Способ триангуляционного измерения толщины листовых изделий



Способ триангуляционного измерения толщины листовых изделий
Способ триангуляционного измерения толщины листовых изделий
Способ триангуляционного измерения толщины листовых изделий

 


Владельцы патента RU 2537522:

Федеральное государственное бюджетное учреждение науки Институт теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук (ИТ СО РАН) (RU)
Открытое акционерное общество "Институт оптико-электронных информационных технологий" (ОАО "ИОИТ") (RU)

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. Техническим результатом изобретения является повышение точности определения толщины листового изделия. В способе триангуляционного измерения толщины листовых изделий осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, как минимум три с каждой стороны изделия. Источники излучения оптических систем ориентированы таким образом, что зондирующие пучки на противоположных сторонах листового изделия образуют вершины пересекающихся выпуклых многоугольников. Толщину листового изделия вычисляют как расстояние между многоугольниками на противоположных сторонах листового изделия в области их пересечения. Способ триангуляционного измерения толщины листовых изделий позволяет измерять толщину листового изделия при его произвольной ориентации в измерительном объеме. 2 ил.

 

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий.

Известен способ триангуляционного измерения толщины листовых изделий (авторское свидетельство СССР №1647249 «Фотоэлектрическое устройство для измерения профиля и толщины изделий сложной формы», 1988 г., G01B 21/00), при котором осуществляют подачу листового изделия в зону измерения, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, лежащие на одной прямой, отраженное от изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояния от центров соответствующих оптических систем до поверхности изделия, а толщину изделия вычисляют по формуле:

h=T-A-B, где

T - расстояние между центрами первой и второй оптических систем (величина постоянная, задается конструктивно);

A и B - соответственно расстояния от центров первой и второй оптических систем до поверхности изделия.

Измерение толщины изделия по такому способу осуществляется без учета его наклона, что снижает точность измерений.

Известен также способ триангуляционного измерения толщины листовых изделий с учетом наклона (авторское свидетельство СССР №1826698 «Способ бесконтактного измерения толщины», 1990 г., G01B 11/06), при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, лежащие на одной прямой, кроме того, с одной из сторон на листовое изделие направляют дополнительный зондирующий пучок излучения, ориентированный параллельно двум другим зондирующим пучкам и отстоящий от них на заданном расстоянии, отраженное от изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояния от центров соответствующих оптических систем до поверхности изделия, при этом толщину листового изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве.

Недостатком такого способа является низкая точность измерений, так как при измерениях учитывается наклон листового изделия только в продольном направлении (направлении подачи изделия) и не учитывается его наклон в поперечном направлении (направлении, перпендикулярном направлению подачи изделия).

Известен способ триангуляционного измерения толщины листовых изделий с учетом наклона в продольном и поперечном направлениях (авторское свидетельство СССР №1728647 «Способ измерения толщины листовых изделий», 1988 г., G01B 11/06), при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, лежащие на одной прямой, кроме того, с одной из сторон на листовое изделие направляют два дополнительных зондирующих пучка излучения, ориентированных параллельно двум другим зондирующим пучкам, при этом все четыре пучка не лежат вместе в одной плоскости, отраженное от изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояния от центров соответствующих оптических систем до поверхности изделия, а толщину изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве.

К недостаткам данного способа относятся:

1. Низкая точность измерения, так как наклон листового изделия определяется лишь по наклону одной (верхней) поверхности изделия, не учитывая при этом возможно иной наклон другой (нижней) поверхности, вызванный изменением толщины изделия или его искривлением;

2. Необходимость использования сложных оптических систем, содержащих непрозрачные и полупрозрачные зеркала (плоскопараллельные пластины), неудобные при настройке и эксплуатации.

