Бездемонтажный способ поверки виброакустических приемников



Бездемонтажный способ поверки виброакустических приемников
Бездемонтажный способ поверки виброакустических приемников
Бездемонтажный способ поверки виброакустических приемников
Бездемонтажный способ поверки виброакустических приемников
Бездемонтажный способ поверки виброакустических приемников
Бездемонтажный способ поверки виброакустических приемников
Бездемонтажный способ поверки виброакустических приемников
Бездемонтажный способ поверки виброакустических приемников

 


Владельцы патента RU 2538034:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений" (ФГУП "ВНИИФТРИ") (RU)

Изобретение относится к контрольно-измерительной технике и может быть использовано для дистанционной поверки пьезоэлектрических приемников. Способ контроля заключается в подаче на дистанционные приемники, состоящие из инерционной массы, пьезоэлемента и усилителя заряда, от генератора синусоидальных колебаний тестовых сигналов различной частоты и определении отклика приемника. Затем осуществляется определение резонансной и антирезонансной частот, при которых выходной сигнал приемника достигает соответственно максимального и минимального значений. По величинам измеренных частот и коэффициента передачи усилителя определяют коэффициент преобразования приемника, динамический коэффициент электромеханической связи и коэффициент механической добротности поверяемого приемника. При этом тестовый сигнал имеет монотонно изменяющуюся частоту, а постоянная приемника определяется основе инерционной массы поверяемого приемника и емкости отрицательной связи усилителя заряда поверяемого приемника. После определения коэффициента механической добротности приемники отбраковывают при условии, что величина добротности меньше 30. Технический результат - расширение функциональных возможностей за счет обеспечения дистанционного контроля пьезоприемников. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к контрольно-измерительной технике и метрологии и может быть использовано для дистанционной поверки пьезоэлектрических приемников, состоящих из инерционной массы и электрически соединенных пьезоэлемента и усилителя, в натурных условиях.

Известен способ аналогичного назначения, согласно которому возбуждают пьезоэлектрический гидрофон нормированным электрическим сигналом последовательно на частотах, составляющих рабочий диапазон гидрофона, путем подачи от внешнего генератора синусоидального напряжения замещения гидроакустического давления гидрофона, полученного в результате измерения падения напряжения на резисторе, включенном относительно пьезоэлектрической части гидрофона на землю и находящемся во векторном усилителе, возбужденного при первичной поверке заданным значением гидроакустического давления на заданной частоте. (Патент РФ №2439841, кл. H04R 29/00, 2012 г.)

Недостатком аналога является ограниченность его применения лишь случаем контроля состояния электрического тракта пьезоэлектрических приемников без определения других важнейших характеристик приемника, например, коэффициента преобразователя поверяемого приемника, коэффициент передачи усилителя, коэффициента добротности поверяемого приемника и т.д.

Известны способы аналогичного назначения, реализуемые в гидрофонах и векторном приемнике, заключающиеся в подаче тестового сигнала на усилитель через пьезоэлемент поверяемого приемника, расположенного на своем штатном месте, и измерении отклика этого приемника на подаваемый тестовый сигнал, по величине которого судят о значении коэффициента преобразования поверяемого приемника. /Патент РФ №88236, кл. H04R 1/44, 2009; Патент РФ №2393643, кл. H04R 1/44, 2010; Патент РФ №88237, кл. H04R 1/44, 2009/

В прототипе в качестве испытуемого приемника выступает векторный приемник, состоящий из инерционной массы (ИМ) и электрически соединенных пьезоэлемента и усилителя. Причем в качестве ИМ в прототипе выступает непосредственно биморфный элемент (если бы в качестве прототипа выступал сферический гидрофон, то в качестве ИМ в нем выступал бы сферический корпус).

В состав поверяемого приемника также входит конденсатор с емкостью, равной электрической емкости пьезоэлемента. Конденсатор может дистанционно подсоединяться ко входу усилителя вместо пьезоэлемента. Это позволяет периодически контролировать целостность и герметичность приемника без его демонтажа непосредственно в натурных условиях и всего лишь судить о значении коэффициента преобразования его предусилителя.

