Базовая радиостанция, мобильный терминал и способ беспроводной связи



Базовая радиостанция, мобильный терминал и способ беспроводной связи
Базовая радиостанция, мобильный терминал и способ беспроводной связи
Базовая радиостанция, мобильный терминал и способ беспроводной связи
Базовая радиостанция, мобильный терминал и способ беспроводной связи
Базовая радиостанция, мобильный терминал и способ беспроводной связи
Базовая радиостанция, мобильный терминал и способ беспроводной связи
Базовая радиостанция, мобильный терминал и способ беспроводной связи
Базовая радиостанция, мобильный терминал и способ беспроводной связи

 


Владельцы патента RU 2537978:

НТТ ДОСОМО, ИНК. (JP)

Изобретение относится к технике связи и может использоваться в системах мобильной связи. Технический результат состоит в повышении качества канала передачи. Для этого предложены базовая радиостанция, мобильный терминал и способ беспроводной связи для передачи и приема нисходящих опорных сигналов измерения качества канала с выполнением ортогонализации на множестве передающих антенн, с выполнением ортогонализации на множестве сот и с измерением помехи с высокой точностью, при этом базовая радиостанция формирует опорные сигналы измерения качества канала; выполняет над опорными сигналами измерения качества канала операцию рандомизации таким образом, что по меньшей мере в части сот указанные сигналы являются взаимно неортогональными; и на множестве передающих антенн выполняет ортогонализацию опорных сигналов измерения качества канала, которые передаются в мобильный терминал совместно с информацией управления; а мобильный терминал принимает нисходящий сигнал, содержащий информацию управления и опорный сигнал измерения качества канала; с использованием указанной информации управления выделяет опорный сигнал измерения качества канала; и с использованием указанного опорного сигнала измерения качества канала измеряет качество канала. 4 н. и 9 з.п. ф-лы, 8 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к базовой радиостанции, мобильному терминалу и способу беспроводной связи.

Уровень техники

В системе LTE (Long Term Evolution, долгосрочное развитие), стандартизированной консорциумом 3GPP (3rd Generation Partnership Project, Партнерство по разработке сетей мобильной связи третьего поколения), в ресурсном блоке (RB, resource block) предусмотрен опорный сигнал (RS, reference signal). Мобильный терминал, например, принимает опорный сигнал и может с использованием указанного сигнала выполнить когерентное детектирование (непатентный документ 1). Опорный сигнал скремблируется (подвергается случайной перестановке элементов (рандомизации) по известной последовательности сигнала) в соответствии с индивидуальным для каждой соты сигналом скремблирования.

В 3GPP разрабатывается система LTE-A (LTE-Advanced, усовершенствованная LTE), в которой возможна высокоскоростная передача в большей, чем в системе LTE, зоне покрытия. В системе LTE-A в нисходящей линии связи предусмотрены опорные сигналы двух типов: опорный сигнал демодуляции (Demodulation Reference Signal, DM-RS) и опорный сигнал измерения качества канала (channel quality measurement reference signal, CSI-RS).

Опорный сигнал демодуляции используется при демодуляции физического нисходящего общего канала (Physical Downlink Shared Channel, PDSCH). Опорный сигнал демодуляции подвергается такому же, как в PDSCH, предварительному кодированию, и передается в мобильный терминал. Опорный сигнал измерения качества канала используется для получения информации о качестве канала (индикатора состояния канала, Channel State Indicator), которую мобильный терминал передает в базовую радиостанцию в качестве сигнала обратной связи.

Список цитируемых материалов

Непатентная литература:

[Непатентная литература 1] 3GPP, TS36.211

В системе LTE для осуществления передачи с более высокой скоростью используется способ передачи MIMO (Multiple Input Multiple Output, несколько входов, несколько выходов), в котором базовая радиостанция использует несколько передающих / приемных антенн. Поскольку в системе LTE-A в нисходящей линии связи поддерживается передача с числом антенн до 8, в базовой радиостанции необходимо предусматривать выполнение ортогонализации на множестве передающих антенн. Кроме того, поскольку в системе LTE-A используется координированная многоточечная передача (Coordinated Multi-Point transmission), необходимо предусматривать выполнение ортогонализации и на множестве сот. К тому же в системе LTE-A требуется измерение помех (интерференции) с более высокой, чем в системе LTE, точностью. Соответственно для системы LTE-A необходимо разработать такую конфигурацию нисходящего опорного сигнала измерения качества канала, которая удовлетворяла бы указанным требованиям.

Раскрытие изобретения

Настоящее изобретение сделано с учетом изложенного, и целью настоящего изобретения является предложение базовой радиостанции, мобильного терминала и способа беспроводной связи для передачи и приема нисходящих опорных сигналов измерения качества канала с выполнением ортогонализации на множестве передающих антенн, с выполнением ортогонализации на множестве сот и с измерением помехи с высокой точностью.

Особенностью базовой радиостанции настоящего изобретения является наличие модулей формирования передаваемого сигнала в соответствии с количеством передающих антенн, включающих модуль формирования, который формирует опорный сигнал измерения качества канала, и модуль рандомизации, который выполняет над опорным сигналом измерения качества канала операцию рандомизации, так что по меньшей мере в части сот указанные сигналы являются взаимно неортогональными, при этом выполняется взаимная ортогонализация опорных сигналов измерения качества канала, содержащихся в передаваемых сигналах, формируемых в соответствующем модуле формирования передаваемого сигнала и предназначенных для передачи в физическом нисходящем общем канале.

Особенностью мобильного терминала настоящего изобретения является наличие модуля приема, который принимает нисходящий сигнал, содержащий информацию управления рандомизацией и опорный сигнал измерения качества канала, и модуля, который с использованием указанной информации управления рандомизацией выделяет опорный сигнал измерения качества канала, а затем с использованием указанного опорного сигнала измерения качества канала измеряет качество канала.

Особенностью способа беспроводной связи настоящего изобретения являются выполняемые в базовой радиостанции шаг формирования опорных сигналов измерения качества канала; шаг выполнения над опорными сигналами измерения качества канала операции рандомизации, так что по меньшей мере в части сот указанные сигналы являются взаимно неортогональными; шаг выполнения на множестве передающих антенн ортогонализации опорных сигналов измерения качества канала, передаваемых в мобильный терминал совместно с информацией управления рандомизацией; и выполняемые в мобильном терминале шаг приема нисходящего сигнала, содержащего информацию управления рандомизацией и опорный сигнал измерения качества канала; и шаг выделения опорного сигнала измерения качества канала с использованием указанной информации управления рандомизацией и измерения качества канала с использованием указанного опорного сигнала измерения качества канала.

Технический результат настоящего изобретения

Настоящее изобретение дает возможность передавать и принимать нисходящие опорные сигналы измерения качества канала с выполнением ортогонализации на множестве передающих антенн, с выполнением ортогонализации на множестве сот, а также измерять помехи с высокой точностью.

Краткое описание чертежей

Фиг.1(а)-1(с) представляют собой схемы, поясняющие выполнение ортогонализации сигналов CSI-RS в варианте осуществления настоящего изобретения.

Фиг.2 представляет собой схему, поясняющую рандомизацию сигналов CSI-RS путем сдвига.

Фиг.3 представляет собой схему, поясняющую рандомизацию сигналов CSI-RS путем перескока.

Фиг.4 представляет собой схему, поясняющую рандомизацию сигналов CSI-RS путем скремблирования.

Фиг.5(а) представляет собой схему конфигурации соты.

Фиг.5(b) представляет собой схему примера сочетания ортогонализации и рандомизации.

Фиг.6 представляет собой схему системы беспроводной связи, включающей базовые радиостанции и мобильные терминалы в соответствии с данным вариантом осуществления настоящего изобретения.

Фиг.7 представляет собой функциональную схему, иллюстрирующую схему конфигурации базовой радиостанции в соответствии с данным вариантом осуществления настоящего изобретения.

Фиг.8 представляет собой функциональную схему, иллюстрирующую схему конфигурации мобильного терминала в соответствии с данным вариантом осуществления настоящего изобретения.

Осуществление изобретения

Далее со ссылкой на сопровождающие чертежи дается описание конкретного варианта осуществления настоящего изобретения.

