков которых в разы превышают описанные. Также не указана линейная скорость потока, высота сорбционного слоя и время так называемого проскока по ионам свинца, то есть время, которое сорбент чистит проточные воды почти до 100%, что затрудняет определить применяемость данного метода на предприятиях различного профиля.

Целью изобретения является очистка проточных сточных и питьевых вод (линейная скорость потока до 1 м/ч, pH=6…9) от катионов свинца (II) с исходной концентрацией до 200 мг/л без проскока в течение 20-ти часов до 99,9% за счет применения экологически чистого, технологичного, доступного сорбента - 95%-го концентрата глауконита Бондарского месторождения Тамбовской области, подвергнутого кислотной обработке (сорбент предварительно обрабатывали 1М HCl в течение одного часа, затем промывали дистиллированной водой до ее нейтральной реакции), с высотой слоя 0,5 м.

Отличительными признаками предлагаемого способа являются использование в качестве сорбента 95%-ного концентрата глауконита Бондарского месторождения Тамбовской области, pH=6…9, низкая себестоимость адсорбента, предварительная кислотная обработка сорбента и практически полная очистка (до 99,9%) проточных вод со скоростью потока до 1 м/ч от катионов свинца с исходной концентрацией до 200 мг/л при высоте слоя сорбента 0,5 м без проскока в течение 20-ти часов.

Указанные отличительные признаки предлагаемого способа определяют его новизну и изобретательский уровень в сравнении с известным уровнем техники.

Технической задачей является разработка способа очистки проточных сточных и питьевых от ионов свинца вод 95%-ным концентратом глауканита Бондарского месторождения Тамбовской области - экологически чистым, технологичным, доступным адсорбентом. Данная техническая задача решается тем, что сорбцию катионов свинца с концентрацией до 200 мг/л из проточных вод с pH=6…9 проводят 95%-ным концентратом глауканита Бондарского месторождения Тамбовской области с высотой слоя 0,5 м без проскока по ионам свинца в течение 20-ти часов.

Ранее предварительными исследованиями [8, 9] нами показано, что перспективным природным сорбентом для очистки воды от катионов свинца является глауконит Бондарского месторождения Тамбовской области. Сущность способа заключается в том, что глубина сорбционного извлечения катионов свинца из проточных растворов определяется большим количеством факторов: удельная масса сорбента по активному началу, величина удельной поверхности сорбента, пористость, фракционный состав, характер и уровень его предварительной подготовки, рН исходных растворов, линейная скорость потока, время до проскока сорбируемых ионов, высота слоя сорбента.

Исходная величина pH растворов, направляемых на очистку, равна 6. Если технологические растворы, направляемые на очистку, имеют кислую реакцию, их нужно обработать щелочью (NaOH) или раствором Ca(OH)2 для доведения pH до 6. Верхний предел pH очищаемых растворов равен 9, причем он будет устанавливаться автоматически по мере извлечения ионов свинца (II) глауконитом, то есть не требуется дополнительной реагентной обработки.

Нижний предел pH очищаемых вод, равный 6, обусловлен тем, что начиная с него достигается указанная степень очистки. Верхний предел pH очищаемых растворов равен pH гидратообразования, который может быть рассчитан из зависимости

где KW - ионное произведение воды, принятое в расчетах равным 10-14, Пр(Me(OH)2) - произведение растворимости Pb(OH)2, равное 2,2·10-16 при 25°C, [Me2-] - исходная или задаваемая остаточная концентрация катионов свинца (II) в моль/л. Таким образом, pH гидратобразования зависит от концентрации ионов свинца (II) в очищаемом растворе. При концентрации Pb2+ равной 200 мг/л и 0,2 мг/л, pH гидратобразования равен соответственно 8 и 9 единиц.

На чертеже представлен график зависимости коэффициента извлечения катионов Pb (II) из модельного нитратного раствора с исходной величиной pH=6 от линейной скорости потока и продолжительности сорбции при высоте слоя сорбента 1,5 см при различных линейных скоростях потока. Как видно из чертежа, при высоте слоя сорбента 0,015 м и линейной скорости потока 0,38 м/ч ионы свинца извлекаются полностью в течение 100 минут, а при скорости потока 0,85 м/ч - 40 минут. Нетрудно показать, что при высоте слоя сорбента 0,5 м и линейной скорости потока 1 м/ч (при небольших линейных скоростях потока не происходит спрессовывание сорбента и возрастание его удельного гидродинамичекого сопротивления) полная очистка будет происходить без проскока по ионам свинца на протяжении 20 часов.