Наиболее близким по технической сущности заявляемому является способ триангуляционного измерения толщины листовых изделий (Авторское свидетельство СССР №1826697 «Способ бесконтактного измерения толщины объекта», 1990 г., G01B 11/06), учитывающий наклон изделия как в продольном, так и в поперечном направлениях, при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, лежащие на одной прямой, кроме того, с обеих сторон на листовое изделие направляют два дополнительных зондирующих пучка излучения. Дополнительные пучки ориентированы параллельно двум другим зондирующим пучкам и расположены от них на заданных расстояниях так, что плоскости, образованные парами пучков, лежащих по одну сторону изделия, ориентированы взаимно перпендикулярно и пересекаются по линии, образованной зондирующими пучками, лежащими на одной прямой. Отраженное от листового изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояния от центров соответствующих оптических систем до поверхности изделия, при этом толщину листового изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве.

К недостаткам данного способа относятся:

1. В реальности имеет место одновременное изменение толщины и наклона (коробления) листового изделия по двум координатам, в результате чего на отдельных его участках нижняя и верхняя поверхности могут быть непараллельными друг другу и иметь разный наклон, что не учитывается в данном изобретении;

2. Кроме того, данный способ устанавливает наклон локального участка листового изделия лишь по наклону одной из его поверхностей. При этом не учитывается наклон другой его поверхности.

Задачей предлагаемого изобретения является повышение точности определения толщины листового изделия посредством учета наклона нижней и верхней его поверхностей.

Поставленная задача решается тем, что в способе триангуляционного измерения толщины листовых изделий, при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, отраженное от изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояние от центров оптических систем до поверхности изделия, при этом толщину листового изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве, согласно изобретению, зондирующих пучков излучения как минимум три с каждой стороны, причем источники излучения оптических систем ориентированы таким образом, что зондирующие пучки на противоположных сторонах листового изделия образуют вершины пересекающихся выпуклых многоугольников, при этом толщину изделия вычисляют как расстояние между многоугольниками на противоположных сторонах листа в области их пересечения.

Способ триангуляционного измерения толщины листовых изделий представлен на фигуре 1. На изделие 1 с помощью источников излучения оптических систем 2, 3, 4 направляют зондирующие пучки излучения 2', 3' 4' с одной стороны и с помощью источников излучения оптических систем 5, 6, 7 направляют зондирующие пучки излучения 5', 6', 7' с другой стороны. Отраженное от изделия излучение фокусируют на фотоприемники оптических систем 8 и 9, которые могут состоять, например, из фоточувствительной матрицы и фокусирующей линзы.

На фигуре 2 представлена схема расположения пучков излучения на поверхностях изделия. Пучки излучения, расположенные с одной стороны изделия 5', 6', 7', образуют многоугольник (в частности, треугольник) M1. Пучки излучения, расположенные с противоположной стороны изделия 2', 3', 4', образуют многоугольник (в частности, треугольник) М2. Многоугольник М3 образован пересечением многоугольников M1 и М2. Вершины многоугольника М3 лежат в точках к1, к2, к3, к4, к5, к6.

Способ осуществляется следующим образом. На изделие 1 с одной стороны с помощью источников излучения оптических систем 2, 3, 4 направляют зондирующие пучки излучения 2', 3', 4', отраженное от изделия излучение фокусируют на фотоприемнике оптической системы 8. С другой стороны помощью источников излучения оптических систем 5, 6, 7 направляют зондирующие пучки излучения 5', 6', 7', отраженное от изделия излучение фокусируют на фотоприемнике оптической системы 9.

Поскольку геометрическое положение источников излучения оптических систем 2, 3, 4, направление излучения и положение оптической системы 8, принимающей отраженное от изделия излучение, неподвижны в пространстве, то по координатам световых пятен на фотоприемнике оптической системы 8 можно однозначно определить пространственные координаты зондирующих пучков излучения 2', 3', 4' на поверхности изделия. Аналогично определяются пространственные координаты зондирующих пучков 5', 6', 7' на противоположной поверхности изделия 1. Координаты пучков излучения вычисляются с помощью процедуры калибровки, реализация которой представлена ниже.

