Многослойная акустическая панель кочетова



Многослойная акустическая панель кочетова
Многослойная акустическая панель кочетова
E04B1/74 - изоляция, поглощение или отражение тепла, звука или шума (придание помещениям определенной формы или сооружение в помещениях специальных устройств для воздействия на акустические условия E04B 1/99); прочие способы, применяемые в строительстве, для обеспечения нормального теплового или акустического режима, например аккумуляции тепла в стенах (противопожарная защита E04B 1/94; строительные элементы, предназначенные преимущественно для конструктивных целей E04C 1/00-E04C 3/00; предназначенные преимущественно для покрытия поверхности E04F 13/00; в качестве внутренних слоев для половых настилов E04F 15/18; закрывающие элементы для проемов в стенах и т.п E06B)

Владельцы патента RU 2537424:

Стареева Мария Олеговна (RU)
Стареева Мария Михайловна (RU)
Кочетов Олег Савельевич (RU)

Изобретение относится к строительству и может быть использовано для звукопоглощения в закрытых помещениях как составляющая часть конструкции подвесного потолка, так и в качестве свободно подвешиваемых звукопоглощающих кулис. Технический результат - повышение эффективности шумоглушения. Многослойная акустическая панель содержит каркас и расположенную в его внутренней полости звукопоглощающую плиту. Каркас выполнен в виде параллелепипеда, образованного передней и задней стенками, каждая из которых имеет П-образную форму, с боковыми ребрами. Причем на стенках имеется щелевая перфорация, выполненная в виде прямоугольников и расположенная рядами с шириной рядов b1 и b2 и расстоянием между ними h1 и h2, причем смежные ряды расположены со смещением, а количество щелей в одном ряду четное, а в другом нечетное, коэффициент перфорации принимается равным или более 0,25. Между передней и задней стенками каркаса размещена звукопоглощающая плита. Стенки панели фиксируются между собой сверху и снизу вибродемпфирующими крышками, которые могут быть выполнены с ячейками и иметь П-образную форму. Передняя и задняя стенки каркаса могут быть выполнены из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или из алюминиевого листа толщиной 1,0 мм и с покрытием толщиной 25 мкм. Звукопоглощающая плита состоит двух перфорированных поверхностей, между которыми размещены два слоя звукопоглощающего материала, прилегающих к перфорированным поверхностям и выполненных из мягкого, сплошного и профилированного звукопоглотителя, у которого коэффициент отражения звука меньше, чем коэффициент звукопоглощения. Профили слоев образованы сферическими поверхностями, соединенными между собой таким образом, что в целом каждый из профилей образует цельный куполообразный профиль, фокусирующий отраженный звук. Прерывистые звукопоглощающие слои, расположенные в фокусе сплошных профилированных слоев, выполнены в форме тел вращения, например в виде шаров, и крепятся с помощью стержней, параллельных перфорированным поверхностям, которые жестко связаны с ними посредством вертикальных, перпендикулярных к ним крепежных элементов, выполненных, например, в виде пластин, один конец которых жестко закреплен на перфорированных поверхностях, а второй выполнен в виде хомута, охватывающего стержень и притягивающего его винтом к соответствующему стержню. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к строительству и может быть использовано для звукопоглощения в закрытых помещениях как составляющая часть конструкции подвесного потолка, так и в качестве свободно подвешиваемых звукопоглощающих кулис.

Известна многослойная акустическая панель по патенту РФ №2360080, E04B 1/74, (прототип), включающая звукопоглощающие плиты, размещенные в каркасе.

Недостатком данного технического решения являются сравнительно низкие звукопоглощающие и звукоотражающие свойства.

Технический результат - повышение эффективности шумоглушения.

