Способ получения материала на основе углеродных нанотрубок



Способ получения материала на основе углеродных нанотрубок
Способ получения материала на основе углеродных нанотрубок
Способ получения материала на основе углеродных нанотрубок
Способ получения материала на основе углеродных нанотрубок
Способ получения материала на основе углеродных нанотрубок
Способ получения материала на основе углеродных нанотрубок
Способ получения материала на основе углеродных нанотрубок

 


Владельцы патента RU 2537487:

Федеральное государственное бюджетное научное учреждение "Технологический институт сверхтвердых и новых углеродных материалов" (ФГБНУ ТИСНУМ) (RU)

Изобретение может быть использовано при изготовлении изделий, работающих в агрессивных средах и повышенной температуре, таких как мембраны, фильтры, покрытия. Материал на основе углеродных нанотрубок получают газофазным осаждением в вертикальном CVD-реакторе 1, который предварительно вакуумируют, продувают аргоном в течение 10-12 мин и нагревают до 900-1150 °С. Затем через канал 2 пропускают несущий газ - водород с объемной скоростью около 1000 мл/мин и одновременно с ним - трехкомпонентную смесь со скоростью 4,5-5,0 мл/мин, содержащую, масс.%: 1,0-10,0 ферроцена, 0,5-1,5 тиофена и 93,5-98,5 этанола. Изобретение позволяет получить материалы в виде пористых пленок с размером пор от 10 до 300 нм, состоящих из углеродных нанотрубок диаметром от 2,5 до 30 нм, без использования подложки или каркаса. 7 ил.

 

Настоящее изобретение относится к функциональным материалам, в частности к получению пористых пленок, используемых для изготовления мембран, фильтров, покрытий и т.п. Углеродные материалы, в связи с химической инертностью, могут быть использованы при работе в агрессивных средах и при повышенной температуре рабочей зоны, в том числе в качестве контейнеров для хранения различных объектов, например порошков металлических катализаторов.

В настоящее время известны многие способы получения и применения тонких пористых пленок.

Известен (патент РФ 2305632 C2, МПК B32B 5/18, опубликован 10.09.2005) способ изготовления многослойных микропористых пленок из полиэтилена и полипропилена. Пленки, изготовленные по этому способу, пригодны для получения полупроницаемых мембран для фильтрации жидкостей, однако их необходимо получать на подложке и нельзя использовать в агрессивной среде и при повышенной температуре рабочей зоны.

Известна тонкая пленка из α,α,α′,α′-тетрафторопараксилилена (патент РФ 2268900, МПК C08G 61/02, C08J 5/18, опубликован 27.01.2006). Способ реализуют путем последовательного осуществления в трехзонном реакторе, состоящем из зон сублимации, пиролиза и конденсации. Сублимации и пиролизу подвергают циклический димер 1,1,2,2,9,9,10,10-октафтор[2,2]парациклован, продукты пиролиза конденсируются и одновременно полимеризуются на подложке в пленку теттрафтропараксилилена. При этом для получения пористой пленки проводят двухстадийную термообработку получившегося продукта. Данный материал стоек и инертен, но изготовленная пленка закреплена на подложке, и ее получение требует дефицитных реагентов и тщательного контроля синтеза, что приводит к значительному удорожанию продукта.

Известны холодноэмисионный пленочный катод и способ его получения (патент РФ 2194328, МПК H01J 1/30, 9/02, опубликован 10.12.2002). Такой катод получен методом газофазного синтеза, включающим зажигание тлеющего разряда постоянного тока в смеси водорода с углеродсодержащей добавкой и осаждения на расположенную на аноде подложку для углеродной пленки. При этом углеродные пленки осаждают последовательно, выдерживая соответствующие параметры температуры и давления.

Известен метод получения пленок на основе углеродных нанотрубок (патент US 2009211901, МПК C01B 31/02, H01B 13/00, H01B 5/14, H01L 33/00, H01M 4/96, опубликован 12.02.2009). В описанном способе предложены различные варианты получения пленок оптимальной толщины и пористости. Способ включает несколько стадий: диспергирование углеродных нанотрубок в сурфактанте, фильтрация взвеси нанотрубок с формированием пленочного материала на мембране фильтра, удаление сурфактанта. Однако данный способ получения пористой тонкой пленки также требует наличия подложки или каркаса, которым является мембрана фильтра.