В предлагаемом методе очистки вод от катионов свинца (II) не требуется увеличения удельной массы сорбента и его удельной пористости дополнительными технологическими приемами, а соответственно и разделения на фракции, так как это только повысит себестоимость очистки, в связи с тем, что степень извлечения катионов свинца практически предельная и без них. Снижение линейной скорости потока может только повысить глубину очистки от свинца, но понизит производительность работы адсорберов, что в рассматриваемом способе очистки также нецелесообразно. Причем время до проскока в этом случае только возрастет, что скажется позитивно на эффективности очистки, но опять-таки снизит производительность адсорбера.

Из приведенных данных видно, что глубина очистки проточных сточных и питьевых вод от катионов свинца (II) достигает 99,99% при исходной концентрации полютанта до 200 мг/л. Высокая динамическая сорбционная емкость, о чем говорит время проскока по ионам свинца до 20-ти часов при линейной скорости потока до 1 м/ч и высоте сорбционного слоя 0,5 м, и широкий интервал pH растворов (6…9) делают предложенный способ очистки вод от катионов свинца (II) более универсальным. А низкая себестоимость сорбента, отсутствие токсичности (глауконит используют в качестве добавки в корм скоту) и простота утилизации позволяют данный сорбент широко применять в системах очистки на заводах металлоизделий, предприятиях горно-обогатительной, химической и машиностроительной промышленности, а также в коммунальном хозяйстве.

Краткое описание чертежей

Чертеж. Зависимость коэффициента извлечения катионов Pb (II) из модельного нитратного раствора с исходной величиной pH=6 от линейной скорости потока и продолжительности сорбции при высоте слоя сорбента 1,5 см. υ, м/ч: 1 - 0,38; 2 - 0,57; 3 - 0,85.

Источники информации

1. Патент C2 RU №2397959, 2008 г.

2. Патент C1 RU №2328341, 2007 г.

3. Авторское свидетельство СССР №706335, кл. С02F 1/28, 1979 г.

4. Заявка на патент А1 RU №2008152525, 2008 г.

5. Патент A1 RU №94028859, 1994 г.

6. Патент C1 RU №2023673, 1991 г.

7. Заявка на изобретение A1 RU №94014230, 1994 г.

8. Вигдорович В.И., Цыганкова Л.Е., Богданова Е.П., Николенко Д.В. Влияние pH на сорбцию глауконитом ГБРТО ионов меди (II) и свинца (I) из разбавленных растворов // Сорбционные и хроматографические процессы. 2011 г. Т.11. №6. С.913-921.

9. Вигдорович В.И., Цыганкова Л.Е., Богданова Е.П., Николенко Д.В., Акулов А.И. Влияние предварительной термической и химической обработки глауконита ГБРТО на его рентгеноструктурные характеристики и сорбционную емкость катионов меди (II) и свинца (II) // Конденсированные среды и межфазные границы 2012. Т.14. №1. С.20-24.

Способ очистки промышленных сточных и питьевых вод от катионов свинца (II), включающий пропускание воды через слой адсорбента, представляющего собой 95%-ный концентрат глауконита, подвергнутый кислотной обработке, отличающийся тем, что через адсорбент пропускают воду с концентрацией катионов свинца до 200 мг/л при линейной скорости потока воды от 0,38 до 1 м/ч при высоте слоя адсорбента 0,5 м в течение 20 часов.



