Способ осаждения кремнезема из термальных вод


 


Владельцы патента RU 2537406:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Грозненский государственный нефтяной технический университет имени академика М.Д. Миллионщикова" (RU)

Изобретение относится к способам извлечения кремнезема из термальных вод и может быть применено в химической, нефтеперерабатывающей промышленности, в геотермальной энергетике. Предложен способ осаждения кремнезема из термальных вод, включающий ввод осадителя - кремнеземсодержащего материала-сорбента (0,7-2,4 мас.%), добавляемого в гидротермальные воды при t=20-30°C с проведением сорбции 2-25 минут, образование осадка и отделение его от раствора. Технический результат - осаждение кремнезема из гидротермального раствора без расхода электроэнергии и электродного материала. Реализация заявляемого способа не требует доставки, хранения и использования коррозионно-активных реагентов. 1 ил., 4 пр.

 

Изобретение относится к способам извлечения кремнезема из термальных вод и может быть применено в химической, нефтеперерабатывающей промышленности, в геотермальной энергетике. Кремнеземсодержащий материал может найти применение в производстве цемента, сорбентов, стекла, в результате чего становится возможным повышение рентабельности использования ресурсов гидротермальных теплоносителей.

Известны способы извлечения кремнезема из термальных вод, которые основаны на использовании осадителей в режиме хлопьеобразования.

В качестве осадителей кремнезема используется известь с одновременным добавлением морской воды (RU №2219127 от 06.03.2003 г. "Способ осаждения кремнезема из гидротермального теплоносителя с одновременным добавлением извести и морской воды"). Способ включает перемешивание раствора, образование хлопьев, их осаждение и отделение осадка от раствора.

Недостатком данного способа является необходимость обеспечения и хранения большого количества коррозионно-активных химических веществ. Кроме того, расход реагентов зависит от химического состава и температуры обрабатываемого гидротермального раствора, которые отличаются на каждом месторождении.

Наиболее близким к заявляемому изобретению по технической сущности и достигаемому техническому решению является способ осаждения кремнезема из термальных вод электрохимическим путем (RU №2185334 от 20.07.2002 г. "Способ электрохимической обработки гидротермального теплоносителя"). В данном способе осадитель вводится путем электрохимической обработки гидротермального теплоносителя, где используется анод из растворимого металла. В ходе обработки при растворении материала анода образуются хлопья, которые осаждаются с кремнеземом из раствора.

Недостатки данного способа является большой расход электроэнергии и, вследствие этого, повышенный удельный расход металла анода.

Техническим результатом является осаждение кремнезема из гидротермального раствора без расхода электроэнергии и электродного материала.

Технический результат достигается тем, что в качестве осадителя используют кремнеземсодержащий материал-сорбент, добавляемый в гидротермальные воды Ханкальского месторождения при t=20-30°C и продолжительностью сорбции 2-25 минут при следующем содержании его 0,7-2,4 мас.%.

В качестве сорбента используется материал, полученный в результате электрохимической обработки гидротермального раствора. Среднее содержание кремнезема H4SiO4 в данном растворе составляет 110 мг/кг. Типичный химический состав проб раствора следующий (мг/кг): Na+K+ - 248,4, Ca+2 - 17,67, Mg+2 - 0,96, Cl- - 32,2, SO4+2 - 185, HCO3- - 427, показатель pH сепарата 7,5-8,5.

Осуществление предлагаемого способа происходит следующим образом. Материал-сорбент добавляли в гидротермальный раствор в разных массовых долях, перемешивали стеклянной палочкой и давали отстояться. Продолжительность сорбции составляла 2-25 мин. Затем, осадок отделяли от раствора с помощью фильтровальной бумаги. После этого определяли концентрацию остаточного кремнезема в растворе фотоколориметрическим желтомолибдатным методом на спектрофотометре СФ-2000 при длине волны 410 нм.