Как указано выше, поскольку в базовой радиостанции применяется способ MIMO передачи с использованием нескольких приемных / передающих антенн, в одной и той же соте необходимо выполнять ортогонализацию на множестве передающих антенн. В системах LTE и LTE-A во всех сотах используются одинаковые частоты, и для того, чтобы мобильный терминал, находящийся у границы соты, мог выполнить измерение качества приема в условиях помех (интерференции), как правило, должна выполняться рандомизация (придание сигналу случайного характера). Для улучшения характеристик координированной передачи в нескольких сотах и межсотовой коррекции помех желательно выполнять ортогонализацию и на множестве сот, участвующих в координированной передаче в нескольких сотах и в межсотовой коррекции помех.

Учитывая вышеизложенное (необходимость ортогонализации на множестве передающих антенн, ортогонализации на множестве сот и измерения помехи с высокой точностью), авторы настоящего изобретения изучили конфигурации нисходящих опорных сигналов измерения качества канала и тем самым достигли целей настоящего изобретения.

Иными словами, сущностью настоящего изобретения являются применяемые для выполнения ортогонализации на множестве передающих антенн, для выполнения ортогонализации на множестве сот и для измерения помехи с высокой точностью формирование опорных сигналов измерения качества канала, выполнение операции рандомизации над опорными сигналами измерения качества канала, так что по меньшей мере в части сот указанные сигналы являются взаимно неортогональными, выполнение взаимной ортогонализации опорных сигналов измерения качества канала в передаваемых сигналах и передача нисходящих опорных сигналов измерения качества канала.

Соответственно целесообразной является передача опорных сигналов измерения качества канала (сигналов CSI-RS) следующих двух видов:

1) с ортогонализацией на множестве передающих антенн и рандомизацией на множестве сот;

2) с ортогонализацией на множестве передающих антенн в сочетании с рандомизацией / ортогонализацией на множестве сот.

При этом для вида (2) сотами, подлежащими ортогонализации, являются соты, участвующие в координированной передаче в нескольких сотах и в межсотовой коррекции помех.

Вначале описывается способ выполнения ортогонализации сигналов CSI-RS на множестве передающих антенн и в части сот. В качестве способа ортогонализации (выполнения операции ортогонализации) сигналов CSI-RS могут использоваться мультиплексирование с временным разделением, мультиплексирование с частотным разделением и мультиплексирование с кодовым разделением, что показано на фиг.1(а)-1(с). Каждый из данных способов может быть использован индивидуально, либо могут сочетаться два или более способов.

Фиг.1(а) представляет собой схему, иллюстрирующую случай мультиплексирования сигналов CSI-RS с временным разделением (time division multiplexing, TDM). При мультиплексировании с временным разделением множество сигналов CSI-RS мультиплексируется с использованием разных символов OFDM, а остальные данные подвергаются выкалыванию таким образом, чтобы сигналы CSI-RS и указанные данные не создавали взаимных помех. На фиг.1(а) сигнал CSI-RS, предназначенный для передачи через передающую антенну (или соту) #1, расположен в первом сзади символе OFDM на второй поднесущей слева, а другие символы OFDM на второй поднесущей слева (символы OFDM, в которые мультиплексируются сигналы CSI-RS, предназначенные для передачи через другие передающие антенны) выкалываются. Сигнал CSI-RS, предназначенный для передачи через передающую антенну (или соту) #2, расположен во втором сзади символе OFDM на второй поднесущей слева, а другие символы OFDM на второй поднесущей слева (символы OFDM, в которые мультиплексируются сигналы CSI-RS, предназначенные для передачи через другие передающие антенны) выкалываются. Сигнал CSI-RS, предназначенный для передачи через передающую антенну (или соту) #3, расположен в третьем сзади символе OFDM на второй поднесущей слева, а другие символы OFDM на второй поднесущей слева (символы OFDM, в которые мультиплексируются сигналы CSI-RS, предназначенные для передачи через другие передающие антенны) выкалываются. Сигнал CSI-RS, предназначенный для передачи через передающую антенну (или соту) #4, расположен в переднем символе OFDM на второй поднесущей слева, а другие символы OFDM на второй поднесущей слева (символы OFDM, в которые мультиплексируются сигналы CSI-RS, предназначенные для передачи через другие передающие антенны) выкалываются. Посредством такого отображения сигнала CSI-RS на каждом уровне сигналы CSI-RS становятся ортогональными на множестве передающих антенн и не создают с другими данными взаимных помех. При этом операция выкалывания, хотя и желательна, не является принципиально необходимой.

Фиг.1(b) представляет собой схему, иллюстрирующую случай мультиплексирования сигналов CSI-RS с частотным разделением (frequency division multiplexing, FDM). При мультиплексировании с частотным разделением множество сигналов CSI-RS мультиплексируется с использованием разных поднесущих, а остальные данные подвергаются выкалыванию таким образом, чтобы сигналы CSI-RS и указанные данные не создавали взаимных помех. На фиг.1(b) сигнал CSI-RS, предназначенный для передачи через передающую антенну (или соту) #1, расположен в первом сзади символе OFDM на второй поднесущей слева, а первые сзади символы OFDM на других поднесущих (символы OFDM, в которые мультиплексируются сигналы CSI-RS, предназначенные для передачи через другие передающие антенны) выкалываются. Сигнал CSI-RS, предназначенный для передачи через передающую антенну (или соту) #2, расположен в первом сзади символе OFDM на третьей поднесущей слева, а первые сзади символы OFDM на других поднесущих (символы OFDM, в которые мультиплексируются сигналы CSI-RS, предназначенные для передачи через другие передающие антенны) выкалываются. Сигнал CSI-RS, предназначенный для передачи через передающую антенну (или соту) #3, расположен в первом сзади символе OFDM на четвертой поднесущей слева, а первые сзади символы OFDM на других поднесущих (символы OFDM, в которые мультиплексируются сигналы CSI-RS, предназначенные для передачи через другие передающие антенны) выкалываются. Сигнал CSI-RS, предназначенный для передачи через передающую антенну (или соту) #4, расположен в первом сзади символе OFDM на пятой поднесущей слева, а первые сзади символы OFDM на других поднесущих (символы OFDM, в которые мультиплексируются сигналы CSI-RS, предназначенные для передачи через другие передающие антенны) выкалываются. Посредством такого отображения сигнала CSI-RS на каждом уровне сигналы CSI-RS становятся ортогональными на множестве передающих антенн и не создают с другими данными взаимных помех. При этом операция выкалывания, хотя и желательна, не является принципиально необходимой.

Фиг.1(с) представляет собой схему, иллюстрирующую случай мультиплексирования сигналов CSI-RS с кодовым разделением (code division multiplexing, CDM). При мультиплексировании с кодовым разделением множество сигналов CSI-RS располагают в частотно-временной области в одних и тех же символах OFDM и мультиплексируют с использованием кодов, ортогональных на множестве передающих антенн (или сот). На фиг.1(с) сигналы CSI-RS, предназначенные для передачи через передающие антенны (или соты) #1-#4, расположены в четырех символах OFDM (в двух задних символах OFDM на второй поднесущей слева и в двух задних символах OFDM на третьей поднесущей слева) и путем использования ортогональных кодов сделаны ортогональными на множестве передающих антенн. В данном случае выкалывание других символов OFDM не применяется. Указанные четыре символа OFDM сделаны ортогональными путем использования ортогональных кодов, в результате чего сигналы CSI-RS стали ортогональными на множестве передающих антенн. В качестве ортогональных кодов могут использоваться коды Уолша и т.п.

Возможно сочетание перечисленных способов ортогонализации (TDM, FDM, CDM) в соответствии с необходимостью. В этом случае для выполнения мультиплексирования по времени и/или мультиплексирования по частоте множество сигналов CSI-RS располагают в разных символах OFDM и/или на разных поднесущих, а затем, используя ортогональные коды, делают указанное множество сигналов ортогональным на множестве передающих антенн.

Далее описывается способ рандомизации сигналов CSI-RS на множестве сот. В качестве способа рандомизации сигналов CSI-RS (операции рандомизации) могут использоваться сдвиг, перескок и скремблирование, что показано на фиг.2-4. Каждый из данных способов может быть использован индивидуально, либо могут сочетаться два или более способов.

