Способ сжижения фракции, обогащенной углеводородами



Способ сжижения фракции, обогащенной углеводородами
Способ сжижения фракции, обогащенной углеводородами

 


Владельцы патента RU 2538156:

ЛИНДЕ АКЦИЕНГЕЗЕЛЛЬШАФТ (DE)

Изобретение относится к способу сжижения фракции, обогащенной углеводородами. Согласно способу, охлаждение и сжижение фракции, обогащённой углеводородами, происходит путём опосредованного теплообмена с холодильной смесью циркуляционного контура холодильной смеси. Холодильная смесь сжимается в две ступени, а после каждой ступени сжатия разделяется на газообразную и жидкую фракции. Газообразная фракция последней ступени сжатия охлаждается до самого низкого температурного уровня, в то время как жидкая фракция одной из промежуточных ступеней сжатия охлаждается до температурного уровня выше самого низкого температурного уровня. Жидкая фракция, охлаждаемая до температурного уровня выше самого низкого температурного уровня, охлаждается перед опосредованным теплообменом со сжижаемой фракцией, обогащённой углеводородами. Причем указанное охлаждение жидкой фракции, охлаждаемой до более высокого температурного уровня, происходит путём опосредованного теплообмена с кипящими фракциями или одной кипящей фракцией, происходящей со стадии разделения на газообразную и жидкую фракции, которая следует за последующей ступенью сжатия. Изобретение направлено на предотвращение нежелательного образования двухфазного потока и связанных с этим недостатков. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к способу сжижения фракции, обогащенной углеводородами, причем охлаждение и сжижение фракции, обогащенной углеводородами, происходит путем косвенного теплообмена с холодильной смесью циркуляционного контура холодильной смеси, холодильная смесь сжимается по меньшей мере в две ступени, а после каждой ступени сжатия разделяется на газообразную и жидкую фракции, причем газообразная фракция последней ступени сжатия охлаждается до самого низкого температурного уровня, в то время как жидкая фракция промежуточных ступеней или по меньшей мере одной из них охлаждается до температурного уровня выше самого низкого температурного уровня.

В процессах сжижения природного газа производительностью 30000-3 млн. т. сжижаемого природного газа (LNG) в год зачастую используются смешанные циркуляционные контуры только с одним компрессором в контуре, они называются также процессами сжижения SMR (Single Mixed Refrigerant - единственный смешанный хладагент).

Подобный способ сжижения фракции, обогащенной углеводородами, более подробно будет показан на основе процесса сжижения, изображенного на фиг.1.

Компрессор циркуляционного контура, необходимый для этого процесса сжижения, содержит две ступени V1 и V2 сжатия. Холодильная смесь, сжатая на первой ступени V1 сжатия, обычно сжатие происходит до 10-40 бар, предпочтительно до 15-25 бар, в дополнительном охладителе или теплообменнике Е1, предпочтительно частично конденсируется под действием окружающего воздуха или воды и по трубопроводу 1 подается в сепаратор D1. В последнем происходит разделение на газообразную, а также жидкую фракции. Газообразная фракция по трубопроводу 2 подается на вторую ступень V2 сжатия и в ней сжимается до желательного конечного давления, обычно 25-80 бар, предпочтительно до 30-50 бар.

Ко второй ступени V2 сжатия также подключен дополнительный охладитель Е2, в котором сжатая фракция хладагента предпочтительно охлаждается под действием окружающего воздуха или воды. По трубопроводу 4 эта фракция хладагента затем подается в дополнительный сепаратор D2.

Газообразная фракция хладагента, отведенная от головной части сепаратора D2 по трубопроводу 5, подается в основной теплообменник Е, в нем под действием нагреваемых технологических потоков охлаждается и отводится с холодного конца теплообменника Е по трубопроводу 7. Теплообменник Е предпочтительно выполнен в виде многопоточного теплообменника, в частности, пластинчатого или витого теплообменника.