Пример 1. В шести пробирках готовят суспензии с массовой долей сорбента 2,44%. Для этого в каждую пробирку добавляют 12 мл гидротермального раствора и 0,3 г сорбента. Перемешивают. Дают отстояться. Приготовленные суспензии отфильтровывают через разные интервалы времени - 2, 5, 10, 15, 20, 25 мин. Измеряют оптическую плотность растворов на содержание остаточного кремнезема.

Пример 2. В шести пробирках готовят суспензии с массовой долей сорбента 1, 48%. Для этого в каждую пробирку добавляют 20 мл гидротермального раствора и 0,3 г сорбента. Перемешивают. Дают отстояться. Приготовленные суспензии отфильтровывают через разные интервалы времени - 2, 5, 10, 15, 20, 25 мин. Измеряют оптическую плотность растворов на содержание остаточного кремнезема.

Пример 3. В шести пробирках готовят суспензии с массовыми долями сорбента 0,7%, 1%, 1,5%, 2,4%. Для этого в пробирки наливают гидротермальный раствор следующих объемов - 42,56, 29,7, 19,7, 12,2 мл; в каждую пробирку добавляют сорбент массой 0,3 г. Перемешивают. Дают отстояться. Приготовленные суспензии отфильтровывают через 25 мин. Измеряют оптическую плотность растворов на содержание остаточного кремнезема.

Пример 4. Готовят суспензию с массовой долей сорбента 0,7%: 42,56 мл гидротермального раствора и 0,3 г сорбента. Перемешивают. Дают отстояться. Приготовленную суспензию отфильтровывают через 25 мин. Измеряют оптическую плотность раствора на содержание остаточного кремнезема.

Полученный осадок вновь добавляют в исходный гидротермальный раствор. Перемешивают. Дают отстояться и отфильтровывают через 25 мин. Измеряют оптическую плотность раствора на содержание остаточного кремнезема. Опыт повторяют третий раз.

Результаты исследований по данным примерам представлены на фиг.1:

где:

а) изменение оптической плотности раствора в зависимости от продолжительности адсорбции при 2,44% содержании сорбента;

б) изменение оптической плотности раствора в зависимости от продолжительности адсорбции при содержании 1,48% сорбента;

в) изменение оптической плотности в зависимости от процентного содержания адсорбента при продолжительности адсорбции 25 мин;

г) изменение оптической плотности в зависимости от количества использования сорбента; w (сорбента) = 0,7%; t=25 мин.

При добавлении сорбента в кремнеземсодержащий раствор его оптическая плотность понижается на 50-60% уже спустя 2 минуты. Через 25 минут оптическая плотность понижается на 80-90% (Фиг.1, а);

при уменьшении доли сорбента в растворе до 1,48% эффективность его сорбционных свойств сохраняется (Фиг.1, б);

чем больше концентрация сорбента в растворе, тем выше степень извлечения кремнезема. При добавлении 0,7%, 1%, 1,5%, 2,4% сорбента степень извлечения кремнезема соответственно равна 64%, 78%, 86%, 91% (Фиг.1, в);

при повторном использовании сорбента оптическая плотность раствора понижается по сравнению с оптической плотностью исходного раствора, что свидетельствует о возможности неоднократного использования сорбента (Фиг.1, г).

В заявленном способе при использовании материала-сорбента на его поверхности адсорбируется диоксид кремния, в результате чего происходит уменьшение концентрации кремнезема в данном растворе.

Реализация заявляемого способа не требует расхода электроэнергии и электродного материала, а также доставки, хранения и использования коррозионно-активных реагентов.

Способ осаждения кремнезема из термальных вод, включающий ввод осадителя, образование и отделение осадка от раствора, отличающийся тем, что в качестве осадителя используют кремнеземсодержащий материал-сорбент, добавляемый в гидротермальные воды при t=20-30°С продолжительностью сорбции 2-25 минут, при следующем содержании его - 0,7-2,4 мас.%.



 

Похожие патенты:

Изобретение относится к сорбционной очистке сточных и питьевых вод. Очистку воды, имеющей концентрацию катионов свинца до 200 мг/л, проводят путем сорбции 95%-ным концентратом глауконита, который предварительно подвергнут кислотной обработке.