Фиг.2 представляет собой схему, поясняющую рандомизацию сигналов CSI-RS путем сдвига. При сдвиге каждый сигнал CSI-RS отображается таким образом, чтобы во временной области и в частотной области не возникал конфликт (коллизия) (не создавались взаимные помехи). На фиг.2 сигналы CSI-RS, предназначенные для передачи в соте #1, расположены в первом и в третьем символах OFDM сзади на второй поднесущей слева и на четвертой поднесущей слева. Сигналы CSI-RS, предназначенные для передачи в соте #2, расположены в первом и в третьем символах OFDM сзади на третьей поднесущей слева и на пятой поднесущей слева. Сигналы CSI-RS, предназначенные для передачи в соте #3, расположены во втором и четвертом символах OFDM сзади на второй поднесущей слева и на четвертой поднесущей слева. Сигналы CSI-RS, предназначенные для передачи в соте #4, расположены во втором и четвертом символах OFDM сзади на третьей поднесущей слева и на пятой поднесущей слева. Таким образом устраняется возможность конфликта сигналов CSI-RS между сотами. В данном случае выкалывание символов OFDM не применяется.

При таком отображении сигналов CSI-RS сигнал CSI-RS интерферирует с символами данных других сот, что дает возможность выполнить измерение мощности символов данных других сот. Соответственно данному способу присуща высокая точность измерения помехи.

Фиг.3 представляет собой схему, поясняющую рандомизацию сигналов CSI-RS путем перескока. При перескоке каждый сигнал CSI-RS отображается во временную область и в частотную область случайным (псевдослучайным) образом. На фиг.3 сигналы CSI-RS, предназначенные для передачи в соте #1, расположены в первом сзади символе OFDM и в третьем сзади символе OFDM на второй поднесущей слева, во втором символе OFDM сзади на четвертой поднесущей слева и в первом спереди символе OFDM на пятой поднесущей слева. Сигналы CSI-RS, предназначенные для передачи в соте #2, расположены в первом спереди символе OFDM на второй поднесущей слева, в первом сзади символе OFDM на третьей поднесущей слева, во втором спереди символе OFDM на четвертой поднесущей слева и в первом сзади символе OFDM на пятой поднесущей слева. Сигналы CSI-RS, предназначенные для передачи в соте #3, расположены во втором сзади символе OFDM на второй поднесущей слева, в третьем сзади символе OFDM на третьей поднесущей слева, а также в первом сзади и в первом спереди символах OFDM на пятой поднесущей слева. Сигналы CSI-RS, предназначенные для передачи в соте #4, расположены во втором сзади символе OFDM и в первом спереди символе OFDM на третьей поднесущей слева, а также во втором сзади символе OFDM и в первом спереди символе OFDM на пятой поднесущей слева. Таким образом, распределение сигналов CSI-RS в сотах становится случайным. В представленном на фиг.3 варианте перескока сигнал CSI-RS, передаваемый в соте #2, конфликтует с сигналом CSI-RS, передаваемым в соте #3. В данном случае выкалывание символов OFDM также не применяется.

При использовании данного способа отображения благодаря случайному расположению сигналов CSI-RS число схем расположения велико. Соответственно количество повторений сот может быть увеличено по сравнению со случаем использования сдвига.

Фиг.4 представляет собой схему, поясняющую рандомизацию сигналов CSI-RS путем скремблирования. При скремблировании все сигналы CSI-RS располагают в одних и тех же символах OFDM в частотно-временной области, но умножают на неортогональный код (код скремблирования), меняющийся от соты к соте. На фиг.4 сигналы CSI-RS, предназначенные для передачи в соте #1, расположены в первом сзади символе OFDM и в третьем сзади символе OFDM на второй поднесущей слева, а также в первом сзади символе OFDM и в третьем сзади символе OFDM на четвертой поднесущей слева, и на множестве сот, использующих разные коды скремблирования, являются неортогональными. В данном случае выкалывание других символов OFDM не применяется. Рандомизация указанных четырех символов OFDM выполнена с использованием различных неортогональных кодов, и поэтому на данном множестве сот сигналы CSI-RS являются неортогональными.

Скремблирование легко сочетается со сдвигом и перескоком. Иными словами, возможно сочетание сдвига и скремблирования путем выполнения сдвига таким образом, чтобы сигналы CSI-RS во множестве сот располагались в разных символах OFDM, и умножения на коды скремблирования, меняющиеся от соты к соте; возможно сочетание перескока и скремблирования путем выполнения перескока таким образом, чтобы сигналы CSI-RS во множестве сот располагались в разных символах OFDM, и умножения на коды скремблирования, меняющиеся от соты к соте; и возможно сочетание сдвига, перескока и скремблирования путем выполнения сдвига и перескока таким образом, чтобы сигналы CSI-RS во множестве сот располагались в разных символах OFDM, и умножения на коды скремблирования, меняющиеся от соты к соте. Чтобы избежать конфликта сигналов CSI-RS между сотами и увеличить количество повторений сот, желательно использовать сочетание сдвига и скремблирования. Кроме того, рандомизация может осуществляться путем выполнения сдвига и перескока таким образом, чтобы сигналы CSI-RS во множестве сот располагались в разных символах OFDM.

При использовании рандомизации на множестве сот или при сочетании рандомизации и ортогонализации на множестве сот необходима сигнализация управления. Например, при использовании сдвига может сообщаться номер сдвига (информация идентификации сдвига), указывающая схему (шаблон) сдвига; при использовании перескока может сообщаться номер перескока (информация идентификации перескока), указывающая схему перескока; а при использовании скремблирования может сообщаться номер кода скремблирования. В данном документе номер кода скремблирования, номер сдвига и номер перескока называются информацией управления рандомизацией.

В настоящем изобретении необходимо выполнять ортогонализацию сигналов CSI-RS в части сот, например, между сотами, участвующими в координированной передаче в нескольких сотах или в коррекции помех. В этом случае необходимо передавать информацию управления ортогонализацией. Информация управления ортогонализацией включает ресурсы, подлежащие использованию, и номер ортогонального мультиплексирования (номер ортогонального ресурса (информацию идентификации ортогонального ресурса)).

Информация управления рандомизацией и информация управления ортогонализацией может широковещательно передаваться как общая информация управления либо может сообщаться как специализированная (выделенная) информация управления. При этом имеется возможность уменьшения числа битов, необходимых для информации управления, путем привязки к идентификатору соты.

Далее описывается сочетание рандомизации и ортогонализации на множестве сот.Фиг.5(а) представляет собой схему конфигурации сот, а фиг.5(b) представляет собой схему примера сочетания ортогонализации и рандомизации. Иллюстрируемый фиг.5(b) аспект представляет собой сочетание ортогонализации путем использования FDM и рандомизации путем использования сдвига. Настоящее изобретение не ограничено данным аспектом, и включает аспекты, в которых сочетаются ортогонализация путем использования FDM и рандомизация путем использования сдвига, другие способы ортогонализации и другие способы рандомизации.

В конфигурации сот, показанной на фиг.5(а), имеется четыре группы сот, в каждой из которых номер ортогонального мультиплексирования равен 3. Иными словами, в данной конфигурации сот имеются группы сот 1-4, в которых номер ортогонального мультиплексирования равен 3 (соответствует сотам А-С). В такой конфигурации сот ортогонализация выполняется в части сот, в остальных сотах выполняется рандомизация, и помеха в целом имеет случайный характер.

Как показано на фиг.5(b), рандомизация выполняется между группами сот (1-4), а ортогонализация выполняется на множестве сот (А-С) внутри указанных групп сот. Иными словами, между сотой 1А, сотой 1В и сотой 1C ортогонализация достигается в результате того, что множество сигналов CSI-RS мультиплексируется с использованием разных поднесущих, а остальные данные подвергаются выкалыванию таким образом, что сигналы CSI-RS и данные не создают взаимных помех. Аналогично, и между сотой 2А, сотой 2В и сотой 2С ортогонализация достигается в результате того, что множество сигналов CSI-RS мультиплексируется с использованием разных поднесущих, а остальные данные подвергаются выкалыванию таким образом, что сигналы CSI-RS и данные не создают взаимных помех. Аналогично, и между сотой 3А, сотой 3В и сотой 3С ортогонализация достигается в результате того, что множество сигналов CSI-RS мультиплексируется с использованием разных поднесущих, а остальные данные подвергаются выкалыванию таким образом, что сигналы CSI-RS и данные не создают взаимных помех. Аналогично, и между сотой 4А, сотой 4В и сотой 4С ортогонализация достигается в результате того, что множество сигналов CSI-RS мультиплексируется с использованием разных поднесущих, а остальные данные подвергаются выкалыванию таким образом, что сигналы CSI-RS и данные не создают взаимных помех.