После определения пространственных координат зондирующих пучков излучения 2', 3', 4', 5', 6', 7' на поверхности изделия 1 вычисляется толщина изделия по следующему алгоритму:

1. Вычисляются пространственные координаты многоугольника M1 - ортогональной проекции многоугольника, образованного пучками излучения 5', 6', 7', на плоскость, образованную многоугольником 2', 3', 4' (многоугольник М2).

2. Вычисляются пространственные координаты вершин многоугольника М3, образованного пересечением многоугольников M1 и М2.

3. Вычисляются пространственные координаты центра масс многоугольника М3, например, следующим образом:

a. Многоугольник М3 разбивается на треугольники k1k2k6, k2k3k6, k3k4k6, k4k5k6.

b. Вычисляются координаты центра масс (xi, yi, zi) и площадь полученных треугольников (Si), используя стандартные геометрические формулы.

c. Вычисляются координаты центра масс многоугольника М3 по формуле

где xi, yi, zi - пространственные координаты i-й вершины многоугольника М3, N - количество вершин многоугольника М3.

Калибровка осуществляется следующим образом. Независимо калибруются источники излучения, чтобы по положению их изображения на фотоприемнике можно определить пространственное положение пучка излучения на контролируемом объекте.

Калибровка может выполняться либо опираясь на геометрическое расположение и направление излучения источников и расположение приемников излучения, либо с использованием плоской калибровочной поверхности, смещаемой на известное расстояние перпендикулярно плоскости поверхности.

В результате калибровки для каждого источника излучения будет получена зависимость

где m, n - координаты изображения пучка излучения на фотоприемнике, Kx, Ky, Kz - функции зависимости соответствующих пространственных координат от координат изображения пучка на фотоприемнике.

Функции Kx, Ky, Kz представляют собой монотонные функции, близкие к линейным.

Таким образом, способ триангуляционного измерения толщины листовых изделий позволяет измерять толщину листового изделия при его произвольной ориентации в измерительном объеме. Изобретение может применяться, например, в металлургической промышленности для измерения толщины горячего и холодного металлопроката.

Способ триангуляционного измерения толщины листовых изделий, при котором осуществляют подачу листового изделия в зону измерений, на изделие с двух противоположных сторон с помощью источников излучения оптических систем направляют зондирующие пучки излучения, отраженное от листового изделия излучение фокусируют на фотоприемники оптических систем и путем измерения координат световых пятен на фотоприемниках определяют расстояние от центров оптических систем до поверхности листового изделия, при этом толщину листового изделия вычисляют из показаний соответствующих оптических систем и геометрического расположения оптических систем в пространстве, отличающийся тем, что зондирующих пучков излучения как минимум три с каждой стороны изделия, причем источники излучения оптических систем ориентированы таким образом, что зондирующие пучки на противоположных сторонах листового изделия образуют вершины пересекающихся выпуклых многоугольников, при этом толщину листового изделия вычисляют как расстояние между многоугольниками на противоположных сторонах листового изделия в области их пересечения.



 

Похожие патенты:

Изобретение относится к прецизионной измерительной технике и может быть использовано в различных отраслях: метрологии, приборостроении, в отсчетных системах измерительных приборов, координатно-измерительных машин и прецизионных станков, аэрокосмической промышленности, при обработке материалов, автоматизации, в робототехнике, в оптико-механической промышленности, а также во всех высокотехнологичных отраслях техники, науки и т.д.

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения геометрических параметров протяженных объектов, в частности композитной арматуры, а также кабельной продукции, проволоки и других в процессе производства.

Изобретение относится к области измерительной техники, к измерительным устройствам, характеризующимся дистанционными оптическими средствами измерений, и может быть использовано при решении задач, требующих одновременного определения двух линейных и двух угловых координат объекта при постоянной дистанции до объекта. Предложено одноканальное двухкоординатное устройство измерения угловых и линейных координат объекта, работающее в большом диапазоне дистанций с высокой точностью и изменяемым диапазоном измерений. Такой технический результат достигнут нами, когда в устройстве измерения линейных и угловых координат объекта, содержащем осветитель, объектив с матричным фотоприемником, связанным с устройством обработки информации и установленным в плоскости, сопряженной с объектом, и измерительную марку, установленную на объекте, новым является то, что измерительная марка снабжена осветителем, включающим расположенные по ходу луча источник света, конденсор и рассеиватель, и двумя визирными элементами, образующими кольцевую и точечную структуры и разнесенными по оптической оси, за второй структурой по ходу луча установлен компенсатор оптического хода, при этом объектив выполнен с переменным фокусным расстоянием. 5 ил. .