Настоящее изобретение относится к способу разложения образующегося после переработки утилизируемых эмульсионных смазочно-охлаждающих жидкостей скоагулированного и сфлокулированного шлама, где для снижения pH применяется фосфорная кислота, применение которой приводит к образованию сфлокулированного матерала, включает следующие стадии: дозированное внесение анионогенных ПАВ в процессе загрузки шлама с целью ускорения процессов, дегазации, экстракции; деполимеризация полифосфатных соединений осуществляется концентрированной серной кислотой, применение которой сопровождается дополнительным экзотермическим и водосвязующим эффектом, ускоряющим деполимеризацию; экстракция маслосодержащей органической фракции совместимыми с ней органическими растворителями как простыми, так и составными имеющими минимальную смесимость с водой; причем допускается производить деполимеризацию и экстракцию, с последовательной подачей каждого реагента и поэтапным выводом из реакционной емкости образующихся водной и органической фаз.

Настоящее изобретение относится к водоочистителю гравитационного фильтрования. Водоочиститель гравитационного фильтрования, содержащий: корпус сосуда; множество элементов перегородок, прикрепленных к корпусу сосуда с возможностью снятия и разделяющих по вертикали, по меньшей мере, часть внутри корпуса сосуда на множество отсеков; и картридж фильтра для воды, который установлен в каждом из множества элементов перегородок, очищает воду на элементе перегородки и подает очищенную воду под элемент перегородки, причем в каждом элементе перегородки образовано отверстие и картридж фильтра для воды установлен в отверстие с возможностью отсоединения, причем самый нижний отсек перегородки представляет собой внутренний сосуд, который имеет чашеобразную форму и прилегает к верхней кромке отверстия корпуса сосуда, при этом сырая вода, подаваемая в верхний отсек, очищена с использованием ее собственного веса.
Изобретение может быть использовано для переработки сточных вод производства нитроароматических или нитрогидроксиароматических соединений, например, нитробензола или динитротолуола.
Изобретение относится к области сельского хозяйства, в частности к орошению, и может найти применение при поливе и подкормке сельскохозяйственных культур. Способ очистки воды включает использование фильтрующего материала, расположенного в одном корпусе, причем в качестве фильтрующего материала используют смесь тереклитовой глины, барита и доломитовой муки в соотношении 5:1:0,5 и размещают ее в металлической сетке с отверстиями 0,2-0,3 см, длиной 8-10 м и высотой 0,8-1 м.

Изобретение относится к области очистки промышленных сточных вод от ионов тяжелых металлов. Предложен сорбент, состоящий из двух компонентов: термообработанной при 250-300°С шелухи подсолнечника и отхода керамического производства, содержащего оксид алюминия.

Изобретение относится к способу получения диарилкарбоната, включающему следующие стадии: а) получение фосгена при взаимодействии хлора с монооксидом углерода, б) взаимодействие полученного на стадии а) фосгена с не менее чем одним монофенолом в присутствии содержащего щелочь водного основания, протекающее с образованием диарилкарбоната и содержащего хлорид щелочного металла отработанного водного раствора, в) отделение и переработка образовавшегося на стадии б) диарилкарбоната, г) отделение остатков растворителя от оставшегося на стадии в) раствора, содержащего хлорид щелочного металла, до того как раствор, содержащий хлорид щелочного металла, направляют на осмотическую мембранную дистилляцию на стадии д), д) концентрирование по крайней мере части оставшегося на стадии г) раствора, содержащего хлорид щелочного металла, с помощью осмотической мембранной дистилляции, причем в качестве акцептора воды применяют раствор гидроксида щелочного металла, е) электрохимическое окисление по крайней мере части содержащего хлорид щелочного металла раствора со стадии д) с образованием хлора, раствора гидроксида щелочного металла и при необходимости водорода.