В то же время в множестве, состоящем из соты 1А, соты 2А, соты 3А и соты 4А каждый сигнал CSI-RS отображается таким образом, чтобы во временной области и в частотной области не возникал конфликт (не создавались взаимные помехи). Аналогично, и в множестве, состоящем из соты 1В, соты 2В, соты 3В и соты 4 В каждый сигнал CSI-RS отображается таким образом, чтобы во временной области и в частотной области не возникал конфликт (не создавались взаимные помехи). Аналогично, и в множестве, состоящем из соты 1C, соты 2С, соты 3С и соты 4С, каждый сигнал CSI-RS отображается таким образом, чтобы во временной области и в частотной области не возникал конфликт (не создавались взаимные помехи).

Тем самым, операция рандомизации выполняется над сигналами CSI-RS таким образом, что сигналы CSI-RS по меньшей мере в части сот являются неортогональными. При этом сигналы CSI-RS в сигналах, подлежащих передаче соответствующими передающими антеннами, являются взаимно ортогональными. Используя в базовой радиостанции описанные операции, можно осуществить аспект, в котором выполняется ортогонализация на множестве передающих антенн и рандомизация на множестве сот, или аспект, в котором выполняется ортогонализация на множестве передающих антенн и сочетание рандомизации и ортогонализации на множестве сот. Как результат, становятся возможными передача и прием нисходящих опорных сигналов измерения качества канала с выполнением ортогонализации на множестве передающих антенн, выполнением ортогонализации на множестве сот, а также измерение помехи с высокой точностью.

Фиг.6 представляет собой схему системы беспроводной связи, включающей базовую радиостанцию и мобильный терминал в соответствии с данным вариантом осуществления настоящего изобретения.

В данной системе беспроводной связи используется, например, схема Е-UTRA (Evolved UTRA and UTRAN). Данная система беспроводной связи включает базовые станции (eNB: eNodeB) 2 (21, 22, …, 2I, где I является целым числом, большим 0) и множество мобильных терминалов (UE) 1n (11, 12, 13, … ,1n, где n является целым числом, большим 0), осуществляющих связь с базовыми радиостанциями 2. Базовые радиостанции 2 соединены со станцией верхнего уровня, например со шлюзом 3 доступа, а шлюз 3 доступа соединен с опорной сетью 4. Мобильный терминал 1n осуществляет связь с базовой радиостанцией 2 в соте 5 (51, 52) с использованием схемы E-UTRA. В данном варианте осуществления используются две соты, однако настоящее изобретение аналогично применимо к трем или более сотам. При этом все мобильные терминалы (11, 12, 13, …, 1n) имеют одинаковую конфигурацию, функции и состояние и в дальнейшем описании обозначаются как мобильный терминал 1n, если не указано иное.

В системе беспроводной связи в качестве схемы радиодоступа в нисходящей линии связи используется схема OFDM (Orthogonal Frequency Division Multiplexing, мультиплексирование с ортогональным частотным разделением), а в восходящей линии связи используется схема SC-FDMA (Single-Carrier Frequency Division Multiple Access, множественный доступ с частотным разделением на одной несущей). OFDM представляет собой схему передачи с несколькими несущими, в которой полоса частот разделяется на множество узких полос частот (поднесущих), и при осуществлении связи данные отображаются на все поднесущие. SC-FDMA представляет собой схему передачи с одной несущей, в которой для каждого терминала выделяется полоса частот, и разные терминалы используют разные полосы частот, благодаря чему снижаются взаимные помехи между терминалами.

Далее описываются каналы связи в схеме E-UTRA.

В нисходящей линии связи используются физический нисходящий общий канал (Physical Downlink Shared Channel, PDSCH), совместно используемый мобильными терминалами 1n, и физический нисходящий канал управления (Physical Downlink Control Channel, PDCCH). Физический нисходящий канал управления также называется нисходящим каналом управления L1/L2. Данные пользователя, т.е. обычные сигналы данных, передаются в физическом нисходящем общем канале. При этом в физическом нисходящем канале управления передаются нисходящая информация планирования, информация подтверждения / отрицательного подтверждения (ACK/NACK), грант восходящего планирования (UL scheduling grant), команда ТРС (Transmission Power Control Command, команда управления мощностью передачи) и т.д. Нисходящая информация планирования включает, например, идентификатор пользователя, намеревающегося осуществлять связь с использованием физического нисходящего общего канала, информацию о транспортном формате данных пользователя, т.е. информацию о размере данных, схеме модуляции и управлении повторной передачей (гибридном автоматическом запросе повторной передачи, HARQ), информацию о выделении ресурсного блока нисходящей линии связи и т.п.

Грант восходящего планирования включает, например, идентификатор пользователя, намеревающегося осуществлять связь с использованием физического восходящего общего канала, информацию о транспортном формате данных пользователя, т.е. информацию о размере данных и схеме модуляции, информацию о выделении ресурсного блока восходящей линии связи, информацию о мощности передачи восходящего общего канала и т.д. При этом ресурсный блок восходящей линии связи соответствует частотным ресурсам и также называется ресурсным элементом.

Информация подтверждения / отрицательного подтверждения (ACK/NACK) представляет собой передаваемую в восходящей линии связи информацию подтверждения / отрицательного подтверждения, относящуюся к общему каналу. Информация подтверждения / отрицательного подтверждения может быть представлена подтверждением (АСК), извещающим о том, что переданный сигнал принят корректно, или отрицательным подтверждением (NACK), извещающий о том, что переданный сигнал не принят корректно.

В восходящей линии связи используются физический восходящий общий канал (Physical Uplink Shared Channel, PUSCH), совместно используемый мобильными терминалами 1n, и физический восходящий канал управления (Physical Uplink Control Channel, PUCCH). Данные пользователя, т.е. обычные сигналы данных, передаются в физическом восходящем общем канале. В физическом восходящем канале управления передается информация о качестве нисходящей линии связи, используемая в операции планирования физического общего канала в нисходящей линии связи и в операции адаптивной модуляции / демодуляции и кодирования, и информация подтверждения / отрицательного подтверждения физического нисходящего общего канала.

В физическом восходящем канале управления в дополнение к CQI и информации подтверждения / отрицательного подтверждения могут передаваться запрос планирования, используемый для запроса выделения ресурса восходящего общего канала, запрос высвобождения в долгосрочном (persistent) планировании и т.п. При этом модуль выделения ресурсов восходящего общего канала базовой радиостанции, используя физический нисходящий канал управления в некотором субкадре, уведомляет мобильный терминал о том, что в следующем субкадре указанному мобильному терминалу разрешено осуществление связи с использованием восходящего общего канала.

Мобильный терминал 1n осуществляет связь с оптимальной базовой радиостанцией. В примере на фиг.6 мобильные терминалы 11 и 12 осуществляют связь с базовой радиостанцией 21, а мобильный терминал 13 осуществляет связь с базовой радиостанцией 22.