Это достигается это тем, что в многослойной акустической панели, содержащей каркас и расположенную в его внутренней полости звукопоглощающую плиту, каркас выполнен в виде параллелепипеда, образованного передней и задней стенками, каждая из которых имеет П-образную форму, с боковыми ребрами, а между передней и задней стенками каркаса размещена звукопоглощающая плита, а стенки панели фиксируются между собой сверху и снизу вибродемпфирующими крышками, которые могут быть выполнены с ячейками и иметь П-образную форму, при этом передняя и задняя стенки каркаса могут быть выполнены из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или из алюминиевого листа толщиной 1,0 мм и с покрытием толщиной 25 мкм, причем отношение высоты h каркаса к его ширине b находится в оптимальном отношении величин: h/b=1,0÷2,0; причем звукопоглощающая плита состоит двух перфорированных поверхностей, между которыми размещены два слоя звукопоглощающего материала, прилегающих к перфорированным поверхностям и выполненных из мягкого, сплошного и профилированного звукопоглотителя, у которого коэффициент отражения звука меньше, чем коэффициент звукопоглощения, причем профили слоев образованы сферическими поверхностями, соединенными между собой таким образом, что в целом каждый из профилей образует цельный куполообразный профиль, фокусирующий отраженный звук, а прерывистые звукопоглощающие слои, расположенные в фокусе сплошных профилированных слоев, выполнены в форме тел вращения, например в виде шаров, и крепятся с помощью стержней, параллельных перфорированным поверхностям, которые жестко связаны с ними посредством вертикальных, перпендикулярных к ним крепежных элементов, выполненных, например, в виде пластин, один конец которых жестко закреплен на перфорированных поверхностях, а второй выполнен в виде хомута, охватывающего стержень и притягивающего его винтом к соответствующему стержню.

На фиг.1 схематически показана предлагаемая многослойная акустическая панель, в разобранном виде, на фиг.2 - схема звукопоглощающей плиты.

Многослойная акустическая панель состоит из каркаса, который выполнен в виде параллелепипеда, образованного передней 1 и задней 2 стенками, каждая из которых имеет П-образную форму, с боковыми ребрами 6, причем на стенках имеется щелевая перфорация 7 и 8, выполненная в виде прямоугольников и расположенная рядами с шириной рядов b1 и b2 и расстоянием между ними h1 и h2, причем смежные ряды расположены со смещением, а количество щелей в одном ряду четное, а в другом - нечетное. Коэффициент перфорации принимается равным или более 0,25. Между передней 1 и задней 2 стенками панели размещена звукопоглощающая плита 3, вписанная в каркас панели и расположенная в его внутренней полости. Стенки панели 1 и 2 фиксируются между собой вибродемпфирующими крышками 4 и 5, которые могут быть выполнены с ячейками 9 и иметь П-образную форму. Вибродемпфирующие крышки 4 и 5 скрепляют каркас соответственно сверху и снизу, делая его единым целым, т.е. каркас с звукопоглощающей плитой 3 внутри представляет собой многослойную акустическую панель как сборочную единицу (на чертеже не показано).

Передняя 1 и задняя 2 стенки каркаса могут быть выполнены из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или из алюминиевого листа толщиной 1,0 мм и с покрытием толщиной 25 мкм. Причем отношение высоты h каркаса к его ширине b (в сборе, на чертеже не показано) находится в оптимальном отношении величин: h/b=1,0÷2,0; а отношение толщины s′ каркаса в сборе к его ширине b находится в оптимальном отношении величин: s′/b=0,1÷0,15; а отношение толщины s звукопоглощающего материала к толщине s′ каркаса в сборе находится в оптимальном отношении величин: s/s′=0,4÷1,0.

Звукопоглощающая плита 3 (фиг.2) выполнена в виде двух перфорированных поверхностей 10 и 11, между которыми размещена звукопоглощающая конструкция, состоящая из двух слоев 12 и 13 звукопоглощающего материала, прилегающих к перфорированным поверхностям 10 и 11 и выполненных из мягкого, сплошного и профилированного звукопоглотителя, у которого коэффициент отражения звука меньше, чем коэффициент звукопоглощения, причем профили слоев 18 и 19 образованы сферическими поверхностями, соединенными между собой таким образом, что в целом каждый из профилей образует цельный куполообразный профиль, фокусирующий отраженный звук, например выполненных из минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден».

Прерывистые звукопоглощающие слои 14 и 15, расположенные в фокусе сплошных профилированных слоев 12 и 13, выполнены в форме тел вращения, например в виде шаров, эллипсоидов вращения и крепятся с помощью стержней 16 и 17, параллельных перфорированным поверхностям 10 и 11, которые жестко связаны с ними посредством вертикальных, перпендикулярных к ним, крепежных элементов 20 и 21, выполненных, например, в виде пластин, один конец которых жестко закреплен на перфорированных поверхностях 10 и 11, а второй выполнен в виде хомута, охватывающего стержень и притягивающего его винтом к соответствующему стержню 16 или 17.

Прерывистые звукопоглощающие слои 14 и 15 выполнены из жесткого звукопоглотителя, например на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия.

Материалом перфорированных поверхностей 10 и 11 может служить пластмассовая или металлическая сетка с мелкой ячейкой.