По трубопроводу 20 сжижаемая фракция, обогащенная углеводородами, в случае которой речь идет, например, о потоке природного газа, подается в теплообменник Е. После сжижения сжиженный поток продукта по трубопроводу 21 отводится из теплообменника Е и подается для его дальнейшего использования или на промежуточное хранение.

Фракция хладагента, отведенная из теплообменника Е по трубопроводу 7, расширяется в клапане с образованием холода и по трубопроводу 8 в противоток охлаждаемой и сжижаемой фракции 20, обогащенной углеводородами, пропускается через теплообменник Е. Затем эта фракция хладагента по участкам 8 и 8' трубопровода подается на первую ступень V1 сжатия.

Жидкая фракция, отведенная из отстойника сепаратора D1 по трубопроводу 3, после охлаждения в теплообменнике Е по трубопроводу 9 отводится из него, расширяется в клапане b с образованием холода, а затем по трубопроводу 10 в противоток охлаждаемой и сжижаемой фракции, обогащенной углеводородами, пропускается через теплообменник Е. Затем эта фракция хладагента смешивается с вышеописанной фракцией хладагента в трубопроводе 7 и вместе с ней по трубопроводу 8' подается на первую ступень V1 сжатия.

Жидкая фракция, образующаяся в отстойнике второго сепаратора D2, расширяется в клапане с образованием холода до давления в первом сепараторе D1 и снова оказывается впереди него.

Жидкая фракция хладагента, отведенная из сепаратора D1 по трубопроводу 3, обычно находится в состоянии кипения. Однако кипящая холодильная жидкость, как правило, испытывает падение давления за счет трения и/или в результате увеличения протяженности трубопровода. Это падение давления неизбежно приводит к частичной газации легких компонентов этой фракции хладагента. Поэтому происходит нежелательное образование двухфазного потока. Это может привести к нестабильности динамики потока в трубопроводах и/или к ошибочному распределению - под этим следует понимать неравные составляющие газа и жидкости в параллельных траекториях течения, например теплообменников - в последующем оборудовании.

Задачей настоящего изобретения является создание такого способа сжижения фракции, обогащенной углеводородами, который лишен вышеупомянутых недостатков.

Для решения этой задачи предлагается способ сжижения фракции, обогащенной углеводородами, отличающийся тем, что жидкая фракция, охлаждаемая до температурного уровня, находящегося выше самого низкого температурного уровня, охлаждается перед косвенным теплообменом со сжижаемой фракцией, обогащенной углеводородами.

Благодаря предусматриваемому охлаждению, или переохлаждению, жидкой фракции хладагента можно эффективно противодействовать образованию двухфазного потока и недостаткам, связанным с этим.

Другие предпочтительные варианты выполнения способа сжижения фракции, обогащенной углеводородами, согласно изобретению представляющие собой предмет зависимых пунктов формулы изобретения, отличаются тем, что

- жидкая фракция, охлаждаемая до более высокого температурного уровня, охлаждается перед косвенным теплообменом со сжижаемой фракцией, обогащенной углеводородами, до температуры на 2-15°С, предпочтительно 4-7°С, ниже температуры сжатой холодильной смеси при разделении на газообразную и жидкую фазы,

- охлаждение жидкой фракции, охлаждаемой до более высокого температурного уровня, происходит путем косвенного теплообмена с кипящими фракциями или одной кипящей фракцией, являющейся результатом идущего за последующей ступенью сжатия разделения на газообразную и жидкую фракции,

- теплообмен между сжижаемой фракцией, обогащенной углеводородами, и холодильной смесью происходит в многопоточном теплообменнике, выполненном предпочтительно в виде пластинчатого или витого теплообменника, а

- по крайней мере периодически по меньшей мере часть потока той фракции, которая охлаждается до самого низкого температурного уровня, расширяется и подмешивается к расширенной жидкой фракции той фракции, которая охлаждается до температурного уровня выше самого низкого температурного уровня.

