Устройство защиты матричного каскадного преобразователя частоты

Изобретение относится к области электротехники и представляет собой устройство защиты матричного каскадного преобразователя частоты (МКПЧ) непосредственного типа с высокочастотной широтно-импульсной модуляцией (ШИМ), каждый каскад которого построен по мостовой 3-фазной схеме, в каждом плече которого используются полностью управляемые ключи IGBT-модулей с двухсторонней проводимостью. Предложенное устройство по сравнению с прототипом характеризуется более гибким процессом реализации защиты, обеспечивая при этом технический результат - существенное повышение работоспособности МКПЧ при возникновении аварийной ситуации. Устройство защиты при возникновении аварийной ситуации в одном из каскадов обеспечивает постоянное включение его плеч на управляемых ключах IGBT-модулей, тем самым шунтируя его, а также отключение аварийного каскада от источника питания. Причем остальные каскады продолжают функционировать в прежнем режиме, сохраняя работоспособность МКПЧ в целом. Предложенное устройство защиты разработано и изготовлено в виде отдельной конструкции с двумя блоками защиты для установки в опытном образце матричного каскадного преобразователя частоты, предназначенного для питания гребного электродвигателя переменного тока высокого напряжения. 3 ил.

 

Область техники

Настоящее изобретение относится к области полупроводниковой преобразовательной техники, в частности к матричным преобразователям частоты непосредственного типа (НПЧ) для регулирования высоковольтных электродвигателей переменного тока большой мощности.

Уровень техники

Известно устройство управления 3-фазного двухзвенного НПЧ, построенного на полностью управляемых ключах IGBT-модулей с двухсторонней проводимостью с использованием программного метода адаптивной широтно-импульсной модуляции (ШИМ), описанное в [1; 2].

В указанных преобразователях частоты в качестве устройств компенсации реактивных (индуктивных) токов питающей сети при коммутации ключей IGBT-модулей как на частоте сети, так на частоте ШИМ, в т.ч. в аварийных ситуациях при ошибках коммутации, используются батареи конденсаторов, подключенные к входным зажимам НПЧ. Такое решение задачи приводит к дополнительным потерям электроэнергии, т.е. к снижению к.п.д. в нормальных режимах НПЧ.

Более близким по техническому решению к заявляемому устройству является способ и устройство защиты матричного однокаскадного НПЧ на полностью управляемых ключах IGBT-модулей с двухсторонней проводимостью и высокочастотной ШИМ, описанное в [3] (аналог). В указанном устройстве используется достаточно сложный программный способ защиты, в алгоритме которого имеются стадии выявления ошибки коммутации, а затем реализации самой защиты, требующие соответствующего программирования. Однако такой способ защиты сам по себе подвержен воздействию ошибок и сбоям программирования.

Наиболее близким по технической сущности к заявляемому устройству является устройство защиты матричного каскадного преобразователя частоты на полностью управляемых ключах с двухсторонней проводимостью и высокочастотной ШИМ, описанное в [4] (прототип).

Краткое описание чертежей

Заявляемое изобретение поясняется чертежами. На фиг.1 изображена блок-схема известного матричного каскадного преобразователя частоты (МКПЧ) непосредственного типа с высокочастотной синусоидальной ШИМ [5] и предлагаемого устройства его защиты.

В представленной блок-схеме на фиг.1 используются следующие обозначения: 1 - силовая часть МКПЧ; 2 - микропроцессорная система управления (СУ); 3 - волоконно-оптическая линия связи (ВОЛС); 4 - каскад (матрица); 5 - контактор; 6 - потенциально изолированные 3-фазные источники питания (вторичные обмотки трансформатора); 7 - блок устройства защиты; 8 - плата преобразователя оптического; 9 - плата преобразователя опто-сигналов; 10 - плата обратного преобразования опто-сигналов; 11 - устройство управления контактором; Usa, Usb, Usc - напряжения питающей сети.