Фиг.7 представляет собой схему конфигурации базовой радиостанции в соответствии с данным вариантом осуществления настоящего изобретения. На фиг.7 показан только модуль передачи, но, естественно, базовая радиостанция включает и модуль приема для выполнения операции приема восходящих сигналов,

Как показано на фиг.7, базовая радиостанция включает множество передающих антенн 22#1-22#М, с которыми связаны модули 21#1-21#N формирования передаваемого сигнала соответственно. Каждый из модулей 21 формирования передаваемого сигнала в качестве основных модулей включает модуль 211 формирования сигнала общего канала, который формирует сигнал общего канала, модуль 212 операции выкалывания, который выполняет операцию выкалывания над сигналом общего канала, модуль 213 формирования последовательности CSI-RS, который формирует последовательность CSI-RS, модуль 214 отображения на частотно-временную область, который отображает сигнал CSI-RS на частотно-временную область, модуль 215 выбора мультиплексируемого ресурсного блока, который выбирает ресурсный блок (RB) для выполнения сдвига и/или перескока над сигналом CSI-RS, модуль 216 мультиплексирования канала, который мультиплексирует сигнал общего канала и сигнал, содержащий CSI-RS, модуль 217 ОБПФ (обратного быстрого преобразования Фурье), который выполняет ОБПФ над мультиплексированным сигналом, и модуль 218 добавления ЦП (циклического префикса), который добавляет ЦП к сигналу, прошедшему ОБПФ. Кроме того, соответственно количеству передающих антенн 22#1-22#N предусмотрены модули 21#1-21#N формирования передаваемого сигнала, при этом на фиг.7 подробно показан только модуль формирования передаваемого сигнала 21#1, соответствующий передающей антенне #1.

Модуль 211 формирования сигнала общего канала, используя нисходящие передаваемые данные, формирует сигнал общего канала (сигнал, передаваемый в канале PDSCH). Модуль 211 формирования сигнала общего канала формирует сигнал общего канала на основании величины CSI, измеренной в базовой радиостанции с использованием сигнала CSI-RS, содержащегося в восходящем сигнале. Модуль 211 формирования сигнала общего канала передает сформированный сигнал общего канала в модуль 212 операции выкалывания.

Модуль 212 операции выкалывания выполняет над сформированным сигналом общего канала операцию выкалывания. Как показано на фиг.1(а), 1(b) и 5(b), операция выкалывания осуществляется над сигналом общего канала таким образом, чтобы на множестве передающих антенн и в части сот сигнал CSI-RS, включаемый в ресурсный блок, не создавал взаимных помех с сигналом общего канала (передаваемыми данными). Модуль 212 операции выкалывания каждого из модулей 21#1-21#N формирования передаваемого сигнала выполняет операцию выкалывания над сигналом общего канала на основании номера ортогонального мультиплексирования CSI-RS (в случае, показанном на фиг.5, равного 3 от А до С), содержащегося в информации об ортогональном ресурсе (номере ортогонального ресурса). Иными словами, модуль 212 операции выкалывания выполняет операцию выкалывания над сигналом общего канала на основании номера ортогонального мультиплексирования CSI-RS таким образом, чтобы сигнал CSI-RS не создавал взаимных помех с сигналом общего канала (передаваемыми данными) в сотах и между передающими антеннами. Модуль 212 операции выкалывания передает сигнал общего канала, прошедший операцию выкалывания, в модуль 216 мультиплексирования канала.

Модуль 213 формирования последовательности CSI-RS формирует сигнал CSI-RS, предназначенный для мультиплексирования в ресурсный блок. В случае использования в качестве операции рандомизации показанного на фиг.4 скремблирования сигналов CSI-RS модуль 213 формирования последовательности CSI-RS скремблирует сигнал CSI-RS, используя код скремблирования, определяемый на основании номера кода скремблирования. В случае использования в качестве операции ортогонализации показанного на фиг.1(с) мультиплексирования по коду модуль 213 формирования последовательности CSI-RS выполняет ортогонализацию сигналов CSI-RS на множестве передающих антенн и на множестве сот, подлежащих ортогонализации, используя ортогональный код, определяемый на основании номера ортогонального кода и номера ортогонального мультиплексирования, содержащегося в номере ортогонального ресурса. Модуль 213 формирования последовательности CSI-RS передает сигнал CSI-RS в модуль 214 отображения на частотно-временную область.

Модуль 214 отображения на частотно-временную область отображает сигнал CSI-RS на частотно-временную область в ресурсном блоке. В случае использования в качестве операции ортогонализации показанного на фиг.1(а) и 1(b) мультиплексирования по времени и/или мультиплексирования по частоте модуль 214 отображения на частотно-временную область выполняет ортогонализацию сигналов CSI-RS, используя номер ортогонального мультиплексирования, содержащийся в номере ортогонального ресурса. В то же время в случае использования в качестве операции рандомизации сдвига и/или перескока модуль 214 отображения на частотно-временную область выполняет в сигналах CSI-RS сдвиг и/или перескок на основании номера сдвига и/или номера перескока. Модуль 214 отображения на частотно-временную область передает отображенный сигнал в модуль 215 выбора мультиплексируемого ресурсного блока.

Модуль 215 выбора мультиплексируемого ресурсного блока выбирает ресурсный блок радиокадра для мультиплексирования. В случае использования в качестве операции рандомизации сдвига и/или перескока модуль 215 выбора мультиплексируемого ресурсного блока выбирает ресурсный блок радиокадра для мультиплексирования сигнала, содержащего сигнал CSI-RS, на основании номера сдвига и/или номера перескока. Модуль 215 выбора мультиплексируемого ресурсного блока передает указанный сигнал, содержащий CSI-RS с выбранным ресурсным блоком, в модуль 216 мультиплексирования канала.

Модуль 216 мультиплексирования канала выполняет мультиплексирование в канале сигнала общего канала и сигнала, содержащего CSI-RS. Модуль 216 мультиплексирования канала передает мультиплексированный в канале сигнал в модуль 217 ОБПФ. Модуль 217 ОБПФ выполняет над мультиплексированным в канале сигналом обратное быстрое преобразование Фурье (ОБПФ) с целью преобразования в сигнал во временной области. Модуль 217 ОБПФ передает сигнал, прошедший ОБПФ, в модуль 218 добавления ЦП. Модуль 218 добавления ЦП добавляет циклический префикс к сигналу, прошедшему ОБПФ. Сигнал с добавленным ЦП из каждого из модулей 21#1-21#N формирования передаваемого сигнала передается в нисходящей линии связи (физическом нисходящем общем канале) в каждый мобильный терминал через соответствующую передающую антенну 22#1-22#М.

В базовой радиостанции, имеющей вышеописанную конфигурацию, при выполнении ортогонализации на множестве передающих антенн и/или сот в случае, когда в качестве операции ортогонализации используется мультиплексирование по времени и/или мультиплексирование по частоте, указанную операцию ортогонализации выполняет модуль 214 отображения на частотно-временную область. Если же при выполнении ортогонализации на множестве передающих антенн и/или сот в качестве операции ортогонализации используется мультиплексирование по коду, то указанную операцию ортогонализации выполняет модуль 213 формирования последовательности CSI-RS. Когда же при выполнении ортогонализации на множестве передающих антенн и/или сот в качестве операции ортогонализации используется мультиплексирование по коду, мультиплексирование по времени и/или мультиплексирование по частоте, указанную операцию ортогонализации выполняют модуль 214 отображения на частотно-временную область и модуль 213 формирования последовательности CSI-RS.

При выполнении рандомизации на множестве сот в случае, когда в качестве операции рандомизации используется сдвиг и/или перескок, указанную операцию рандомизации выполняют модуль 214 отображения на частотно-временную область и модуль 215 выбора мультиплексируемого ресурсного блока. Если же при выполнении рандомизации на множестве сот в качестве операции рандомизации используется скремблирование, то указанную операцию рандомизации выполняет модуль 213 формирования последовательности CSI-RS. Когда же при выполнении рандомизации на множестве сот в качестве операции рандомизации используется скремблирование, сдвиг и/или перескок, указанную операцию рандомизации выполняют модуль 213 формирования последовательности CSI-RS, модуль 214 отображения на частотно-временную область и модуль 215 выбора мультиплексируемого ресурсного блока.

Фиг.8 представляет собой схему конфигурации мобильного терминала в соответствии с данным вариантом осуществления настоящего изобретения. Как показано на фиг.8, мобильный терминал в качестве основных модулей включает приемную антенну 11, модуль 12 удаления ЦП, который удаляет циклический префикс из принятого сигнала, модуль 13 БПФ, который выполняет быстрое преобразование Фурье (БПФ) над сигналом с удаленным ЦП, модуль 14 разделения канала, который выполняет разделение на сигнал общего канала и сигнал, содержащий сигнал CSI-RS, модуль 15 операции устранения выкалывания, который выполняет над сигналом общего канала операцию устранения выкалывания, модуль 16 демодуляции / декодирования сигнала общего канала, который демодулирует и декодирует сигнал общего канала, прошедший операцию устранения выкалывания, и модули 17#1-17#1М формирования информации CSI, соответствующие передающим антеннам базовой радиостанции, предназначенные для измерения величин CSI по сигналам, содержащим сигналы CSI-RS. На фиг.8 подробно показан только модуль 17#1 формирования информации CSI, соответствующий передающей антенне #1 базовой радиостанции.