Многослойная акустическая панель работает следующим образом.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированные стенки 1 и 2 каркаса и перфорированные поверхности 10 и 11 звукопоглощающей плиты 3, а также слои 12 и 13 мягкого звукопоглощающего материала, прилегающие к перфорированным поверхностям 1 и 2, попадает на прерывистые звукопоглощающие слои 14 и 15, выполненные из жесткого звукопоглощающего материала и расположенные в фокусе сплошных профилированных слоев 12 и 13, где происходит многократное отражение звука на мягкий звукопоглотитель. Здесь осуществляется переход звуковой энергии в тепловую (диссипация, рассеивание энергии), т.е. в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", имеют место потери энергии за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора, о стенки самой горловины, имеющей вид разветвленной сети микропор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. А также волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.

1. Многослойная акустическая панель, содержащая каркас и расположенную в его внутренней полости звукопоглощающую плиту, каркас выполнен в виде параллелепипеда, образованного передней и задней стенками, каждая из которых имеет П-образную форму, с боковыми ребрами, причем на стенках имеется щелевая перфорация, выполненная в виде прямоугольников и расположенная рядами с шириной рядов b1 и b2 и расстоянием между ними h1 и h2, причем смежные ряды расположены со смещением, а количество щелей в одном ряду четное, а в другом - нечетное, коэффициент перфорации принимается равным или более 0,25, а между передней и задней стенками каркаса размещена звукопоглощающая плита, а стенки панели фиксируются между собой сверху и снизу вибродемпфирующими крышками, которые могут быть выполнены с ячейками и иметь П-образную форму, при этом передняя и задняя стенки каркаса могут быть выполнены из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или из алюминиевого листа толщиной 1,0 мм и с покрытием толщиной 25 мкм, причем отношение высоты h каркаса к его ширине b находится в оптимальном отношении величин: h/b=1,0÷2,0; а отношение толщины s' каркаса в сборе к его ширине b находится в оптимальном отношении величин: s'/b=0,1÷0,15; а отношение толщины s звукопоглощающего материала к толщине s' каркаса в сборе находится в оптимальном отношении величин: s/s'=0,4÷1,0, отличающаяся тем, что звукопоглощающая плита состоит из двух перфорированных поверхностей, между которыми размещены два слоя звукопоглощающего материала, прилегающих к перфорированным поверхностям и выполненных из мягкого, сплошного и профилированного звукопоглотителя, у которого коэффициент отражения звука меньше, чем коэффициент звукопоглощения, причем профили слоев образованы сферическими поверхностями, соединенными между собой таким образом, что в целом каждый из профилей образует цельный куполообразный профиль, фокусирующий отраженный звук, а прерывистые звукопоглощающие слои, расположенные в фокусе сплошных профилированных слоев, выполнены в форме тел вращения, например в виде шаров, и крепятся с помощью стержней, параллельных перфорированным поверхностям, которые жестко связаны с ними посредством вертикальных, перпендикулярных к ним крепежных элементов, выполненных, например, в виде пластин, один конец которых жестко закреплен на перфорированных поверхностях, а второй выполнен в виде хомута, охватывающего стержень и притягивающего его винтом к соответствующему стержню.

2. Многослойная акустическая панель по п.1, отличающаяся тем, что в качестве материала прерывистых звукопоглощающих слоев может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия.

3. Многослойная акустическая панель по п.1, отличающаяся тем, что в качестве звукопоглощающего материала, прилегающего к перфорированным поверхностям, используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден».



 

Похожие патенты:

Изобретение относится к огнестойким строительным плитам и способу их производства, а именно к огнестойким плитам из ваты, полученной путем переплетения тонких металлических нитей из ненужных консервных банок, жести, железа, цветных металлов и т.д.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства при шумоглушении производственного оборудования методом звукопоглощения.

Изобретение относится к высокотемпературным теплоизоляционным покрытиям, используемым в сфере гражданского и промышленного строительства, машиностроения, авиастроения, космоса, железнодорожного транспорта и других отраслей промышленности.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. .

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. .

Изобретение относится к наземному строительству, а именно к способам проведения внеплановых и плановых поверок оборудования и аппаратуры испытательных акустических помещений.

Изобретение относится к области строительства, в частности к технологии и средствам соединения преимущественно теплоизоляционных панелей. .

Изобретение относится к слоистым изделиям, применяемым в строительстве для теплозвукоизоляции зданий и помещений в нем. .