Способ заключается в формировании подаваемого на поверхность исследуемого объекта потока светового излучения, регистрации в фиксированной точке отраженного света и преобразовании его в электрический сигнал, величину которого используют для определения расстояния от поверхности исследуемого объекта по формуле: Δ x = x 0 − x 0 2 U 0 U , где х0 - начальное расстояние от светоотражающей поверхности исследуемого объекта до фотоприемника; U0 - амплитуда выходного сигнала с фотоприемника, соответствующая х0; U - амплитуда выходного сигнала с фотоприемника, соответствующая Δх.

Устройство содержит закрепленное на основании (1) устройство (2) для регулировки и фиксации его положения относительно поверхности (12) объекта (13), соединенный с ним цилиндрический корпус (4), во внутренней полости (5) которого установлены источник (6) когерентного оптического излучения и фокусирующая излучение (31) на поверхность (12) объекта (13) оптическая система (8) с устройствами для регулировки и фиксации их положения (7) и (9), опорную балку (14), выполненную составной из однотипных цилиндрических элементов (28), светонепроницаемый защитный корпус (19) с окном (20), установленный с возможностью перемещения вдоль опорной балки (14), во внутренней полости (21) которого установлены светоделитель (22) и отражатель (23), жестко скрепленные между собой, и экран с устройствами для регулировки и фиксации их положения (24) и (26).

Способ заключается в том, что изображение объекта фокусируют объективом в плоскости приемника, сканируют его возвратно-поступательно вдоль линейки элементов приемника, предварительно определяют номер N облучаемого элемента приемника, выключают выходы остальных элементов, осуществляют периодическое равномерное возвратно-поступательное сканирование изображения объекта облучаемым элементом с амплитудой, равной ширине элемента b, формируют опорные импульсы в середине каждого полупериода сканирования, измеряют временные интервалы Δt1 и Δt2 между фронтами сигналов и опорными импульсами в каждом полупериоде сканирования и измеряют их разность Δt=Δt2-Δt1.

Устройство содержит неподвижную часть, подвижную часть с установленным на ней объектом, источник монохроматического излучения, одномодовый световод, формирующий точечный источник, совмещенный с передним фокусом оптической системы, две параллельные прозрачные пластины, установленные перпендикулярно оптической оси.

Устройство содержит источник монохроматического излучения, выход которого совмещен с входом одномодового световода, формирующего на выходе точечный источник монохроматического излучения, совмещенный с передним фокусом оптической системы, формирующей параллельный пучок света.

Изобретение относится к контрольно-измерительной технике и предназначено для измерения пространственного положения объекта посредством дистанционного измерения координат контрольных меток, закрепленных на нем.

Изобретение относится к области автоматизации производственных технологических процессов. .

Изобретение может быть использовано для автоматического измерения объема пучка лесоматериалов, находящегося на движущемся объекте. В способе движущийся объект пропускают через измерительное устройство - измерительную рамку, оснащенную лазерными сканерами, которые измеряют внешний контур пучка, его длину и суммарную площадь торцов лесоматериалов. Полученные данные передают в компьютер с программным обеспечением. После обработки данные заносят в карточку вместе с видеоинформацией об измеряемом объекте и по мобильной телефонной связи передают на центральную базу учета данных. Измерения объема пучка лесоматериалов могут производиться в любую погоду и в любое время суток. Технический результат - упрощение измерения объема пучка лесоматериалов вне зависимости от их вида, в том числе за счет измерения суммарной площади торцов с помощью сканера. 1 ил.