Способ сжижения фракции, обогащенной углеводородами согласно изобретению, а также его другие варианты выполнения более подробно поясняются ниже на примере выполнения, изображенном на фиг.2. При описании примера выполнения, изображенного на фиг.2, ниже речь пойдет лишь об отличиях от технологического процесса, изображенного на фиг.1.

Теперь согласно изобретению предусмотрен теплообменник Е3, обеспечивающий теплообмен между жидкими фракциями, отводимыми из сепараторов D1 и D2 по трубопроводам 3 и 6. Поскольку жидкая фракция, отводимая по трубопроводу 6 из сепаратора D2, расширяется до давления в сепараторе D1, жидкая фракция в результате частичного испарения охлаждается до температуры ниже температура процесса, достигаемая в дополнительных охладителях Е1 и Е2. Теперь охлажденная таким образом жидкая фракция в трубопроводе 6 после клапана охлаждает или же переохлаждает, в теплообменнике Е3 жидкую фракцию, отводимую из сепаратора D1 по трубопроводу 3.

При этом происходит охлаждение, или переохлаждение, жидкой фракции 3 на 2-15°С, предпочтительно на 4-7°С ниже температуры процесса, достигаемой в дополнительных охладителях Е1 и Е2.

Теперь охлажденная таким образом жидкая фракция, отводимая из сепаратора D1 по трубопроводу 3, может подаваться в теплообменник Е и пропускаться через него без возникновения вышеописанных отрицательных эффектов.

Теплообменник Е3 предпочтительно выполнен в виде противоточного, например прямотрубного, теплообменника. Предпочтительным образом на практике теплообменник Е3 выполняется таким образом, чтобы он устанавливался под клапаном с и над сепаратором D1. Этот перепад между клапаном с, теплообменником Е3 и сепаратором D1 способствует поддержанию стабильности двухфазного течения потока 6 после расширения.

Предлагается усовершенствованный вариант выполнения способа сжижения фракции, обогащенной углеводородами, согласно изобретению, по крайней мере с периодическим расширением по меньшей мере части потока той фракции, которая охлаждается до самого низкого температурного уровня, и с подмешиванием к расширенной жидкой фракции той фракции, которая охлаждается до температурного уровня выше самого низкого температурного уровня. Такой технологический процесс реализуется, например, за счет того, что частичные потоки холодильной смеси при соответствующей промежуточной температуре отводятся по трубопроводам 11 и/или 12 с холодного конца теплообменника Е, расширяются в клапане d или е и подмешиваются к соответствующей жидкой фракции 9. Соответствующая промежуточная температура имеет место тогда, когда фракция хладагента 5 обнаруживает переохлаждение по меньшей мере порядка 5°С, предпочтительно по меньшей мере порядка 10°С, относительно состояния кипения. На практике в большинстве случаев предусмотрен клапан d или е. Такой технологический процесс обеспечивает улучшение регулирования температуры, или температурного профиля, в теплообменнике Е.

Вариант выполнения, изображенный на фиг.2, благодаря реализованной в нем интеграции переохлаждения жидкой фракции 3 в компрессор V1/V2 имеет то преимущество, что перед подачей в теплообменник Е температура жидкой фракции 3 может устанавливаться ниже той температуры, которая могла бы быть реализована в случае охлаждения под действием окружающего воздуха или охлаждающей воды без необходимости в дополнительном охлаждении с помощью отдельной холодильной установки и/или другого холодного технологического потока.

Принцип действия, изображенный на фиг.2, обеспечивает желательное разделение между переохлаждением хладагента 3, реализуемым в теплообменнике Е3, и эксплуатацией других элементов оборудования. Это разделение имеет значение, в частности, при инициировании процесса сжижения, поскольку холодные технологические потоки обычно становятся доступными только после инициирования процесса, т.е. они не могут использоваться для переохлаждения с самого начала.

Способ сжижения фракции, обогащенной углеводородами, согласно изобретению при незначительных дополнительных конструктивных затратах следует предусмотреть только один дополнительный теплообменник Е3, обеспечивает устранение вышеупомянутых проблем, возникающих в случае процессов сжижения, относящихся к уровню техники.