Изобретение относится к области строительства, а именно к способу изготовления минеральных плит для внутренней отделки помещений, в особенности минеральных плит для подвесных потолков, а также к структуре самих минеральных плит. Уменьшение энергозатрат на изготовление минеральных плит и возможность получения плит с улучшенными качественными характеристиками достигается тем, что в способе изготовления минеральной плиты, в котором смешивают и осуществляют гомогенизацию в сырьевом баке исходной сырьевой водной суспензии, содержащей минеральные волокна, наполнитель, связующие вещества, подают и распределяют полученную исходную сырьевую водную суспензию на движущемся сетчатом конвейере, обезвоживают исходную сырьевую водную суспензию с использованием самотечного гравитационного дренажа и вакуумного дренажа с получением основного мокрого мата, сушат и формуют основной мокрый мат, осуществляют дополнительную обработку основного мата и наносят дополнительные покрытия на поверхность высушенного основного мата, смешивают и осуществляют гомогенизацию в сырьевом баке исходной сырьевой водной суспензии, включающей минеральные волокна в количестве 30-80%, наполнитель, содержащий вспученный перлит в количестве 5-40%, глину в количестве 5-30% и при необходимости карбонат кальция в количестве не более 20%, связующие вещества, включающие крахмал в количестве 2-11% и при необходимости целлюлозное связующее в виде бумаги в количестве не более 10% от общей массы сухих твердых веществ плиты, смешивают и осуществляют гомогенизацию в дополнительном сырьевом баке дополнительной сырьевой водной суспензии, содержащей жидкое стекло в количестве 0,5-15% и/или термореактивное связующее в количестве 0,5-10% и при необходимости глину в количестве не более 25% из расчета общего содержания глины в минеральной плите 5-30% и/или крахмал в количестве не более 9% из расчета общего содержания крахмала в минеральной плите 2-11%, наносят подготовленную дополнительную водную суспензию в виде пены при помощи генератора пены на основной мокрый мат при обезвоживании исходной сырьевой водной суспензии с использованием вакуумного дренажа. При этом в минеральной плите локальные концентрации введенных в виде пены компонентов постепенно уменьшаются по толщине плиты в направлении от лицевой к тыльной стороне плиты, а локальная плотность плиты постепенно уменьшается по толщине плиты в направлении от тыльной к лицевой стороне плиты и ее величина на тыльной стороне плиты не более чем в 1,2 раза превышает ее значение на лицевой стороне плиты. 2 н. п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области строительства. Технический результат - снижение уровня шума в жилых, общественных и производственных помещениях. Звукоизолирующая каркасно-обшивочная перегородка, выполненная из листовых обшивок из гипсокартонных или гипсоволокнистых листов, прикрепленных на каркасе из направляющего тонкостенного металлического профиля и стоечного профиля, причем стоечные профили установлены зеркально с равнопеременным шагом, при котором соотношение длин шагов составляет ( 1,5-2,5:1). 2 ил.

Настоящее изобретение относится к области строительства и касается мата из полимерных волокон, содержащих ацетоамид, и его применению. Мат содержит по меньшей мере 0,5 вес.% ацетамида формулы, в которой R1 и R2, одинаковые или разные, означают атом водорода, метильный радикал или этильный радикал. Мат дополнительно содержит ПАВ. Мат применяют в качестве покрытия поверхности тепло- и/или звукоизолирующих продуктов, в частности, на основе минеральной ваты, полистирола или органического или неорганического пеноматериала. Изобретение обеспечивает снижение количества формальдегида, присутствующего внутри зданий, в частности жилых, и в транспортных средствах. 4 н. и 9 з.п. ф-лы, 1 табл., 1 пр.
Настоящее изобретение относится к мату из полимерных волокон, способному улавливать формальдегид, который содержит по меньшей мере один дигидразид. Его объектом является также применение указанного мата, в частности, в качестве покрытия поверхности тепло- и/или звукоизолирующих продуктов, в частности, на основе минеральной ваты, полистирола или органического или неорганического пеноматериала. 4 н. и 11 з.п. ф-лы, 1 табл.