Известен способ получения углеродных пленок методом газофазного осаждения (CVD) (патент JP 2001192829, МПК C01B 31/02; C23C 16/26; C23C 16/511; H01J 9/02, опубликован 05.01.2000). В данном случае предложено использовать модификацию метода CVD, а именно плазмохимическое газофазное осаждение. Недостатком является также необходимость использования подложки.

Также известен способ получения одностенных углеродных нанотрубок методом газофазного осаждения (CVD) (WO 2012-059716, МПК C01B 1/02, B01J 37/08, B01J 23/745, D01F 9/12, опубликован 10.05.2012). В данном способе предлагают использовать метод синтеза углеродных нанотрубок, при котором катализатор (в составе ферроцена) вводится в реактор вместе с углеродсодержащим веществом - метаном. При этом указывают параметры процесса, при которых предподчительно образование частиц катализатора менее 10 нм в диаметре. В итоге получается аэрогель из одностенных нанотрубок, которые вытягивают и скручивают в волокно посредством наматывания на шпиндель.

Наиболее близким по технической сущности (прототипом) является способ получения плетеных углеродных волокон из нанотрубок методом газофазного осаждения (CVD) (патент JP 2011-202338, МПК C01B 31/02, D01F 9/127, D02G 3/02, D02G 3/02, D02G 3/04, D01F 9/08, опубликован 13.10.2011). В данном способе из аэрогеля углеродных нанотрубок, образующихся в CVD-реакторе, вытягивают волокно при помощи намотки на шпиндель. Осаждение углеродных нанотрубок проводят при температуре от 1000 до 1500°C в проточной атмосфере водорода из прекурсора, содержащего катализатор. В качестве прекурсора углеродных нанотрубок используют трехкомпонентную смесь состава: 0,23-2,3 масс.% ферроцена, 0,2-3,0 масс.% тиофена, 94,7-97,2 масс.% этанола. Скорость подачи смеси от 0,08 до 0,25 см3/мин. Несущий газ - водород - подают со скоростью от 400 до 800 см3/мин. Минимальное время синтеза составляет 30 мин, а в связи с тем, что углеродные нанотрубки постоянно удаляются из рабочей зоны, осаждение можно проводить длительное время. По этому способу получают материал в виде плетеного вытянутого волокна, и использование набора таких значений параметров процесса не позволяет получить пористые пленки.

Задачей заявленного изобретения является разработка способа, позволяющего получить материал в виде пористой пленки, состоящей из углеродных нанотрубок без использования подложки или каркаса.

Для решения поставленной задачи предлагаем осуществлять осаждение углеродных нанотрубок, схематично представленное на фиг.1, в проточном трубчатом CVD-реакторе 1 вертикального типа с подачей через канал 2 несущего газа - водорода - и реактивной смеси в направлении «сверху-вниз». Внутренний диаметр ректора 1 составляет 40 мм, длина реакционной рабочей зоны 300 мм. Параметры процесса и условия проведения осаждения подобраны экспериментально в ходе серии опытов. В качестве источника углерода для формирования нанотрубок используем трехкомпонентную смесь, состоящую из 0,5-1,5 масс.% тиофена, 1,0-10,0 масс.% ферроцена, 93,5-98,5 масс.% этанола. Смесь подается со скоростью от 4,5 до 5,0 см3/мин. Этанол выступает как растворитель и основной источник углерода. Кластеры железа, образующиеся в результате термического разложения ферроцена, являются частицами катализатора, на которых происходит рост нанотрубок 4 (фиг.1). В качестве промоутера растворения углерода в частицах железа выступает сера, которая содержится в тиофене. Осаждение проводят в потоке несущего газа - водорода - при его объемной скорости не более 1000 см3/мин. Температура рабочей зоны 6 (фиг.1) от 900 до 1150°C.

Размер пор получаемого пленочного образования контролируем параметрами осаждения. Время осаждения от 25 мин до 120 мин. В результате получаем пористое пленочное образование в форме чулка 7 (фиг.1), состоящее из углеродных нанотрубок. Следует подчеркнуть, что на конечный результат влияют все параметры в совокупности, причем изменение любого из них оказывает влияние на вклад остальных, поэтому подбор подходящих условий - это комплексная задача, требующая проведения серии экспериментов для поиска оптимальных значений. Также нужно отметить, что важную роль в процессе газофазного осаждения играет геометрия реактора, которая в настоящем изобретении оставалась постоянной.