1. Способ сжижения фракции, обогащённой углеводородами, где охлаждение и сжижение фракции, обогащённой углеводородами, происходит путём опосредованного теплообмена с холодильной смесью циркуляционного контура холодильной смеси, холодильная смесь сжимается по меньшей мере в две ступени, а после каждой ступени сжатия разделяется на газообразную и жидкую фракции, причём газообразная фракция последней ступени сжатия охлаждается до самого низкого температурного уровня, в то время как жидкая фракция по меньшей мере одной из промежуточных ступеней сжатия охлаждается до температурного уровня выше самого низкого температурного уровня, отличающийся тем, что жидкая фракция (3), охлаждаемая до температурного уровня выше самого низкого температурного уровня, охлаждается (ЕЗ) перед опосредованным теплообменом (Е) со сжижаемой фракцией (20), обогащённой углеводородами, причем указанное охлаждение (ЕЗ) жидкой фракции (3), охлаждаемой до более высокого температурного уровня, происходит путём опосредованного теплообмена с кипящими фракциями или одной кипящей фракцией (6), происходящей со стадии разделения (D2) на газообразную и жидкую фракции, которая следует за последующей ступенью сжатия (V2).

2. Способ по п.1, отличающийся тем, что жидкая фракция (3), охлаждаемая до более высокого температурного уровня, охлаждается (ЕЗ) перед опосредованным теплообменом (Е) со сжижаемой фракцией (20), обогащённой углеводородами, до температуры на 2-15°С, предпочтительно, 4-7°С, ниже температуры сжатой холодильной смеси при разделении (D1) на газообразную и жидкую фазы.

3. Способ по п.1 или 2, отличающийся тем, что теплообмен между сжижаемой фракцией (20), обогащённой углеводородами, и холодильной смесью (3, 5, 7, 9) происходит в многопоточном теплообменнике (Е), выполненном предпочтительно в виде пластинчатого или витого теплообменника.

4. Способ по п.1, отличающийся тем, что теплообмен между сжижаемой фракцией (20), обогащённой углеводородами, и холодильной смесью (3, 5, 7, 9) происходит в многопоточном теплообменнике (Е), выполненном предпочтительно в виде пластинчатого или витого теплообменника.

5. Способ по одному из пп.1, 2 или 4, отличающийся тем, что, по крайней мере периодически, по меньшей мере часть (11, 12) потока той фракции (5, 7), которая охлаждается (Е) до самого низкого температурного уровня, расширяется и подмешивается к расширенной жидкой фракции той фракции (9), которая охлаждается (Е) до температурного уровня выше самого низкого температурного уровня.

6. Способ по п.3, отличающийся тем, что, по крайней мере периодически, по меньшей мере часть (11, 12) потока той фракции (5, 7), которая охлаждается (Е) до самого низкого температурного уровня, расширяется и подмешивается к расширенной жидкой фракции той фракции (9), которая охлаждается (Е) до температурного уровня выше самого низкого температурного уровня.



 

Похожие патенты:

Группа изобретений относится к способу и устройству для получения охлажденного углеводородного потока. В способе используется охлаждение, по меньшей мере, при двух последовательных уровнях давления.

Описывается способ сжижения фракции с высоким содержанием углеводородов при одновременном удалении фракции с высоким содержанием C2+, при этом охлаждение и сжижение фракции с высоким содержанием углеводородов происходит при непрямом теплообмене посредством смеси хладагентов циркуляционного контура смеси хладагентов, в котором смесь хладагентов подвергается по меньшей мере двухступенчатому сжатию, и удаление фракции с высоким содержанием C2+ происходит на регулируемом уровне температуры, при этом смесь хладагентов разделяется на газообразную и жидкую фракцию, обе фракции переохлаждаются, расширяются, по существу, до давления всасывания первой ступени компрессора и по меньшей мере частично выпариваются.

Группа изобретений относится к способу охлаждения потока газообразных углеводородов. Газообразный поток углеводородов охлаждают для получения потока сжиженных углеводородов.