Недостатком прототипа является невозможность дистанционного определения коэффициента М преобразования приемника и других его метрологических характеристик для проведения периодической поверки виброакустических преобразователей непосредственно в натурных условиях.

Техническим результатом, получаемым от внедрения изобретения, является устранение недостатка прототипа, т.е. получение возможности определения основных метрологических характеристик поверяемого приемника дистанционно в натурных условиях.

Данный технический результат достигается за счет того, что в известном бездемонтажном способе поверки виброакустических приемников, состоящих из инерционной массы и электрически соединенных пьезоэлемента и усилителя, заключающемся в подаче тестового сигнала на усилитель через пьезоэлемент поверяемого приемника, расположенного на своем штатном месте, и измерении отклика этого приемника на подаваемый тестовый сигнал, по величине которого судят о значении коэффициента преобразования поверяемого приемника, в качестве усилителя поверяемого приемника применяют усилитель заряда, а в качестве тестового сигнала задают синусоидальный сигнал с монотонно изменяющейся частотой f, при этом последовательно определяют значения резонансной fp и антирезонансной fa частот поверяемого приемника, а коэффициент М преобразования поверяемого приемника определяют из формулы:

M = A  K d N 2 π  f a 1 1 f 2 / f a 2                              (1) ,

где K d = 1 ( f p / f a ) 2                               (2)

- динамический коэффициент электромеханической связи поверяемого приемника; A - постоянная приемника; N - коэффициент передачи усилителя поверяемого приемника через его пьезоэлемент.

Коэффициент N передачи усилителя поверяемого приемника через его пьезоэлемент определяют путем подачи на усилитель заряда через пьезоэлемент напряжения Uвх и измерения выходного напряжения Uвых приемника, при этом коэффициент N определяют по формуле:

N = U в х U в ы х                                                     (3) .

Постоянная A приемника определяется по формуле:

A = m C о с                                                (4) ,

где m - инерционная масса поверяемого приемника; Cос - емкость отрицательной обратной связи усилителя заряда поверяемого приемника.

Постоянная приемника A определяется предварительно в лабораторных условиях по формуле:

A = M  2 π  f a K d   N ( 1 f 2 f a 2 )                                   (5) ,

где M - коэффициент преобразования приемника на частоте f, определенный на эталонной виброустановке при первичной поверке.

Дополнительно измеряют напряжения Umax и Umin, соответствующие значениям резонансной fp и антирезонансной fa, частот и определяют коэффициент QM механической добротности поверяемого приемника по формуле:

Q M = U max 1 U min K d U max U min 2                                          (6) .

После определения коэффициента QM механической добротности поверяемого приемника отбраковывают как не прошедшие поверку приемники со значением QM<30.

Изобретение поясняется чертежами.

На фиг.1 представлена схема устройства для реализации способа; на фиг.2 - частотная диаграмма для пояснения работы устройства.

Устройство содержит электрически соединенные пьезоэлемент 1, представленный в виде последовательно соединенных генератора и конденсатора, и усилитель 2 заряда (или предусилитель 2 заряда), представленный в виде операционного усилителя ОУ, охваченного отрицательной обратной связью посредством конденсатора емкости Сос.

Пьезооэлемент 1 выполнен с возможностью дистанционной подачи на него через кабель синусоидального тестового сигнала от генератора 3 через тумблер 4.

При этом на входе пьезоэлемента возникает синусоидальный тестовый сигнал Uвх(f), а на выходе усилителя 2 заряда - сигнал отклика Uвых(f) поверяемого приемника.

Принцип реализации способа описывается моделью высокодобротной колебательной системы с одной степенью свободы, представляющей собой инерционную массу m на пружине жесткостью k, опертой на основание, на которое действует ускорение a .

Возникающая при этом сила инерции деформирует пьезоэлемент (на модели - пружину), в результате чего на обкладках пьезоэлемента, электрическая емкость которого -C, возникает электрическое напряжение U.

Для рассматриваемой модели справедливы соотношения / [1] Механика связанных полей в элементах конструкций. Т5. Электроупругость. Гришина В.Т. и др. Ин-т механики. Киев. Наукова думка. 1989. ISBN-5-12-000378-8, стр, 135-137/.