Использованный интервал температур от 900 до 1150°C дает положительный результат при процессе осаждения углеродных нанотрубок из газовой фазы, при температуре ниже 900°С в полной мере не достигается решение поставленной задачи, а верхний предел в настоящем изобретении был обусловлен техническими ограничениями установки.

Использование объемной скорости несущего газа вблизи 1000 см3/мин обусловлено временем нахождения углеродсодержащей смеси в рабочей зоне реактора: при более высоких скоростях компоненты смеси не полностью разлагаются, и поэтому резко падает выход углеродных нанотрубок, что не позоволяет достигнуть положительного результата - осаждения пористой пленки, при более низкой объемной скорости несущего газа целевой продукт образуется, но он сильно загрязнен примесями.

Использованный интервал концентраций тиофена 0,5-1,0 позволяет обеспечить положительный результат, использование более низких концентраций приводит к понижению скорости образования углеродных нанотрубок и увеличению длительности процесса, использование более высоких концентраций приводит к загрязнению серой целевого продукта.

Использованный интервал концентраций ферроцена 1,0-10,0 позволяет обеспечить положительный результат, использование более низких концентраций приводит к понижению выхода углеродных нанотрубок и образованию сажи и пиролитического углерода, использование более высоких концентраций приводит к загрязнению карбидом железа целевого продукта.

Использование высокой, по сравнению со значением соответствующего параметра в прототипе, скорости подачи углеродсодержащей смеси 4,5-5 см3/мин обеспечивает положительный результат, при более низкой скорости пористая пленка из углеродных нанотрубок образуется медленно и лишь на подложке, при более высокой скорости целевой продукт сильно загрязнен примесями.

Таким образом, совокупный набор оптимальных значений параметров для получения газофазным осаждением пористой пленки из углеродных нанотрубок позволяет достигнуть положительного результата.

На фиг.1-7 приведены схема и фотографии, поясняющие заявляемое изобретение:

на фиг.1 приведена схема проточного CVD-реактора вертикального типа;

1 - реактор;

2 - канал, для подачи несущего газа и смеси;

3 - мерный сосуд;

4 - зона роста углеродных нанотрубок;

5 - печь;

6 - рабочая зона реактора;

7 - замкнутое цилиндрицеское образование из пористой пленки -«чулок»;

на фиг.2 приведена полученная в просвечивающем электронном микроскопе микрофотография одностенной углеродной нанотрубки;

на фиг.3 приведена полученная в просвечивающем электронном микроскопе микрофотография пористой пленки, осажденной согласно настоящему изобретению, как описано в примере 1;

на фиг.4 приведена полученная в растровом электронном микроскопе микрофотография пористой пленки, состоящей из многостенных углеродных нанотрубок;

на фиг.5 приведена полученная в растровом электронном микроскопе микрофотография пористой пленки, состоящей из многостенных углеродных нанотрубок;

на фиг.6 приведена фотография «чулка» из пористой пленки, полученной согласно настоящему изобретению;

на фиг.7 приведена фотография «чулка» из слоев пористой пленки, полученной согласно настоящему изобретению.

Примеры реализации способа.

Способ получения пористой пленки на основе углеродных нанотрубок газофазным осаждением осуществляют в проточном вертикальном CVD-реакторе 1 (фиг.1), снабженном системой вакуумирования и газораспределения, для очистки системы от воздуха и контроля газового потока. Реактор 1, снабженный системой подачи и отвода газов, герметизируют. Воздух откачивают из реактора и прилегающей системы подачи и отвода газов. В реактор 1 подают аргон через канал 2, затем продувают реактор 1 аргоном в течение 10-20 мин, включают нагрев печи 5, которая поддерживает в рабочей зоне реактора необходимую температуру. Затем прекращают подавать аргон и пускают через канал 2 несущий газ - водород - с объемной скоростью 1000 см3/мин. Сосуд 3, соединенный с реактором, с мерной шкалой наполняют трехкомпонентной углеродсодержащей смесью состава: 0,5 масс.% тиофена, 5,5 масс.% ферроцена, 94 масс.% этанола. Когда температура в реакторе достигнет 1150°C, при помощи перистальтического насоса пускают углеродсодержащую смесь в реактор 1 со скоростью 4,5 см3/мин. В течение 25 минут в зоне реактора на выходе из рабочей зоны происходит образование замкнутого цилиндрического образования 7, по внешнему виду напоминающего чулок, из пористой пленки с размером пор от 10 до 70 нм, состоящей преимущественно из одностенных углеродных нанотрубок диаметром 2,5-4,0 нм, представленных на фиг.2 и фиг.3.