 

Похожие патенты:

Настоящее изобретение относится к способу разложения образующегося после переработки утилизируемых эмульсионных смазочно-охлаждающих жидкостей скоагулированного и сфлокулированного шлама, где для снижения pH применяется фосфорная кислота, применение которой приводит к образованию сфлокулированного матерала, включает следующие стадии: дозированное внесение анионогенных ПАВ в процессе загрузки шлама с целью ускорения процессов, дегазации, экстракции; деполимеризация полифосфатных соединений осуществляется концентрированной серной кислотой, применение которой сопровождается дополнительным экзотермическим и водосвязующим эффектом, ускоряющим деполимеризацию; экстракция маслосодержащей органической фракции совместимыми с ней органическими растворителями как простыми, так и составными имеющими минимальную смесимость с водой; причем допускается производить деполимеризацию и экстракцию, с последовательной подачей каждого реагента и поэтапным выводом из реакционной емкости образующихся водной и органической фаз.

Настоящее изобретение относится к водоочистителю гравитационного фильтрования. Водоочиститель гравитационного фильтрования, содержащий: корпус сосуда; множество элементов перегородок, прикрепленных к корпусу сосуда с возможностью снятия и разделяющих по вертикали, по меньшей мере, часть внутри корпуса сосуда на множество отсеков; и картридж фильтра для воды, который установлен в каждом из множества элементов перегородок, очищает воду на элементе перегородки и подает очищенную воду под элемент перегородки, причем в каждом элементе перегородки образовано отверстие и картридж фильтра для воды установлен в отверстие с возможностью отсоединения, причем самый нижний отсек перегородки представляет собой внутренний сосуд, который имеет чашеобразную форму и прилегает к верхней кромке отверстия корпуса сосуда, при этом сырая вода, подаваемая в верхний отсек, очищена с использованием ее собственного веса.
Изобретение может быть использовано для переработки сточных вод производства нитроароматических или нитрогидроксиароматических соединений, например, нитробензола или динитротолуола.
Изобретение относится к области сельского хозяйства, в частности к орошению, и может найти применение при поливе и подкормке сельскохозяйственных культур. Способ очистки воды включает использование фильтрующего материала, расположенного в одном корпусе, причем в качестве фильтрующего материала используют смесь тереклитовой глины, барита и доломитовой муки в соотношении 5:1:0,5 и размещают ее в металлической сетке с отверстиями 0,2-0,3 см, длиной 8-10 м и высотой 0,8-1 м.

Изобретение относится к области очистки промышленных сточных вод от ионов тяжелых металлов. Предложен сорбент, состоящий из двух компонентов: термообработанной при 250-300°С шелухи подсолнечника и отхода керамического производства, содержащего оксид алюминия.

Изобретение относится к способу получения диарилкарбоната, включающему следующие стадии: а) получение фосгена при взаимодействии хлора с монооксидом углерода, б) взаимодействие полученного на стадии а) фосгена с не менее чем одним монофенолом в присутствии содержащего щелочь водного основания, протекающее с образованием диарилкарбоната и содержащего хлорид щелочного металла отработанного водного раствора, в) отделение и переработка образовавшегося на стадии б) диарилкарбоната, г) отделение остатков растворителя от оставшегося на стадии в) раствора, содержащего хлорид щелочного металла, до того как раствор, содержащий хлорид щелочного металла, направляют на осмотическую мембранную дистилляцию на стадии д), д) концентрирование по крайней мере части оставшегося на стадии г) раствора, содержащего хлорид щелочного металла, с помощью осмотической мембранной дистилляции, причем в качестве акцептора воды применяют раствор гидроксида щелочного металла, е) электрохимическое окисление по крайней мере части содержащего хлорид щелочного металла раствора со стадии д) с образованием хлора, раствора гидроксида щелочного металла и при необходимости водорода.

Изобретение относится к устройству для очистки воды по принципу обратного осмоса. Устройство для выработки сверхчистой воды по принципу обратного осмоса содержит фильтр обратного осмоса, который мембраной обратного осмоса разделен на первичную камеру и вторичную камеру, первичный контур, через который к первичной камере подводится сырая вода и из нее отводится концентрат, а также вторичный контур для подвода пермеата по меньшей мере к одному потребителю, предпочтительно аппарату для диализа.

Изобретение относится к биоэнергетике и может быть использовано качестве универсального метантенка для переработки навоза животных, птиц, бытовых и сельскохозяйственных отходов в метан и в органическое удобрение.