E M = 1 2 k x 2                                        (7) ,

где x - деформация пружины; EM - потенциальная энергия.

E э = c U 2 2                                         (8) ,

где Eэ - энергия конденсатора.

ω 0 = 2 π f 0 = k m                                      (9) ,

где ω0 - собственная частота.

F u = m a                                                  (10) ,

где Fu - сила инерции.

F n = k x                                                  (11)

- закон Гука,

где Fn - сила реакции пружины.

- закон Ньютона,

откуда k x = m a ( 1 f 2 f 0 2 )                             (13)

K d = E э E M                                                (14)

- динамический коэффициент электромеханической связи по определению [1].

K d 2 = 1 ( f p f a ) 2                                        (15)

- формула У. Мэзона.

γ = U a                                                   (16)

- коэффициент преобразования пьезоэлемента при разомкнутых электродах.

f 0 = f a                                                 (17)

- имеет место при разомкнутых электродах пьезоэлемента.

N = U в ы х U Г = c c о с                                   (18) ,

где сос - емкость обратной связи ОУ, UГ - напряжение генератора на частоте f, Uвых - напряжение на выходе приемника.

Характер зависимости N=N(f) от частоты приведен на рис.2 [2].

M = N γ                                                (19) ,

где М - коэффициент преобразования приемника.

K d 2 = E э E M = c U 2 k x 2 = k c U 2 ( k x ) 2 = k c U 2 ( 1 f f 0 ) 2 ( m a ) 2 = c 1 m k m ( U a ) 2 ( 1 f 2 f 0 2 ) = = 1 m c ω a 2 γ 2 ( 1 f 2 f a 2 ) = c m ω a 2 M 2 ( 1 f 2 f a 2 ) 2 N 2 = c о с m ω a 2 M 2 [ 1 ( f f a ) 2 ] N                 (20)

откуда

M = m c о с K d N ω a ( 1 f 2 f a 2 ) = A K d N 2 π f a 1 1 f 2 f a 2                                          (21)

где A = m c о с  - постоянная   приемника                      (22) .

Для случая распределенной массы и неоднородной деформации пьезоэлемента постоянная приемника А определяется при первичной поверке из (22)

A = M π f a ( 1 f 2 f a 2 ) K d N                                                               (23) ,

где M - коэффициент преобразования приемника на частоте f, определяемый на эталонной виброустановке при первичной поверке.

Коэффициент QМ механической добротности определяется по формуле (6) /[2] «Справочник по гидроакустике». А.П. Евтюков, А.Е. Колесников и др. 2-е изд. -Л.: Судостроение, 1988, стр. 296-299/.

При реализации способа с помощью генератора 3 через тумблер 4 на пьезоэлемент 1 подают синусоидальный тестовый сигнал в диапазоне рабочих частот f при неизменной амплитуде, например, 0,5 В.

Находят резонансную fp и антирезонансную fa частоты, при которых напряжения на выходе Uвых приемника достигают соответственно значений Umax и Umin.

Затем определяются динамический коэффициент Kd электромеханической связи, коэффициент M преобразования и коэффициент QM механической добротности по математическим соотношениям (2), (1), (6).

При этом если определенный по формуле (6) коэффициент qm механической добротности будет меньше 30, то поверяемый приемник отбраковывается несмотря на результаты, полученные при определении М. Поскольку в этом случае формулы (1), (2) будут некорректны с погрешностью 2% из-за несовершенства принятой модели.

Таким образом, бездемонтажный способ поверки виброакустических приемников позволяет в натурных условиях определить коэффициент М преобразования в зависимости от частоты, динамический коэффициент Kd электромеханической связи и коэффициент QM механической добротности поверяемого приемника и по найденным значениям М, Kd, и QM судить о его метрологическом и техническом состоянии.