Другие примеры проводят аналогично первому. Они отличаются количественными параметрами.

Пример 2. При скорости подачи углеродсодержащей смеси 3,0 см3/мин, скорости потока несущего газа 1500 см3/мин, температуре рабочей зоны 800°C, времени осаждения 120 мин и составе углеродсодержащей смеси: 0,5% тиофена, 5,5% ферроцена, 94% этанола - происходит осаждение на стенки реактора пористой пленки с размером пор от 50 до 300 нм, состоящей из углеродных многостенных нанотрубок диаметром 10-30 нм без образования «чулка».

Пример 3. При скорости подачи углеродсодержащей смеси 4,5 см3/мин, скорости потока несущего газа 1000 см /мин, температуре рабочей зоны 1150°C, времени осаждения 120 мин и составе углеродсодержащей смеси: 1,5 масс.% тиофена, 10 масс.% ферроцена, 88,5 масс.% этанола - происходит образование «чулка» из пористой пленки с размером пор от 50 до 150 нм, состоящей из многостенных углеродных нанотрубок диаметром 25-30 нм, сильно загрязненных примесью серы и карбида железа.

Пример 4. При скорости подачи углеродсодержащей смеси 10,0 см3/мин, скорости потока несущего газа 600 см3/мин, температуре рабочей зоны 1000°C, времени осаждения 120 мин и составе углеродсодержащей смеси: 1,5 масс.% тиофена, 10 масс.% ферроцена, 88,5 масс.% этанола - происходит осаждение на стенки реактора пористой пленки с размером пор от 70 до 200 нм, состоящей из многостенных углеродных нанотрубок диаметром 25-30 нм, с образованием паутиноподобной сетки.

Пример 5. При скорости подачи углеродсодержащей смеси 5,0 см3/мин, скорости потока несущего газа 1000 см3/мин, температуре рабочей зоны 1000°C, времени осаждения 60 мин и составе углеродсодержащей смеси: 1,5% тиофена, 1,5% ферроцена, 97% этанола - происходит осаждение на стенки реактора вне рабочей зоны пористой пленки с размером пор от 20 до 150 нм с образованием «чулка», состоящего преимущественно из одностенных углеродных нанотрубок диметром 2,5-5 нм.

Пример 6. При скорости подачи углеродсодержащей смеси 4,5 см3/мин, скорости потока несущего газа 1000 см3/мин, температуре рабочей зоны 1150°C, времени осаждения 30 мин и составе углеродсодержащей смеси: 0,5 масс.% тиофена, 6,0 масс.% ферроцена, 93,5 масс.% этанола - происходит образование «чулка» из пористой пленки с размером пор от 70 до 250 нм, состоящей из многостенных углеродных нанотрубок диаметром от 5-30 нм. Микроструктура пленки представлена на фиг.4 и фиг.5.

Пример 7. При скорости подачи углеродсодержащей смеси 4,5 см3/мин, скорости потока несущего газа 1000 см3/мин, температуре рабочей зоны 900°C, времени осаждения 60 мин и составе углеродсодержащей смеси 0,5 масс.% тиофена, 1,0 масс.% ферроцена, 98,5 масс.% этанола - происходит образование «чулка» из пористой пленки с размером пор от 20 до 120 нм, состоящей преимущественно из одностенных углеродных нанотрубок диаметром 2,5-5 нм с примесью сажи.

Пример 8. При скорости подачи углеродсодержащей смеси 4,5 см3/мин, скорости потока несущего газа 1000 см3/мин, температуре рабочей зоны 1150°C, времени осаждения 50 мин и составе углеродсодержащей смеси 0,5 масс.% тиофена, 5,5 масс.% ферроцена, 94 масс.% этанола - происходит образование многослойного «чулка», показанного на фиг.6 и фиг.7, из пористых пленок с размером пор от 20 до 100 нм, состоящей преимущественно из одностенных нанотрубок диаметром 2,5-5 нм.