Изобретение относится к биоцидам. Биоцидная композиция для борьбы с микроорганизмами в водных и водосодержащих системах содержит 2,2-дибромомалонамид и поверхностно-активный биоцид, выбранный из группы, состоящей из хлорида С12-С16-алкилдиметилбензиламмония, хлорида диоктилдиметиламмония, полигексаметиленбигуанида, гидрохлорида додецилгуанидина и хлорида дидецилдиметиламмония.

Изобретение относится к биоцидам. Биоцидная композиция содержит 2,2-дибромомалонамид и орто-фенилфенолят натрия.
Изобретение относится к области производства строительных материалов и может быть использовано в качестве функциональной эффективной добавки к бетонам, растворам, ячеистым строительным материалам, в том числе газобетонам, пенобетонам, газогипсам, пеногипсам.

Изобретение относится к неорганическим мелкодисперсным материалам, а именно полым остеклованным микросферам на основе перлита, и может быть использовано при изготовлении микросфер из других кислых гидроалюмосиликатов.

Изобретение относится к синтетическим сорбентам и может быть использовано в ядерной энергетике и химико-металлургической промышленности при очистке жидких радиоактивных отходов и сточных вод от радионуклидов, в частности ионов цезия, а также может использоваться для детоксикации организмов животных и человека при радиохимическом заражении.

Изобретение относится к получению сорбентов, используемых для детоксикации организмов животных и человека при радиохимическом заражении цезием. Смешивают мелкодисперсный кремнезем с водным раствором гидрооксида калия и смесь подвергают гидротермальной обработке при температуре не менее 120°C в течение 2-3 часов.

Группа изобретений относится к сорбентам, используемым при очистке водных сред от техногенных загрязнителей. Состав для приготовления гранулированного наноструктурированного сорбента включает, мас.%: глауконит - 20-50, интеркалированный графит, представляющий собой бисульфат графита, - 1-5, бентонитовую глину - 40-70, модификатор, выбранный из NaHCO3, - 10, или KMnO4 - 5, или NaCl - 8, и воду.

Изобретение относится к созданию гранулированного наносорбента, который может использоваться при очистке водных сред от радионуклидов и других токсичных веществ.
Изобретение может быть использовано для очистки сточных вод промышленных предприятий от ионов тяжелых металлов. В способе очистки сточных вод от ионов тяжелых металлов путем сорбции на твердом нерастворимом природном сорбенте в качестве природного сорбента используют сланец с содержанием минерала биотита не менее 25%, с размером зерен сорбента от 2,50 до 3,00 мм.
Изобретение относится к процессам горения, созданию способов, уменьшающих содержание ртути или серы в дымовых газах, выбрасываемых в атмосферу. Способ сжигания ртутьсодержащего топлива в печи топливосжигающей установки с пониженным количеством выброса ртути из указанной установки в окружающую среду, характеризуется добавлением композиции основного сорбента, содержащей бром или йод, к топливу перед вводом в печь, введением в указанную печь топлива с добавленной в него композицией основного сорбента, добавлением компонентов дополнительного сорбента, содержащих кальций, кремнезем и оксид алюминия в указанную печь при температуре, превышающей 1093°C, и сжиганием указанного топлива в печи с образованием газообразных продуктов сгорания, золы и тепловой энергии.
Изобретение относится к получению сорбентов для очистки воды и твердой поверхности. .
Изобретение относится к области получения сорбционных и фильтрующих материалов для очистки воды, преимущественно, от марганца и железа. .

Изобретение относится к области получения синтетических алюмосиликатных адсорбентов. Предложенный способ осуществляют взаимодействием в водном растворе силиката натрия и серной кислоты, содержащей 2,5-8,4 г/л оксида алюминия. Полученную водную дисперсию подвергают формованию в углеводородной среде с получением сферических частиц алюмосиликатного гидрогеля. Частицы гидрогеля подвергают обработке в растворе карбоната натрия. Затем проводят стадию синерезиса обработанных частиц гидрогеля при pH 8,8-9,5. Гидрогель активируют в растворе сернокислого алюминия, промывают водой, сушат и прокаливают. Способ обеспечивает повышение механической прочности продукта и стабильность воспроизводства характеристик получаемого адсорбента. 4 з.п. ф-лы, 1 табл., 2 пр.
Наверх