1. Бездемонтажный способ поверки виброакустических приемников, состоящих из инерционной массы и электрически соединенных пьезоэлемента и усилителя, заключающийся в подаче тестового сигнала на усилитель через пьезоэлемент поверяемого приемника, расположенного на своем штатном месте, и измерении отклика этого приемника на подаваемый тестовый сигнал, по величине которого судят о значении коэффициента преобразования поверяемого приемника, отличающийся тем, что в качестве усилителя поверяемого приемника применяют усилитель заряда, а в качестве тестового сигнала задают синусоидальный сигнал с монотонно изменяющейся частотой f, при этом последовательно определяют значения резонансной fp и антирезонансной fa частот поверяемого приемника, а коэффициент М преобразования поверяемого приемника определяют из формулы:
,
где - динамический коэффициент электромеханической связи поверяемого приемника; A - постоянная приемника; N - коэффициент передачи усилителя поверяемого приемника через его пьезоэлемент.

2. Бездемонтажный способ по п.1, отличающийся тем, что коэффициент N передачи усилителя поверяемого приемника через его пьезоэлемент определяют путем подачи на усилитель заряда через пьезоэлемент напряжения Uвх и измерения выходного напряжения Uвых приемника, при этом коэффициент N определяют по формуле:
N = U в х U в ы х .

3. Бездемонтажный способ по п.1, отличающийся тем, что постоянная A приемника определяется по формуле:
A = m C о с ,
где m - инерционная масса поверяемого приемника; Сос - емкость отрицательной обратной связи усилителя заряда поверяемого приемника.

4. Бездемонтажный способ по п.1, отличающийся тем, что постоянная приемника А определяется предварительно в лабораторных условиях по формуле:
,
где M - коэффициент преобразования приемника на частоте f, определенный на эталонной виброустановке при первичной поверке.

5. Бездемонтажный способ по п.1, отличающийся тем, что дополнительно измеряют напряжения Umax и Umin, соответствующие значениям резонансной fp и антирезонансной fa частот, и определяют коэффициент QM механической добротности поверяемого приемника по формуле:
Q M = U max 1 U min K d U max U min 2

6. Бездемонтажный способ по п.5, отличающийся тем, что после определения коэффициента QM механической добротности поверяемого приемника отбраковывают как не прошедшие поверку приемники со значением QM<30.



 

Похожие патенты:

Изобретение относится к области измерительной техники. Предварительно определяют первичное действительное значение коэффициента преобразования преобразователя, а непосредственно после установки вибропреобразователя на место эксплуатации определяют и запоминают емкость вибропреобразователя с кабелем и конструктивный коэффициент.

Изобретение относится к электрическим испытаниям электрооборудования на восприимчивость к электромагнитному воздействию. Способ испытаний микропроцессорной системы управления двигателем автотранспортного средства на восприимчивость к электромагнитному воздействию, в котором испытуемую систему управления в составе транспортного средства подвергают импульсному воздействию электромагнитного излучения с помощью генератора грозового разряда.
(57) Заявленная группа изобретений относится к области измерительной техники. Система характеризуется наличием базовой станции и беспроводных датчиков, выполненных с возможностью обмена информацией по радиоканалам в цифровом формате благодаря использованию уникальных серийных номеров, выполненных без возможности изменения.

Группа изобретений относится к измерительной технике и может быть использована для определения параметров гидроакустических пьезоэлектрических преобразователей.

Изобретение относится к измерительной технике и может быть использовано для определения мощности гидроакустических излучателей разного типа, входящих в состав гидролокаторов, систем гидроакустической связи, телеметрии, комплексов гидроакустического телеуправления и т.д., в процессе их диагностики в реальных условиях эксплуатации.

Изобретение относится к области измерительной техники, а именно к виброметрии, и может быть использовано для измерения амплитуды механических колебаний поверхностей твердых тел в диапазоне звуковых и ультразвуковых частот, в частности для измерения амплитуды колебаний многополуволновых излучателей переменного сечения ультразвуковых колебательных систем, используемых в составе аппаратов, предназначенных для интенсификации технологических процессов.

Изобретение относится к мониторингу промышленного оборудования, в частности к датчику скорости. .

Изобретение относится к медицинской технике, а именно к датчику пульсовой волны. .

Изобретение относится к области проверки метрологических характеристик виброизмерительных преобразователей (датчиков) и определения возможности их дальнейшего использования без демонтажа с объекта эксплуатации.

Изобретение относится к области измерительной техники и может быть использовано, в частности, в балансировочных станках, динамометрах, акселерометрах и других приборах и оборудовании.
Наверх