Изобретение относится к способу определения положения детали в процессе сборки. Деталь 1 захватывают с помощью зажимного патрона 2 в положении захвата, которое зарегистрировано как положение А начала отсчета при измерении. Блокируют лучи 3 и 4 света лазерного или оптического датчика в направлении, пересекающем деталь, в положении блокировки. Посредством измерительного блока измеряют позиционное отклонение детали в положении блокировки в наклонном направлении относительно зажимного патрона. Получают величину Н отклонения путем сравнения измеренного значения с зарегистрированным положением А начала отсчета при измерении. Получают значение h поправки измерения для положения С ведущего конца детали на основании соотношения подобия между виртуальным треугольником, полученным путем задания величины отклонения в качестве одной стороны и положения А начала отсчета в качестве одной точки, и виртуальным треугольником, проходящим через положения В и В' блокировки и ведущий конец детали. Получают величину Δz позиционного отклонения ведущего конца детали путем сложения величины Н отклонения и значения h поправки измерения. Изобретение позволяет точно распознавать положение ведущего конца детали, даже когда зажимной патрон захватывает деталь с наклоном. 1 з.п. ф-лы, 4 ил.

Заявленное изобретение относится к устройству и способу изготовления аккумуляторной батареи, а именно к устройству, укладывающему электроды стопкой, и способу укладывания электродов стопкой. Предложенное устройство (110) поочередно укладывает стопкой пакетный положительный электрод (20) и отрицательный электрод (30), чтобы сформировать вырабатывающий энергию элемент. Устройство снабжено детектором (200) для обнаружения положения положительного электрода (24) в качестве первого электрода относительно пакетного электрода, который имеет разделитель (40)в форме оболочки, в которой предоставлен положительный электрод, и укладывающий стопкой узел (112), и (122) для укладывания стопкой положительного электрода (24) в качестве первого электрода на отрицательный электрод (30) в качестве второго электрода. Подающий положительный электрод стол (120) выполнен с возможностью корректировки положения электрода (20) на плоскости. Повышение точности расположения отрицательного и положительного электрода относительно разделителя (40) является техническим результатом изобретения. 2 н. и 17 з.п. ф-лы, 25 ил.

Изобретение относится к оптическим датчикам, предназначенным для измерения линейных перемещений объекта наблюдения. Датчик линейных перемещений содержит источник света и подложку. На последней размещены две прямолинейные шкалы в виде первого и второго рядов полосок, разделенных общей проводящий шиной. Полоски выполнены из материала с гистерезисной зависимостью сопротивления от температуры. Ряды полосок смещены относительно друг друга на одну полоску. Каждая из последних имеет сигнальный вывод. На другой стороне подложки расположены пленочные нагреватель и термопара. Термочувствительные полоски подключены к аналоговому коммутатору, входящему в интерфейс измерительной системы. Световая полоса излучения по высоте равна вертикальному размеру двойной шкалы из термочувствительных полосок. При этом подложка установлена в герметичной камере с прозрачной боковой стенкой, на верхней и нижней гранях которой выполнены выступы с продольными пазами. Источник излучения установлен на подвижной каретке, закрепленной с возможностью перемещения по пазам выступов с помощью расположенных в этих пазах шариков, закрепленных на верхней и нижней гранях каретки. Технический результат - повышение точности измерения за счет механической связи датчика с объектом наблюдения, получение компактной конструкции, которая может использоваться автономно в полевых условиях. 2 з.п. ф-лы, 4 ил.