Таким образом, предложенный способ позволяет создавать новый тип пористых пленок. Технический результат - получение свободной от подложки и каркаса пористой пленки из углеродных нанотрубок.

Из приведенных примеров видно, что заявленные в изобретении параметры обоснованы и позволяют получать материал без использования подложки или каркаса, представляющий собой пористую углеродную пленку, состоящую из нанотрубок, свободную от каркаса и подложки. Структура пленки представляет собой хаотичное переплетение - «сетку» - длинномерных углеродных нанотрубок диаметром от 2,5 до 30 нм. Средний оценочный диаметр пор «сетки» в зависимости от режима получения пленки примерно составляет от 10 до 250 нм.

Способ получения материала на основе углеродных нанотрубок путем газофазного осаждения в CVD-реакторе в потоке несущего газа - водорода и продуктов разложения углеродсодержащей трехкомпонентной смеси, состоящей из ферроцена, тиофена и этанола, отличающийся тем, что осаждение осуществляют в проточном вертикальном CVD-реакторе, который предварительно вакуумируют, затем продувают аргоном в течение 10-12 мин, нагревают реактор до необходимой температуры 900-1150°С и затем пропускают несущий газ - водород с объемной скоростью около 1000 мл/мин, одновременно с пропусканием несущего газа - водорода - в реактор подают трехкомпонентную смесь со скоростью 4,5-5,0 мл/мин, при этом трехкомпонентную смесь берут в следующем соотношении компонентов, масс.%:

ферроцен 1,0-10,0
тиофен 0,5-1,5
этанол 93,5-98,5



 

Похожие патенты:
Изобретение может быть использовано для получения теплозащитных материалов, стойких к эрозионному разрушению при воздействии высоких температур и давлений. Сначала осуществляют сборку стержневого каркаса цилиндрической формы и пятинаправленного армирования из углеродного волокна и скрепляют его водным раствором поливинилового спирта.

Изобретение относится к области плазмохимии и может быть использовано для производства фуллеренов и нанотрубок. Углеродосодержащее сырье разлагают в газовом разряде, для чего сначала зажигают объемный тлеющий разряд в смеси газообразных углеводородов и инертного газа при давлении 20-80 Торр.
Изобретение может быть использовано при изготовлении композитов на основе полимеров. Углеродные нанотрубки функционализируют карбоксильными и/или гидроксильными группами и обрабатывают ультразвуком в органическом растворителе в присутствии продуктов реакции тетрабутилтитаната со стеариновой или олеиновой кислотой при температуре от 40оС до температуры кипения растворителя.
Изобретение может быть использовано при изготовлении композитов, содержащих органические полимеры. Дисперсия углеродных нанотрубок содержит 1 мас.ч.

Изобретение может быть использовано при изготовлении носителей катализаторов, сорбентов, электрохимических конденсаторов и литий-ионных аккумуляторов. Взаимодействуют при 700-900 °C соль кальция, например, тартрат кальция или тартрат кальция, допированный переходным металлом, являющаяся предшественником темплата, и жидкие или газообразные углеродсодержащие соединения или их смеси в качестве источника углерода.

Изобретение относится к нанотехнологии. Графеновые структуры в виде плоских углеродных частиц с поверхностью до 5 мм2 получают путем сжигания в атмосфере воздуха или инертного газа композитного пресс-материала, полученного из микро- и нанодисперсных порошков активных металлов, таких как алюминий, титан, цирконий, нанодисперсных порошков кремния или боридов алюминия, взятых в количестве 10-35 мас.
Изобретение относится к электродной промышленности и ферросплавного производства и может быть использовано при изготовлении самообжигающихся электродов ферросплавных рудовосстановительных печей.
Изобретение может быть использовано для получения модифицированных углеродных нанотрубок. Способ модифицирования углеродных нанотрубок включает обработку углеродных нанотрубок водным раствором окислителя, в качестве которого применяют раствор персульфата или гипохлорита при рН более 10, проводимую одновременно с механической обработкой.