Каждый из модулей 17#1-17#N формирования информации CSI в качестве основных модулей включает модуль 171 выделения мультиплексируемого ресурсного блока, который выделяет ресурсный блок для выполнения сдвига и/или перескока над сигналом CSI-RS, модуль 172 обратного отображения из частотно-временной области, который выполняет обратное отображение сигнала CSI-RS, отображенного на частотно-временную область, и модуль 173 измерения CSI, который измеряет CSI, используя сигнал CSI-RS, прошедший обратное отображение.

Сигнал, передаваемый из базовой радиостанции в нисходящей линии связи (физический нисходящий общий канал), принимается через приемную антенну 11 мобильного терминала. Модуль 12 удаления ЦП удаляет циклический префикс из принятого сигнала. Модуль 12 удаления ЦП передает сигнал, из которого удален ЦП, в модуль 13 БПФ. Модуль 13 БПФ выполняет над сигналом с удаленным ЦП быстрое преобразование Фурье для преобразования в сигнал в частотной области. Модуль 13 БПФ передает сигнал, прошедший БПФ, в модуль 14 разделения канала. Модуль 14 разделения канала выполняет над указанным сигналом разделение каналов, формируя сигнал общего канала и сигнал, содержащий CSI-RS. Модуль 14 разделения канала передает сигналы, сформированные посредством разделения каналов, в модуль 15 операции устранения выкалывания.

Модуль 15 операции устранения выкалывания выполняет над сигналом общего канала, прошедшим разделение канала, операцию устранения выкалывания. Модуль 15 операции устранения выкалывания выполняет операцию устранения выкалывания над сигналом общего канала на основании номера ортогонального мультиплексирования CSI-RS (в случае, показанном на фиг.5, равного 3 от А до С), содержащегося в информации об ортогональном ресурсе (в номере ортогонального ресурса). Модуль 15 операции устранения выкалывания передает сигнал общего канала, прошедший операцию устранения выкалывания, в модуль 16 демодуляции / декодирования сигнала общего канала.

Модуль 16 демодуляции / декодирования сигнала общего канала демодулирует и декодирует сигнал общего канала, прошедший операцию устранения выкалывания, с целью выделения принятых данных.

Модуль 171 выделения мультиплексируемого ресурсного блока выделяет из радиокадра ресурсный блок, подвергнутый сдвигу и/или перескоку. Если в качестве операции рандомизации используется сдвиг и/или перескок, то модуль 171 выделения мультиплексируемого ресурсного блока выделяет из радиокадра сигнал, содержащий CSI-RS, на основании номера сдвига и/или номера перескока. Модуль 171 выделения мультиплексируемого ресурсного блока передает прошедший выделение ресурсного блока сигнал, содержащий сигнал CSI-RS, в модуль 172 обратного отображения из частотно-временной области.

Модуль 172 обратного отображения из частотно-временной области выполняет обратное отображение сигнала CSI-RS из частотно-временной области в указанном ресурсном блоке. В случае использования в качестве операции ортогонализации мультиплексирования по времени и/или мультиплексирования по частоте модуль 172 обратного отображения из частотно-временной области выполняет обратное отображение, используя номер ортогонального мультиплексирования, содержащийся в номере ортогонального ресурса. В то же время при использовании в качестве операции рандомизации сдвига и/или перескока модуль 172 обратного отображения из частотно-временной области выполняет обратное отображение CSI-RS на основании номера сдвига и/или номера перескока. Модуль 172 обратного отображения из частотно-временной области передает сигнал, прошедший обратное отображение, в модуль 173 измерения CSI.

Модуль 173 измерения CSI, используя прошедший обратное отображение (выделенный) сигнал CSI-RS, измеряет качество канала и выдает измеренную величину CSI. В случае использования скремблирования в качестве операции рандомизации, выполняемой над сигналом CSI-RS, модуль 173 измерения CSI, чтобы выделить сигнал, дескремблирует CSI-RS, используя код скремблирования, определяемый на основании номера кода скремблирования. В случае использования в качестве операции ортогонализации мультиплексирования по коду модуль 173 измерения CSI выделяет сигнал CSI-RS, используя ортогональный код, определяемый на основании номера ортогонального кода и номера ортогонального мультиплексирования, содержащегося в номере ортогонального ресурса, на множестве передающих антенн и сот, подлежащих ортогонализации.

Нисходящий сигнал включает информацию управления для рандомизации и/или информацию управления для ортогонализации. В качестве указанной информации управления для рандомизации могут использоваться номер кода скремблирования, номер сдвига и/или номер перескока. В качестве указанной информации управления для ортогонализации могут использоваться номер ортогонального ресурса, включающий подлежащие использованию ресурсы и номер ортогонального мультиплексирования, и номер ортогонального кода. Здесь в описании, использующем фиг.5(b), под подлежащими использованию ресурсами понимаются соты А-С. Соответственно подлежащими использованию ресурсами являются информация идентификации, извещающая о том, что использованию подлежит любая из сот А-С в заранее определенных группах 1-4 сот.

Информация управления для рандомизации и/или информация управления для ортогонализации может сообщаться из базовой радиостанции в мобильный терминал в широковещательном канале (broadcast channel, BCH), может передаваться как сигнал управления L1/L2 или может сообщаться с верхнего уровня.

Номер кода скремблирования, который является информацией управления для рандомизации, передается в модуль 173 измерения CSI, а номер сдвига и/или номер перескока передаются в модуль 172 обратного отображения из частотно-временной области и в модуль 171 выделения мультиплексируемого ресурсного блока. Номер ортогонального ресурса, который является информацией управления для ортогонализации, передается в модуль 173 измерения CSI и в модуль 172 обратного отображения из частотно-временной области. Кроме того, в модуль 173 измерения CSI передается номер ортогонального кода, являющийся информацией управления для ортогонализации. Номер ортогонального мультиплексирования CSI-RS передается в модуль 15 операции устранения выкалывания.

Далее описывается способ беспроводной связи, используемый в базовой радиостанции и в мобильном терминале, имеющих вышеописанные конфигурации. В способе беспроводной связи настоящего изобретения базовая радиостанция формирует сигналы CSI-RS; выполняет над сигналами CSI-RS операцию рандомизации таким образом, что по меньшей мере в части сот указанные сигналы являются взаимно неортогональными; и на множестве передающих антенн выполняет ортогонализацию сигналов CSI-RS, которые затем передает в мобильный терминал вместе с информацией управления; а мобильный терминал принимает нисходящий сигнал, содержащий информацию управления и сигнал CSI-RS, выделяет сигнал CSI-RS с использованием указанной информации управления и измеряет качество канала с использованием указанного сигнала CSI-RS.

Базовая радиостанция умножает сигнал CSI-RS на код скремблирования, соответствующий номеру скремблирования, отображает множество сигналов CSI-RS, подлежащих мультиплексированию, на разные поднесущие на множестве передающих антенн и в части сот, и выполняет ортогонализацию (FDM), причем отображение осуществляется так, чтобы каждый из сигналов CSI-RS не имел конфликта (не создавал помех) во временной области и в частотной области на множестве сот, и выполняет рандомизацию (сдвиг). При этом над сигналом общего канала выполняется операция выкалывания так, чтобы сигнал CSI-RS и данные не создавали взаимных помех на множестве передающих антенн и в части сот. Базовая радиостанция выполняет с прошедшими указанную операцию сигналом общего канала и сигналом CSI-RS мультиплексирование канала и передает мультиплексированный сигнал в мобильный терминал в нисходящей линии связи. Одновременно в нисходящей линии связи в мобильный терминал также передаются информация управления рандомизацией и информация управления ортогонализацией.