Изобретение относится к деревообрабатывающей промышленности, в частности к распиловке круглого леса. Продольно-распиловочный станок для распиловки бревен содержит пильный инструмент с механизмом его перемещения и устройство отображения на экране монитора торца бревна и предполагаемой карты распила, выполненное в виде устройства дополненной реальности. Устройство дополненной реальности содержит компьютер с монитором, видеокамеру и специальное программное средство. Видеокамера соединена с компьютером и установлена с возможностью обзора торца бревна. Программное средство установлено на компьютер и содержит модуль преобразования расчетной карты распила в ее виртуальное изображение на плоскости торца бревна и модуль совмещения на мониторе указанного виртуального изображения карты распила с изображением торца бревна. Повышается точность пиления. 5 з.п. ф-лы, 6 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности сооружения, имеющего сложную конструктивную форму, и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, имеющего сложную конструктивную форму, представляющую рой точек {Xi, Yi, Zi, i=1, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости. По сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 1 мм. В случае, если сооружение имеет сложную форму с закруглениями, то в качестве поверхности, относительно которой изучается отклонение от вертикали, выбирается касательная к закруглению, вертикальная плоскость с азимутом 0°. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации сооружения, имеющего сложную конструктивную форму. Технический результат заключается в расширении эксплуатационных возможностей способа для оперативного определения степени деформации сооружения, имеющего сложную конструктивную форму. 4 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности сооружения, имеющего сложную конструктивную форму, и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, имеющего сложную конструктивную форму, представляющей рой точек {Xi, Yi, Zi, i=1, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости, по сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 3 мм. В случае если сооружение имеет сложную форму с закруглениями, то в качестве поверхности, относительно которой изучается отклонение от вертикали, выбирается касательная к закруглению, вертикальная плоскость с азимутом 0°. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации сооружения, имеющего сложную конструктивную форму. Технический результат заключается в расширении эксплуатационных возможностей способа для оперативного определения степени деформации сооружения, имеющего сложную конструктивную форму. 4 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности сооружения, имеющего сложную конструктивную форму, и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, имеющего сложную конструктивную форму, представляющей рой точек {Xi,Yi,Zi, i=1,n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости, по сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты. При построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 5 мм. В случае если сооружение имеет сложную форму с закруглениями, то в качестве поверхности, относительно которой изучается отклонение от вертикали, выбирается касательная к закруглению, вертикальная плоскость с азимутом 0°. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации сооружения, имеющего сложную конструктивную форму. Технический результат заключается в расширении эксплуатационных возможностей способа для оперативного определения степени деформации сооружения, имеющего сложную конструктивную форму. 4 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности панельного сооружения и регистрацию соответствующих направлений (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели сооружения, представляющей рой точек {Xi, Yi, Z, i=l, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости. По сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 5 мм. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации панельного сооружения. Технический результат заключается в расширении эксплуатационных возможностей для оперативного определения степени деформации сооружения. 6 ил.

Изобретение относится к эксплуатации и строительству зданий и сооружений и может быть использовано для проведения оперативного обследования зданий и сооружений, подвергшихся внутренним и/или внешним факторам, вызывающим их износ. Способ включает выполнение измерений с высокой скоростью (от нескольких тысяч до миллиона точек в секунду) расстояния от сканера до поверхности панельного сооружения и регистрирующий соответствующие направления (вертикальные и горизонтальные углы) с последующим формированием трехмерного изображения 3D-модели панельного сооружения, представляющей рой точек {Xi, Yi, Zi, i=1, n}. Для выявления деформаций по рою точек выполняется построение ряда горизонтальных и вертикальных сечений 3D-модели, строится карта отклонений и графики отклонений стены от идеальной стеновой вертикальной плоскости. По сформированной числовой карте отклонений выполняется построение карты изолиний, цветотоновой карты, графиков поверхности, теневой карты, при построении цветотоновых карт отклонений используется шкала раскраски впадин - от темно-синего до голубого, выпуклостей - от желтого до темно-коричневого. Вертикальный масштаб графиков отклонений выбирается таким, чтобы наглядно представить микронеровности стены, а сечение карты изолиний отклонений выбирается в погрешности построения модели 1 мм. При этом выявление дефектов строительства и начальной фазы деформационного процесса осуществляется по результатам сопоставления фактических отклонений и относительных изгибных деформаций с нормативными отклонениями и критическими значениями деформации панельного сооружения. Технический результат заключается в расширении эксплуатационных возможностей для оперативного определения степени деформации сооружения. 6 ил.
Наверх