Каждый каскад (матрица) 4 МКПЧ построен по мостовой 3-фазной схеме, в каждом плече которого используются управляемые ключи IGBT-модулей с двухсторонней проводимостью. На фиг.2 изображена электрическая схема одного каскада (матрицы) 4 и схема одного блока устройства защиты 7.

В представленной схеме (фиг.2) одного каскада 4 МКПЧ, построенного по мостовой 3-фазной схеме, используются следующие обозначения:

4.1 - управляемые ключи IGBT-модулей в каждом плече; 4.2 - платы драйверных устройств; 7.1 - 3-фазный выпрямитель; 7.2 - датчик тока; 7.3 - пороговый элемент (варистор); 7.4 - компенсирующий конденсатор; 7.5 - балластный резистор; Vtm, itm, Ltm, где (m=а, b, с), - напряжения, токи и собственные индуктивности фаз вторичной обмотки трансформатора 6; ΔUta, ΔUtb, ΔUtc - перенапряжения в фазах вторичной обмотки трансформатора 6; ~Ud, id, Rd, Ld - выходные напряжение, ток и параметры эквивалентной нагрузки одного каскада 4.

На фиг.3 изображен общий вид конструкции с двумя блоками устройства защиты 7.

Раскрытие изобретения

Предлагаемое устройство защиты матричного каскадного преобразователя частоты по сравнению с прототипом [4] характеризуется более гибким процессом реализации защиты и обеспечивает существенное повышение работоспособности МКПЧ при возникновении аварийной ситуации.

Указанный технический результат достигается за счет того, что при возникновении аварийной ситуации в каком-либо каскаде происходит отключение только аварийного каскада и его шунтирование. Причем остальные каскады будут продолжать функционировать в прежнем режиме, сохраняя работоспособность МКПЧ в целом.

Предлагаемое устройство защиты m-фазного (А; В; С) матричного n-каскадного преобразователя частоты (фиг.1), состоящего из силовой части 1, микропроцессорной системы управления (СУ) 2 и волоконно-оптических линий связи (ВОЛС) 3, включает в себя n×m блоков устройства защиты 7, каждый из которых соединен с 3-фазными входными зажимами одного из каскадов 4 МКПЧ.

В состав каждого блока устройства защиты 7 входит (фиг.2) 3-фазный выпрямитель 7.1, выход которого через датчик тока 7.2 и пороговый элемент (варистор) 7.3 соединен с компенсирующим конденсатором 7.4, шунтированным балластным резистором 7.5.

Выходы датчиков тока 7.2 каждого блока устройства защиты 7 соединены с платой преобразователя оптического 8, которая в свою очередь по каналам ВОЛС 3 подключена к микропроцессорной СУ 2, формирующей опто-сигналы на включение и выключение управляемых ключей IGBT-модулей 4.1. Микропроцессорная СУ 2 по каналам ВОЛС 3 через платы преобразователей опто-сигналов 9 соединена с платами драйверных устройств 4.2, обладающих функцией собственной защиты управляемых ключей IGBT-модулей 4.1 от токов (i2ta; i2tb; i2tc) при перегрузках и коротких замыканиях (к.з.).

Кроме того, микропроцессорная СУ 2 (фиг.1) по каналам ВОЛС 3 соединена с платой обратного преобразования опто-сигналов 10, выход которой подключен к устройству управления контактором 11.

Предлагаемое устройство защиты работает следующим образом.

Если во время нормальной работы в каком-либо каскаде 4 МКПЧ (фиг.2) возникает аварийная ситуация по одной из следующих причин:

- из-за программной ошибки в алгоритме или из-за обрыва в цепях формирования или канализации сигналов управляемых ключей IGBT-модуля 4.1;

- из-за ложного включения управляемых ключей IGBT-модуля 4.1 в результате наведенной электромагнитной помехи;

- из-за возникших токов перегрузки или токов к.з. во входной или выходной цепи,

то происходит срабатывание собственной защиты платы драйверного устройства 4.2, следовательно, управляемые ключи одного из IGBT-модулей 4.1 выключаются и входная цепь этого каскада 4 оказывается разомкнутой.