Мобильный терминал разделяет принятый сигнал на сигнал общего канала и сигнал CSI-RS, выполняет над сигналом общего канала устранение выкалывания, демодуляцию и декодирование и выполняет обратное отображение сигнала CSI-RS для его выделения. Затем мобильный терминал, используя сигнал CSI-RS, измеряет качество канала и получает измеренную величину CSI. Таким образом, в способе беспроводной связи настоящего изобретения путем выполнения операции рандомизации над сигналами CSI-RS так, что на множестве сот указанные сигналы являются взаимно неортогональными, и выполнения взаимной ортогонализации сигналов CSI-RS на множестве передающих антенн и в части сот, можно передавать нисходящие опорные сигналы измерения качества канала с выполненной ортогонализацией на множестве передающих антенн, ортогонализацией на множестве сот, а также измерять помеху с высокой точностью.

Настоящее изобретение не ограничено вышеприведенным вариантом осуществления и может быть осуществлено с различными модификациями указанного варианта. Использованные в вышеприведенном варианте осуществления количество передающих антенн и количество сот являются примерами, и настоящее изобретение не ограничено указанными количествами. Кроме того, без выхода за пределы объема охраны настоящего изобретения количество модулей обработки и операций обработки в вышеприведенном описании могут при осуществлении изобретения быть изменены в соответствии с необходимостью. Каждый показанный на чертежах элемент представляет собой функциональный модуль, и каждый функциональный модуль может быть осуществлен как аппаратно, так и программно. Настоящее изобретение при необходимости может быть осуществлено с изменениями без выхода за пределы своего объема.

Промышленная применимость

Настоящее изобретение применимо в базовой радиостанции, мобильном терминале и в способе беспроводной связи в системах, использующих схему LTE-A.

Настоящая патентная заявка основана на патентной заявке Японии №2010-000773, поданной 05 января 2010 года, все содержание которой явным образом включено в настоящий документ посредством ссылки.

1. Базовая радиостанция, содержащая модуль формирования, который формирует каждый опорный сигнал измерения качества канала с использованием кода скремблирования, привязанного к идентификатору соты; модуль отображения, который отображает каждый опорный сигнал измерения качества канала на ресурс в частотной и временной областях на основании номера сдвига, указывающего схему сдвига; и модуль передачи, который выполняет ортогонализацию опорных сигналов измерения качества канала с целью их ортогонализации на множестве передающих антенн и передает каждый опорный сигнал измерения качества канала в мобильный терминал, причем номер сдвига сообщается в мобильный терминал в качестве информации управления.

2. Базовая радиостанция по п.1, отличающаяся тем, что операция ортогонализации осуществляется путем мультиплексирования с частотным разделением и мультиплексирования с кодовым разделением.

3. Базовая радиостанция по п.1 или 2, отличающаяся тем, что модуль передачи не включает данные, передаваемые в физическом нисходящем общем канале, в ресурс, где расположен опорный сигнал измерения качества канала для другой передающей антенны.

4. Базовая радиостанция по п.1 или 2, отличающаяся тем, что при ортогонализации опорных сигналов измерения качества канала на множестве сот и передаче опорных сигналов измерения качества канала модуль передачи не включает данные, передаваемые в физическом нисходящем общем канале, в ресурс, где расположен опорный сигнал измерения качества канала для другой соты.

5. Мобильный терминал, содержащий модуль приема, который принимает опорный сигнал измерения качества канала, сформированный с использованием кода скремблирования, привязанного к идентификатору соты, и отображенный на ресурс в частотной и временной областях на основании номера сдвига, указывающего схему сдвига; и модуль измерения, который с использованием указанного опорного сигнала измерения качества канала измеряет качество канала, при этом номер сдвига сообщается из базовой станции в качестве информации управления.

6. Мобильный терминал по п.5, отличающийся тем, что модуль приема принимает информацию управления ортогонализацией, содержащую подлежащий использованию ресурс и номер ортогонального мультиплексирования.

7. Мобильный терминал по п.5 или 6, отличающийся тем, что содержит модуль операции устранения выкалывания, который выполняет операцию устранения выкалывания над данными, передаваемыми в физическом нисходящем общем канале.

8. Способ беспроводной связи, включающий выполняемые в базовой радиостанции:
формирование каждого опорного сигнала измерения качества канала с использованием кода скремблирования, привязанного к идентификатору соты;
отображение каждого опорного сигнала измерения качества канала на ресурс в частотной и временной областях на основании номера сдвига, указывающего схему сдвига; и
выполнение на множестве передающих антенн ортогонализации опорных сигналов измерения качества канала и передача каждого опорного сигнала измерения качества канала в мобильный терминал; при этом
номер сдвига сообщают в мобильный терминал в качестве информации управления.

9. Способ по п.8, отличающийся тем, что дополнительно включает выполняемые в мобильном терминале прием нисходящего сигнала, содержащего опорный сигнал измерения качества канала, и измерение качества канала с использованием указанного опорного сигнала измерения качества канала.

10. Способ по п.8 или 9, отличающийся тем, что ортогонализацию осуществляют путем мультиплексирования с частотным разделением и мультиплексирования с кодовым разделением.

11. Способ по п.8 или 9, отличающийся тем, что в базовой радиостанции данные, передаваемые в физическом нисходящем общем канале, не включают в ресурс, где расположен опорный сигнал измерения качества канала для другой передающей антенны.

12. Способ по п.8, отличающийся тем, что базовая радиостанция выполняет операцию ортогонализации над опорными сигналами измерения качества канала так, чтобы указанные сигналы были ортогональными на множестве сот, участвующих в координированной передаче в нескольких сотах или в коррекции помех, и передает опорные сигналы измерения качества канала.

13. Система беспроводной связи, содержащая
базовую станцию, которая содержит модуль формирования, который формирует каждый опорный сигнал измерения качества канала с использованием кода скремблирования, привязанного к идентификатору соты, модуль отображения, который отображает каждый опорный сигнал измерения качества канала на ресурс в частотной и временной областях на основании номера сдвига, указывающего схему сдвига, и модуль передачи, который выполняет ортогонализацию опорных сигналов измерения качества канала с целью их ортогонализации на множестве передающих антенн и передает каждый опорный сигнал измерения качества канала в мобильный терминал; и
мобильный терминал, который содержит модуль приема, который принимает каждый опорный сигнал измерения качества канала; и модуль измерения, который с использованием каждого опорного сигнала измерения качества канала измеряет качество канала, причем
номер сдвига сообщается из базовой радиостанции в мобильный терминал в качестве информации управления.



 

Похожие патенты:

Изобретение относится к системе беспроводного доступа, поддерживающей агрегацию множественных несущих (CA), и обеспечивает принятие решения, для какой обслуживающей ячейки должна быть выполнена обратная связь.

Изобретение относится к технике связи и может использоваться для мобильных систем связи, принимающих широкополосные сигналы. Технический результат состоит в повышении помехоустойчивости путем использования скремблирования канала передачи.

Изобретение относится к мобильной связи, использующей схему мультиплексирования с ортогональным разделением частот, и предназначено для повышения точности оценки канала.

Изобретение относится к беспроводной передаче данных в соответствии с одним из стандартов IEEE 802.11, в частности, к многоканальным сетям беспроводной передачи данных, которые передают пакеты, такие как модули данных протокола (PPDU) для протокола схождения физического уровня (PLCP).

Изобретение относится к технике связи и может использоваться в цифровом телевидении. Технический результат состоит в обеспечении высокой четкости телевизионного вещания.

Изобретение относится к технике связи и может использоваться в цифровой широковещательной системе передаче. Технический результат состоит в повышении помехоустойчивости при многолучевой передачи информации.

Настоящее изобретение относится к системе беспроводной связи, в частности, для выполнения смежного или несмежного распределения ресурсов восходящей линии связи и предназначено для эффективного распределения ресурсов.

Изобретение относится к технике связи и может использоваться в системе сотовой связи со множеством несущих. Технический результат состоит в повышении пропускной способности каналов связи.

Изобретение относится к беспроводной связи. С целью обеспечения базовой станции, мобильного терминала и способа беспроводной связи для передачи и приема опорных сигналов измерения качества нисходящего канала с целью оценки помех с высокой точностью, в способе беспроводной связи по изобретению базовая станция формирует опорные сигналы измерения качества канала и распределяет опорные сигналы измерения качества канала в два соседних символа, а мобильный терминал принимает нисходящий сигнал, содержащий опорные сигналы измерения качества канала, распределенные в два соседних символа, и осуществляет оценку мощности помех с использованием опорных сигналов измерения качества канала, распределенных в два соседних символа.