Изобретение относится к устройству для очистки воды по принципу обратного осмоса. Устройство для выработки сверхчистой воды по принципу обратного осмоса содержит фильтр обратного осмоса, который мембраной обратного осмоса разделен на первичную камеру и вторичную камеру, первичный контур, через который к первичной камере подводится сырая вода и из нее отводится концентрат, а также вторичный контур для подвода пермеата по меньшей мере к одному потребителю, предпочтительно аппарату для диализа.

Изобретение относится к биоэнергетике и может быть использовано качестве универсального метантенка для переработки навоза животных, птиц, бытовых и сельскохозяйственных отходов в метан и в органическое удобрение.

Изобретение относится к биоцидам. Биоцидная композиция для борьбы с микроорганизмами в водных и водосодержащих системах содержит 2,2-дибромомалонамид и поверхностно-активный биоцид, выбранный из группы, состоящей из хлорида С12-С16-алкилдиметилбензиламмония, хлорида диоктилдиметиламмония, полигексаметиленбигуанида, гидрохлорида додецилгуанидина и хлорида дидецилдиметиламмония.
Изобретение относится к химической промышленности, в частности к производству наполнителей для резиновых смесей при получении резин. Наполнитель резины включает базовый порошок диоксида кремния, углерода, примеси оксидов СаО, К2О, Na2O, MgO, Al2O3 и плакирующего покрытия каучука.

Изобретение может быть использовано при получении композиционных материалов. Исходные углеродные наноматериалы, например нанотрубки, нанонити или нановолокна, обрабатывают в смеси азотной и соляной кислоты при температуре 50-100°С не менее 20 мин, промывают водой и сушат.

Изобретение может быть использовано для извлечения наночастиц диоксида кремния и углерода из шламов газоочистки электротеримического производства кремния флотацией.

Изобретение относится к области производства высокочистого аморфного диоксида кремния (ДК). .
Изобретение относится к стабилизированным гидроксонием наночастицам кремниевой кислоты, к составу, полученному из указанной разбавленной суспензии, к порошку, полученному из указанной дегидратированной суспензии, и к препарату или лекарственной форме, полученной из указанной суспензии, составу или порошку и их применению во всех типах применений в области пищевой промышленности, медицины, фармацевтики, косметики.
Изобретение относится к способам обогащения природного кварцевого сырья и может быть использовано для наплава прозрачного кварцевого стекла, применяемого в оптике, светотехнике, химической промышленности и др.
Изобретение относится к технологии переработки минерального сырья и может быть использовано для получения из аморфного диоксида кремния рисовой шелухи. .

Изобретение относится к технологии химической переработки минерального сырья, в частности к способам получения высокодисперсного диоксида кремния - аналога белой сажи, применяемого в качестве минерального наполнителя в отраслях промышленности, использующих высокодисперсные наполнители.

Изобретение относится к области технологии неорганических веществ, в частности к способам переработки отходящих газов, образующихся в процессе получения пирогенного диоксида кремния высокотемпературным гидролизом хлоридов кремния.
Изобретение может быть использовано в химической промышленности. Для получения алюмокалиевых квасцов подготавливают сырье, в качестве которого используют остатки доманиковых образований, содержащие алюминий, кремнезем, органическое вещество и включающие редкие и редкоземельные элементы. Проводят выщелачивание кислоторастворимых компонентов сырья в автоклаве раствором серной кислоты до ее остаточной концентрации 45-75 г/л. Полученную суспензию разделяют на жидкую фазу, содержащую алюминий, калий, натрий, редкие металлы, и твердую фазу, содержащую кремнезем и органическое вещество. В горячую жидкую фазу добавляют сульфат калия, охлаждают полученный раствор и проводят кристаллизацию алюмокалиевых квасцов. Сульфат калия добавляют из расчета связывания в алюмокалиевые квасцы 80-90% свободного сульфата алюминия с удержанием в растворе редких и редкоземельных элементов. Изобретение позволяет повысить выход алюмокалиевых квасцов с одновременным комплексным извлечением редких и редкоземельных элементов и получением углерод-кремнеземистого продукта. 2 з.п. ф-лы, 2 пр.
Наверх