В результате разрыва цепи входных токов (i2ta; i2tb; i2tc) собственные индуктивности (Lta; Ltb; Ltc) потенциально изолированного 3-фазного источника питания (вторичной обмотки трансформатора) 6 вызывают всплеск перенапряжений (ΔUta; ΔUtb, ΔUtc). При превышении перенапряжений уровня, определяемого пороговым элементом (варистором) 7.3, входные токи (i2ta; i2tb; i2tc) замыкаются по цепи: 3-фазный выпрямитель 7.1 - датчик тока 7.2 - пороговый элемент 7.3 - компенсирущий конденсатор 7.4 - балластный резистор 7.5.

Возникший электрический сигнал на выходе датчика тока 7.2 поступает на плату преобразователя оптического 8, которая формирует опто-сигнал и по каналу ВОЛС 3 передает его в микропроцессорную СУ 2. Последняя в соответствии с программой ее работы формирует опто-сигналы на постоянное включение всех плеч на управляемых ключах IGBT-модулей 4.1 аварийного каскада 4, которые по каналам ВОЛС 3 поступают на платы драйверных устройств 4.2, осуществляя шунтирование данного каскада 4 МКПЧ.

Кроме того, микропроцессорная СУ 2 (фиг.1) одновременно формирует опто-сигнал на выключение контактора 5 аварийного каскада 4 МКПЧ. Указанный опто-сигнал по каналам ВОЛС 3 поступает на плату обратного преобразования опто-сигналов 10 в электрический сигнал, воздействующий на устройство управления 11 одного из контакторов 5, отключающего аварийный каскад 4 МКПЧ от потенциально изолированного 3-фазного источника питания 6.

Таким образом, если возникает аварийная ситуация в каком-либо каскаде 4 МКПЧ хотя бы по одной из вышеперечисленных причин, то по сигналу блока устройства защиты 7 произойдет шунтирование аварийного каскада 4 и его отключение от потенциально изолированного 3-фазного источника питания 6. Причем остальные каскады будут продолжать функционировать в прежнем режиме, сохраняя работоспособность МКПЧ в целом.

Осуществление изобретения

Конструктивно предлагаемое устройство защиты матричного каскадного преобразователя частоты изготовлено в виде отдельных плат, на каждой из которых размещены по два блока устройства защиты 7 по схеме фиг.2.

На фиг.3 изображен общий вид конструкции с двумя блоками устройства защиты 7, установленной в шкафу опытного образца матричного каскадного преобразователя частоты по схеме фиг.1, предназначенного для питания гребного электродвигателя переменного тока высокого напряжения мощностью до 1,0 МВт.

Таким образом, устройство защиты матричного каскадного преобразователя частоты, содержит в каждой m-фазе силовой части n-каскадов (матриц) 3-фазных мостовых схем, каждое плечо которого построено на управляемых ключах IGBT-модулей с двухсторонней проводимостью, причем входные зажимы каждого каскада посредством контакторов подключены к (m×n) потенциально изолированным 3-фазным источникам питания (вторичным обмоткам трансформаторов), микропроцессорную систему управления (СУ), формирующую опто-сигналы для драйверных устройств, осуществляющих включение, выключение и токовую защиту управляемых ключей IGBT-модулей с двухсторонней проводимостью указанных каскадов, состоящее из (m×n) блоков устройства защиты с компенсирующими конденсаторами, каждый из которых посредством 3-фазного выпрямителя подключен к входным зажимам одного из указанных каскадов, причем в составе каждого блока устройства защиты содержатся датчик тока и пороговый элемент (варистор), включенные последовательно с компенсирующим конденсатором, шунтированным балластным резистором.

Выходы датчиков тока через платы преобразователей оптических соединяют с микропроцессорной СУ, которая при возникновении аварийной ситуации в каком-либо каскаде обеспечивает по сигналу от датчика тока постоянное включение всех плеч данного каскада, тем самым шунтируя его, и выключение контактора на его входных зажимах, тем самым отключая потенциально изолированный 3-фазный источник питания данного каскада.