Изобретение относится к технике связи. Техническим результатом является формирование нескольких управляющих символов так, что их демодуляция достоверно возможна в задержанной среде.

Изобретение относится к технике связи и может использоваться в системах MIMO. Технический результат состоит в повышении помехоустойчивости каналов за счет использования формирования Специального Опорного Сигнала (DRS). Для этого способ включает этапы, на которых: формируют последовательность Опорного Сигнала (RS) каждого порта антенны, расширяют каждую последовательность RS и получают расширенную последовательность RS, умножают каждую расширенную последовательность RS на заранее определенный код скремблирования и получают требуемую последовательность DRS. Также предоставлено устройство для формирования DRS. Решается проблема несбалансированности мощности символов OFDM, и может быть привнесен случайный характер в помехи DRS между разными сотами. 4 н. и 16 з.п. ф-лы, 9 ил.

Изобретение относится к технике связи и может использоваться для систем беспроводной связи. Технический результат состоит в повышении помехоустойчивости путем обеспечения средств радиосвязи, которые подавляют межкодовые помехи между сигналом ACK/NACK и сигналом CQI и которые подвергнуты кодовому мультиплексированию. Для этого блок (214) расширения расширяет сигнал ACK/NACK, введенного из блока (208) оценки, посредством последовательности ZC. Блок (219) расширения расширяет сигнал CQI посредством использования последовательности ZC циклического сдвига. Используя последовательность Уолша, блок (216) расширения дополнительно расширяет сигнал ACK/NACK, который был подвергнут расширению посредством использования последовательности ZC. Блок (209) управления управляет блоком (214) расширения и блоком (219) расширения, так чтобы минимальное значение разности между сигналами CQI с множества мобильных станций и величиной циклического сдвига сигнала ACK/NACK не было меньшим, чем минимальное значение разности между величинами циклического сдвига сигналов ACK/NACK с множества мобильных станций. 4 н. и 42 з.п. ф-лы, 17 ил.

Изобретение относится к мобильной связи. Предложена мобильная станция (MS), позволяющая определять величины показателей качества сигнала. Такая мобильная станция может включать передатчик и приемник, так что приемник выполнен с возможностью определения значения мощности сигнала, значение мощности шумов и значение мощности помех сигнала, принимаемого от антенн. Приемник выполнен с возможностью определения значения мощности сигнала и значение мощности помех с использованием второй преамбулы, включенной в сверхкадр сигнала, так что эта вторая преамбула включает информацию о ячейках. Приемник выполнен с возможностью определения значения мощности шумов сигнала, принимаемого от множества антенн, с использованием незанятых тональных составляющих системы множественного доступа с ортогональным частотным разделением (OFDMA) из первой преамбулы, включенной в сверх-кадр сигнала, так что первая преамбула включает информацию несущих. Приемник также выполнен с возможностью использования характеристики режима частичного повторного использования частоты (FFR) и режима MIMO для определения значения показателя качества сигнала на основе указанных значения мощности сигнала, значения мощности шумов и значения мощности помех. 2 н. и 20 з.п. ф-лы, 8 ил.

Группа изобретений относится к области мобильной радиосвязи. Технический результат изобретения заключается в упрощении адаптивного управления каналом связи для осуществления передачи с частотным планированием. В устройстве блок модулирования модулирует кодированные данные канала Dch, чтобы сгенерировать символы данных канала Dch. Блок модулирования модулирует кодированные данные канала Lch, чтобы сгенерировать символы данных канала Lch. Блок назначения назначает символы данных канала Dch и канала Lch поднесущим, образующим символы OFDM, и выводит их в блок мультиплексирования. В это же время секция назначения назначает набор символов данных канала Dch и канала Lch каждой поднесущей для соответствующей подполосы. 2 н. и 19 з.п. ф-лы, 15 ил.

Изобретение относится к устройству мобильной станции беспроводной связи. Технический результат состоит в увеличении пропускной способности при связи на нескольких несущих. Для этого в упомянутом устройстве блок (107) управления группы управляет группой поднесущих из множества групп поднесущих, индикатор CQI которой должен быть сообщен, чтобы периодически сменять ее, следуя информации шаблона. Например, блок (107) управления группой сменяет группу поднесущих, индикатор CQI которой должен быть сообщен, по кадру или по интервалу времени передачи (TTI). Кроме того, блок (107) управления группой задает группу поднесущих, индикатор CQI которой должен быть сообщен, блоку (108) определения SINR и блоку (109) генерации CQI. 6 н. и 21 з.п. ф-лы, 6 ил.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении точности обнаружения информации управления. Для этого пользовательское оборудование (ПО) контролирует кандидатов физического нисходящего канала управления (PDCCH) в общих поисковых пространствах (CSS) и специфических для пользовательского оборудования поисковых пространствах (USS). Если ПО конфигурировано с планированием между несущими, когда два кандидата PDCCH, исходящие из CSS и USS соответственно, имеют циклический избыточный код (CRC) скремблированный одним и тем же временным идентификатором радиосети (RNTI) и имеют обычный размер полезной нагрузки и тот же самый первый индекс элемента канала управления (ССЕ), ПО может интерпретировать, что передается только PDCCH, исходящий из CSS. 5н. и 10 з.п. ф-лы, 8 ил.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении надежности связи. Для этого устройство обработки сигнала содержит устройство расчета, во время работы выполняющее расчет преобразования, выполненный с возможностью преобразования Фурье сигнала OFDM в области времени, то есть сигнала ортогонального мультиплексирования с частотным разделением каналов в сигнал OFDM в области частоты; устройство обработки, во время работы выполняющее детектирование смещения несущей частоты, выполненное с возможностью детектирования оценки смещения несущей частоты, которое представляет собой ошибку несущей частоты, используемой для демодуляции сигнала OFDM; и устройство коррекции смещения несущей частоты, во время работы выполняющее коррекцию смещения несущей частоты, выполненную с возможностью коррекции смещения несущей частоты сигнала OFDM в области частоты, в соответствии с оценкой смещения несущей частоты. 3 н. и 2 з.п. ф-лы, 18 ил.

Изобретение относится к системе беспроводной связи и раскрывает, в частности, базовую станцию, которая включает в себя схему тракта передачи, чтобы передавать индикацию относительно того, выполнена ли абонентская станция с возможностью передачи сообщений индикатора матрицы предварительного кодирования/индикатора ранга (PMI/RI). Схема тракта передачи устанавливает степень детализации предварительного кодирования на множество блоков физических ресурсов в частотной области, чтобы выполнять одинаковое предварительное кодирование по объединенному блоку ресурсов, если абонентская станция выполнена с возможностью передачи сообщений PMI/RI. Объединенный блок ресурсов включает в себя множество последовательных блоков физических ресурсов в частотной области. Базовая станция также включает в себя схему тракта приема, чтобы принимать обратную связь от абонентской станции. 7 н. и 13 з.п. ф-лы, 19 ил.

Изобретение относится к технике связи и может использоваться в мобильных системах связи. Технический результат состоит в повышении пропускной способности каналов передачи. Для этого базовая станция имеет возможность выполнять поиск ячейки всех мобильных станций, имеющих различающиеся по ширине полосы частот для выполнения связи в системе связи с масштабируемой шириной полосы, в которой применяется способ многочастотной связи OFDM. Базовая станция содержит: блок (102) модуляции для модуляции данных SCH после кодирования; блок (105) установки поднесущей для установки одной из поднесущих на поднесущую SCH, образующую символ OFDM для передачи данных SCH, и блок (106) IFFT для генерации символа OFDM. Блок (105) установки поднесущей устанавливает одну из поднесущих, которая имеет частоту общего кратного между интервалом поднесущей и интервалом поиска ячейки, в качестве поднесущей SCH. 4 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к беспроводным системам связи, которые предоставляют телекоммуникационные услуги для фиксированных и мобильных абонентов, и раскрывает варианты осуществления способов и устройства для распределения ресурсов для физических каналов управления восходящей передачи. 5 н. и 25 з.п. ф-лы, 11 ил., 1 табл.
Наверх