Изобретение относится к строительству и может быть использовано для виброизоляции, звукоизоляции в закрытых помещениях при установке и монтаже вентиляционных агрегатов, компрессоров, генераторов и другого оборудования. Конструкция пола на упругом основании содержит несущую плиту перекрытия, связанную со стеной, расположенное на несущей плите упругое основание, дополнительно содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, которые выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен и базовой несущей плите. Полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером. Также в полостях базовых плит межэтажного перекрытия расположены вибродемпфирующие вставки, выполненные в виде цилиндра из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник. Вдоль оси сердечника жестко закреплены по всей длине полости демпфирующие диски. Крайние диски закреплены «заподлицо» с цилиндром из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовой плиты. Промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра. Упругий сердечник выполнен комбинированным и состоящим из упругой части в виде стержня и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана. Демпфирующие диски, жестко закрепленные по всей длине упругого сердечника вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков из жесткого вибродемпфирующего материала, и демпфирующей части, выполненной в виде диска из вибродемпфирующего материала, например полиуретана. Изобретение позволяет повысить вибропоглощающие и звукоизолирующие свойства пола. 1 з.п. ф-лы, 3 ил.

Изобретение относится к держателю изоляционного материала. Технический результат состоит в создании держателя изоляционного материала, снабженного резьбой для изоляционного материала, который может легче ввертываться в изоляционный материал. Держатель изоляционного материала, предназначенный для крепления плиты изоляционного материала к крепежному основанию, снабженный резьбой для изоляционного материала, которая может ввертываться в плиту изоляционного материала таким образом, что резьба для изоляционного материала нарезает в изоляционном материале ход резьбы. Держатель изоляционного материала снабжен крепежным элементом, предназначенным для крепления держателя изоляционного материала в крепежном основании. На резьбе для изоляционного материала расположено по меньшей мере одно ребро, которое проходит в окружном направлении. 8 з.п. ф-лы, 3 ил.

Настоящее изобретение касается устойчивых к высоким температурам пеноматериалов и их получения в результате превращения реакционных смесей из органических полиизоцианатов и органических полиэпоксидов путем добавления вспенивающих агентов и катализаторов, ускоряющих реакцию изоцианат/эпоксид, в окончательно вспененную, более не плавящуюся смолу на стадии С, а также их применения. Описаны устойчивые к высоким температурам пеноматериалы, которые получают в результате взаимодействия a) по меньшей мере одного органического полиизоцианата с b) по меньшей мере одним органическим соединением, содержащим по меньшей мере две эпоксидные группы, в таком количестве, которое соответствует эквивалентному соотношению изоцианатных групп и эпоксидных групп от 1,2:1 до 500:1, e) при необходимости в присутствии вспомогательных веществ и добавок, причем взаимодействие осуществляют в присутствии муравьиной кислоты в качестве вспенивающего агента и при необходимости других химических и/или физических вспенивающих агентов Т) и катализатора f), ускоряющего реакцию изоцианат/эпоксид. В изобретении раскрыты способы получения устойчивых к высоким температурам пеноматериалов путем взаимодействия описанного компонента a) с компонентами b), е), причем взаимодействие проводят в присутствии муравьиной кислоты в качестве вспенивающего агента и в присутствии d) стабилизатора из группы, состоящей из органических сложных эфиров сульфокислот, метил-йодида, диметилсульфата, ангидрида бензолсульфокислоты, хлорангидрида бензолсульфоксилоты, бензолсульфокислоты, триметилсилилтрифторметансульфоната, продукта взаимодействия бензолсульфокислоты с эпоксидами, а также их смесей, и при необходимости других химических и/или физических вспенивающих агентов Т) и катализатора f), ускоряющего реакцию изоцианат/эпоксид, со вспениванием. Также раскрыт способ получения устойчивых к высоким температурам пеноматериалов при помощи (i) смешивания компонентов a) и b), ii) реакции этой смеси с добавлением c) третичного амина в качестве катализатора до промежуточного продукта и (iii) прерывания реакции при достижении превращения не более 60% изоцианатных групп изоцианата а) путем добавления по меньшей мере эквивалентного количеству амина с) количества d) стабилизатора, так что получают промежуточную устойчивую смолу на стадии В с вязкостью в интервале от 1500 до 20000 мПа·с при 25°C, е) при необходимости в присутствии вспомогательных веществ и добавок, причем полученную на стадии (iii) смесь в результате добавления муравьиной кислоты в качестве вспенивающего агента и при необходимости других химических и/или физических вспенивающих агентов Т) и катализатора f), ускоряющего реакцию изоцианат/эпоксид, переводят во вспененное состояние. В изобретении также описано применение получаемых устойчивых к высоким температурам пеноматериалов и применение пенообразующих смесей в конце вспенивания до устойчивого к высокой температуре пеноматериала. Технический результат - получение устойчивых к высоким температурам пеноматериалов с очень хорошими механическими свойствами, которые могут быть получены простым способом, так что при промышленном производстве они могут изготавливаться за короткое время заполнения формы. 7 н. и 4 з.п. ф-лы, 3 табл., 10 пр.