Литература

1. Устройство и способ управления обратимым преобразователем энергии переменного тока в энергию переменного тока. Шрейнер Р.Т., Ефимов А.А. и др. Патент РФ № 2265947 С2, кл. H02M 5/27 от 09.07.2002.

2. Способ преобразования частоты. Шрейнер Р.Т., Кривовяз В.К. и др. Патент РФ № 2269860 С2, кл. Н02М 5/16 от 16.09.2003.

3. Method and apparatus for protecting PWM cycloconverter. Sawa Toshihiro... Патент Японии № 1154552, кл. Н02М 5/27 от 14.11.2001.

4. Устройство защиты матричного каскадного преобразователя частоты. Скворцов Б.А. Патент РФ № 2475930 С1, кл. Н02М 5/27 от 20.06.2011.

5. Устройство формирования и регулирования напряжения матричного непосредственного преобразователя частоты с высокочастотной синусоидальной ШИМ. Скворцов Б.А., Васин И.М., Махонин С.В., Богатырев Д.Е. Патент РФ № 2422975 С1, кл. Н02М 5/27 от 15.07.2010.

Устройство защиты матричного каскадного преобразователя частоты, содержащего в каждой m-фазе силовой части n-каскадов (матриц) 3-фазных мостовых схем, каждое плечо которого построено на управляемых ключах IGBT-модулей с двухсторонней проводимостью, причем входные зажимы каждого каскада посредством контакторов подключены к (m×n) потенциально изолированным 3-фазным источникам питания (вторичным обмоткам трансформаторов), микропроцессорную систему управления (СУ), формирующую опто-сигналы для драйверных устройств, осуществляющих включение, выключение и токовую защиту управляемых ключей IGBT-модулей с двухсторонней проводимостью указанных каскадов, состоящее из (m×n) блоков устройства защиты с компенсирующими конденсаторами, каждый из которых посредством 3-фазного выпрямителя подключен к входным зажимам одного из указанных каскадов, причем в составе каждого блока устройства защиты содержатся датчик тока и пороговый элемент (варистор), включенные последовательно с компенсирующим конденсатором, шунтированным балластным резистором, отличающееся тем, что выходы датчиков тока через платы преобразователей оптических соединяют с микропроцессорной СУ, которая при возникновении аварийной ситуации в каком-либо каскаде обеспечивает по сигналу от датчика тока постоянное включение всех плеч данного каскада, тем самым шунтируя его, и выключение контактора на его входных зажимах, тем самым отключая потенциально изолированный 3-фазный источник питания данного каскада.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано для преобразования переменного напряжения или тока в переменное напряжение или ток без промежуточного пеобразования в постоянное напряжение или ток.

Изобретение относится к области электротехники, к управлению преобразователем, связанным, по меньшей мере, с одним из источников бесперебойного питания. Техническим результатом является устранение искажений из сигнала управления, улучшение работы преобразователя, снижение гармонических искажений и субгармонических колебаний из сигнала управления.

Изобретение относится к области электротехники и может быть использовано в системах частотно-токового электропривода в качестве управляемого источника тока, обладающего свойством задавать фазу тока статорных обмоток двигателя изменением угла управления вентилями.

Изобретение относится к области электротехники и может быть использовано во вращающихся электрических машинах. .

Изобретение относится к электротехнике и может быть использовано, например, в инверторах частоты для управления трехфазными двигателями. .

Изобретение относится к преобразовательной технике, получающей применение в частотно-регулируемом электроприводе. .

Изобретение относится к преобразователям частоты, в частности к умножителям трансформаторного типа, и может быть использовано в качестве источника питания потребителей тока 400 Гц.

Изобретение относится к области электротехники и может быть использовано в частотнорегулируемом электроприводе. .

Изобретение относится к области электротехники и может быть использовано в частотно-регулируемом электроприводе. .