Изобретение относится к технике переработки углеводородного сырья, в частности природного газа, и может быть использовано при получении углеродных нанотрубок и водорода.

Изобретение относится к пористому углеродному композиционному материалу. Пористый углеродный композиционный материал образуется из (А) пористого углеродного материала, получаемого из материала растительного происхождения, имеющего содержание кремния (Si), составляющее 5 мас.% или выше, в качестве исходного материала, причем указанный пористый углеродный материал имеет содержание кремния, составляющее 1 мас.% или меньше, и (В) функционального материала, закрепленного на пористом углеродном материале, и имеет удельную площадь поверхности 10 м2/г или больше, которую определяют по адсорбции азота методом BET, и объем пор 0,1 см3/г или больше, который определяют методом BJH и методом МР.
Изобретение относится к области нанотехнологии сенсорных материалов и может быть использовано для создания полупроводниковых газовых сенсоров, селективных к содержанию в воздухе сероводорода и его производных.
Изобретение относится к способу изготовления сенсора для получения спектров гигантского комбинационного рассеяния света (ГКР), который представляет собой стеклянный капилляр, на внутреннюю сторону которого нанесены наночастицы серебра.

Изобретение относится к медицине, а именно к урогинекологии. Устройство выполнено в виде кольцевого элемента из силиконовой резины с содержанием 2-4 мас.ч.

Изобретение относится к композиционным лакокрасочным материалам для антикоррозионной защиты металлоконструкций в агрессивных средах. Антикоррозионный лакокрасочный материал включает многослойные углеродные нанотрубки от 0,2 до 2 мас.%, эпоксидное связующее от 38,1 до 54,9 мас.%, отвердитель от 5,8 до 10 мас.%, в качестве наполнителя антикоррозийную добавку, дизаэрирующую добавку и сиккатив от 2,3 до 4,7 мас.%, 2-этоксиэтанол до 100 мас.%.

Изобретение относится к производству композиционного материала. Композиционный материал содержит металлический компонент металлической матрицы (201, 211) и расположенный в металлической матрице (201, 211) армирующий компонент (202) и дополнительный армирующий компонент.

Изобретение относится к композиционному наноматериалу для химических источников тока, состоящему из порошка оксидов сложного состава, смешанного с электропроводной углеродной добавкой и связующим.
Изобретение относится к области порошковой металлургии, в частности к технологии получения многослойных реакционных фольг. Может использоваться для соединения разнообразных материалов, включая металлические сплавы, керамику, аморфные материалы и чувствительные к нагреву компоненты микроэлектронных устройств.
Настоящее изобретение относится к смазочно-охлаждающей жидкости для обработки металлов давлением, содержащей воду и масло с числом омыления не менее 130 мг КОН/г, при содержании механических примесей не более 100 мг/л на 1% общей концентрации масла, при этом дополнительно содержит углеродные нанотрубки типа «Таунит» при их концентрации - 1-1,2% и общей концентрации масла 1,25-1,5%.
Изобретение относится к области металлургии, а именно нанесению покрытий с эффектом памяти формы. Способ получения наноструктурированных покрытий с эффектом памяти формы на стальной поверхности включает нанесение порошка с эффектом памяти формы на основе Ni на стальную поверхность, закалку с нагревом до 1000°C и последующим охлаждением в жидком азоте, пластическую деформацию полученного покрытия в три этапа при нагреве.

Изобретение относится к теплоэнергетике и может быть использовано на тепловых электрических станциях. Способ интенсификации процесса сжигания низкореакционного угля в котлах ТЭС включает воспламенение и горение пылеугольного низкореакционного топлива, при вводе в процесс горения водной эмульсии с нанодобавкой в виде растворимого таунита.

Изобретение относится к композиционным лакокрасочным материалам для антикоррозионной защиты металлоконструкций в агрессивных средах. Антикоррозионный лакокрасочный материал включает многослойные углеродные нанотрубки от 0,2 до 2 мас.%, эпоксидное связующее от 38,1 до 54,9 мас.%, отвердитель от 5,8 до 10 мас.%, в качестве наполнителя антикоррозийную добавку, дизаэрирующую добавку и сиккатив от 2,3 до 4,7 мас.%, 2-этоксиэтанол до 100 мас.%.
Наверх