Изобретение относится к области производства строительных материалов, в частности к составному анкеру для изоляционного материала. Технический результат изобретения состоит в том, что составной анкер для изоляционного материала имеет высокую надежность и может быть недорого изготовлен. Составной анкер для изоляционного материала включает в себя анкерную часть, которая в области своего переднего конца имеет область закрепления для закрепления в просверленном отверстии и в области своего противоположного заднего конца радиально выступающий наружу буртик, и удерживающую часть для удержания листа изоляционного материала анкером для изоляционного материала, причем она имеет сквозной канал для установки по месту анкерной части, на заднем конце удерживающей части направляющее отверстие для введения анкерной части и расположенного на анкерной части буртика в сквозной канал и в области переднего конца удерживающей части, противоположного заднему концу удерживающей части, упорный элемент для введенного в сквозной канал буртика анкерной части. Кроме того, удерживающая часть имеет, по меньшей мере, фиксирующую защелку для остановки осевого перемещения буртика анкерной части по направлению от упорного элемента, которая радиально выступает в сквозной канал. 7 з.п. ф.-лы, 6 ил.

Изобретение относится к теплоизоляционному устройству, содержащему по меньшей мере одну панель (100), имеющую две стенки (110, 120), разделенные основной периферической распоркой (102) и образующие газонепроницаемую камеру (104) с низким вакуумом, и по меньшей мере две гибкие пленки (150, 160), расположенные внутри указанной камеры (104), локально прикрепленные к вторичным распоркам (140) в промежуточных точках между двумя стенками (110, 120) и совместно ограничивающие вторичные воздухонепроницаемые ячейки (158). При этом последовательное создание потенциалов выбранной полярности между стенками (110, 120) и гибкими пленками (150, 160) приводит к перемещению гибких пленок (150, 160) между первым положением теплоизоляции, в котором гибкие пленки (150, 160) отделены друг от друга, и вторым положением, в котором пленки (150, 160) находятся в контакте друг с другом по меньшей мере на значительной части своей поверхности. Изобретение позволяет повысить эффективность теплоизоляционного устройства и его эксплуатационную надежность. 9 з.п. ф-лы, 12 ил.

Изобретение относится к области строительства, в частности к стеновым панелям для возведения зданий, домов и подобных сооружений. Стеновая панель содержит бетонную плиту, две поперечины, два ребра, первую теплоизоляционную плиту, две вторые теплоизоляционные плиты, две третьи теплоизоляционные плиты, два П-образных элемента. Бетонная плита снабжена внешней поверхностью, внутренней поверхностью, двумя боковыми поверхностями, верхней поверхностью и нижней поверхностью. Внешняя поверхность и внутренняя поверхность выполнены в виде прямоугольников и имеют большую площадь по сравнению с другими поверхностями бетонной плиты. Боковые поверхности расположены на противоположных сторонах, верхняя поверхность расположена с противоположной стороны от нижней поверхности. Одна поперечина расположена на внешней поверхности по ее верхнему краю от одной боковой поверхности до другой, другая поперечина расположена на внешней поверхности по ее нижнему краю от одной боковой поверхности до другой. Ребра размещены на внешней поверхности параллельно боковым поверхностям от верхней поверхности до нижней поверхности. При этом ребра расположены с отступом от соответствующей каждому из них боковой поверхности. Поверхность каждого из ребер, противоположная внешней поверхности, расположена от внешней поверхности на большем расстоянии, чем поверхности поперечин, противоположные внешней поверхности. Первая теплоизоляционная плита расположена между ребрами заподлицо с поверхностями ребер, противоположными внешней поверхности. Вторые теплоизоляционные плиты расположены вдоль соответствующего каждой их них ребра и с нахлестом на первые теплоизоляционные плиты. Каждый П-образный элемент размещен вертикально таким образом, что он охватывает соответствующую ему вторую теплоизоляционную плиту со стороны, противоположной внешней поверхности. Третьи теплоизоляционные плиты расположены со сторон ребер, обращенных в сторону соответствующей боковой поверхности, между поперечинами, от внешней поверхности до поверхности большого ребра, противоположной внешней поверхности. Технический результат состоит в повышении теплоизоляционных свойств стыков соседних стеновых панелей и в расположении бетонной плиты в зоне положительных температур в случае, если предусмотрено отопление здания. 4 ил.
Наверх