Изобретение относится к области электротехники и может быть использовано для защиты преобразователей мощности таких, как преобразователи постоянного тока в постоянный, преобразователи переменного тока в постоянный, преобразователи постоянного напряжения в переменное, преобразователи мощности в частотно-регулируемом электроприводе и другие аналогичные преобразователи. Техническим результатом является обеспечение защиты преобразователя мощности при катастрофических внутренних отказах таких, как чрезмерная потеря мощности, чрезмерные уровни реактивного входного тока, образование электрической дуги и т.д. Устройство и способы защиты на входе преобразователей мощности предусматривают преобразователь мощности, включающий в себя вывод входного сигнала, первый выходной сигнал на первом выводе выходного сигнала и контроллер. Контроллер выполнен с возможностью переключения первого выходного сигнала с первого значения на второе значение, измерения напряжения на выводе входного сигнала в зависимости от времени, установки флага на первое значение флага, если измеренное напряжение падает ниже заданного значения в пределах первого заданного интервала времени после переключения первого выходного сигнала с первого значения на второе значение, в других случаях установки флага на второе значение флага и сохранения флага в памяти. Выполнены также многочисленные другие аспекты. 2 н. и 22 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники и может быть использовано в преобразователях входного тока или входного напряжения. Технический результат - уменьшение нежелательных циркулирующих токов. В способе работы преобразовательная схема содержит n входных фазовых выводов (U1, V1, W1) и р выходных фазовых выводов (U2, V2, W2), где n≥2 и р≥2, (n-р) двухполюсных коммутационных ячеек (2) для коммутации, по меньшей мере, одного положительного и, по меньшей мере, одного отрицательного напряжений между полюсами. Каждый выходной фазовый вывод (U2, V2, W2) последовательно соединен с каждым входным фазовым выводом (U1, V1, W1) соответственно через коммутационную ячейку (2). Каждая коммутационная ячейка (2) содержит управляемые двунаправленные силовые полупроводниковые ключи с управляемым односторонним направлением прохождения тока и емкостной накопитель энергии; силовые полупроводниковые ключи коммутационных ячеек (2) управляются с помощью управляющего сигнала (S1). К каждому последовательному соединению подключена, по меньшей мере, одна индуктивность (6). Коммутационная ячейка (2) образует вместе с индуктивностью (6) фазовый модуль (1). Для каждого фазового модуля (1) формируется управляющий сигнал (S1) на основе опорного сигнала (Vref.U1) в отношении напряжения (U1) через фазовый модуль (1) и сигнала (VL) напряжения на индуктивности (6). Сигнал (VL) напряжения на индуктивности (6) формируется на основе промежуточного задаваемого значения (ΔiU1) тока (iU1) через фазовый модуль (1). 3 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к области электротехники и может быть использовано в инверторе для предоставления масштабируемого по частоте выходного сигнала инвертора, в особенности с высокой выходной мощностью. Технический результат - создание инвертора с низкими затратами для высоких напряжений или высоких мощностей. Инвертор содержит схему управления (12) для управления частотой выходного сигнала инвертора согласно задаваемому значению. Схема управления (12) в соответствии с изобретением выполнена таким образом, чтобы для генерации сигнала со значением частоты, заданным для выходного сигнала инвертора, вызывать смещение по времени сигналов и наложение сигналов для получения сигнала со значением частоты, заданным для выходного сигнала инвертора. 8 з.п. ф-лы, 4 ил.

Изобретение относится к области электротехники и может быть использовано в системах электропривода с пониженной частотой вращения, а также в установках депарафинизации нефтяных скважин. Техническим результатом является увеличение надежности за счет отсутствия разрыва тока в силовой цепи, повышение качества выходного напряжения и повышение электромагнитной совместимости устройства с питающей сетью. В преобразователе частоты используется способ управления многофазным реверсивным мостом, подключенным к вторичной круговой обмотке трансформатора с вращающимся магнитным полем, где система импульсно-фазового управления обеспечивает нарастающую задержку сигналов управления ключами, коммутирующими отводы круговой обмотки, относительно фазы питающей сети. Коммутация производится между парами отводов, в момент равенства их ЭДС, что в результате обеспечивает понижение частоты основной гармоники выходного напряжения и отсутствие разрыва кривой тока при коммутации отводов круговой обмотки. 3 ил.
Наверх