В способе и устройстве для охлаждения углеводородного потока охлаждаемый углеводородный поток (45) подвергается теплообмену в первом теплообменнике (50) с по меньшей мере одним потоком хладагента (145b, 185b), характеризующимся скоростью (FR1) первого потока хладагента, в результате чего образуется охлажденный углеводородный поток (55), характеризующимся скоростью (FR2) охлажденного углеводородного потока, и по меньшей мере один возвратный поток (105) хладагента.

Описаны установка сжиженного природного газа, которая использует систему для удаления неконденсируемого материала из одного или более холодильных циклов в пределах установки, и способ ее работы.

Способ сжижения природного газа, в котором природный газ охлаждается, конденсируется и переохлаждается в результате непрямого теплообмена с двумя охлаждающими смесями, циркулирующими в контурах.

Подаваемый газ сжижается с использованием замкнутой холодильной системы, в которой поток (150) охлажденного сжатого газообразного хладагента расширяется (136) для предоставления первого потока (154) расширенного газообразного хладагента, который, по существу, является паром, и используется для охлаждения и, по существу, сжижения потока (100) подаваемого газа посредством косвенного теплообмена (110).

Способ привода в действие двух или большего количества компрессоров для хладагента в процессе охлаждения углеводородов. В таком процессе охлаждения углеводородов исходный поток углеводородов может быть пропущен в противотоке с частично испаренными потоками хладагента.

Установка для получения сжиженного природного газа использует улучшенную систему регенерации азота, которая концентрирует все количество азота в потоке исходных материалов в установке регенерации азота, для повышения эффективности разделения установки регенерации азота.

Предложен поток холодильного агента (10) при давлении холодильного агента, который пропускают по меньшей мере через три теплообменных этапа (12, 14, 16, 18), работающих при различных уровнях давления.

Группа изобретений относится к способу и установке для очистки многофазного углеводородного потока. Многофазный углеводородный поток очищают, получая очищенный жидкий углеводородный поток, такой как поток сжиженного природного газа. Многофазный углеводородный поток подается в первый газожидкостный сепаратор, в котором этот поток разделяется при первом давлении на углеводородный паровой поток первого сепаратора и нижний поток первого сепаратора. Нижний поток первого сепаратора разделяется затем во втором газожидкостном сепараторе при втором давлении, которое меньше первого давления, с образованием углеводородного парового потока второго сепаратора и очищенного жидкого углеводородного потока. Углеводородный паровой поток второго сепаратора подвергается сжатию в компрессоре для верхнего потока, в результате чего получают отпаривающий паровой поток, который подается в первый газожидкостный сепаратор. Группа изобретений направлена на создание способа и установки для получения очищенного жидкого углеводородного потока, который не требует для создания потока орошения использования холода в верхнем газообразном потоке. 2 н. и 15 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к способу сжижения природного газа в установке, состоящей из двух контуров охлаждения, в которой охлаждают природный газ путем теплообмена с первой охлаждающей смесью, в первом контуре охлаждения. Для этого сжимают первую охлаждающую смесь MR1; конденсируют сжатую первую охлаждающую смесь; переохлаждают природный газ и сжатую и сконденсированную первую охлаждающую смесь путем теплообмена с первой расширенной фракцией; разделяют переохлажденную первую охлаждающую смесь на первую и вторую фракции, расширяют первую фракцию до первого уровня давления; охлаждают природный газ и вторую фракцию путем теплообмена со второй фракцией, расширенной до второго уровня давления. Далее сжижают указанный природный газ, путем теплообмена со второй охлаждающей смесью, во втором контуре охлаждения. Для этого сжимают указанную вторую охлаждающую смесь MR2; конденсируют вторую сжатую охлаждающую смесь; охлаждают сжатую и сконденсированную вторую охлаждающую смесь путем теплообмена с первой фракцией и второй фракцией; расширяют вторую охлаждающую смесь до третьего уровня давления; охлаждают природный газ с расширенной второй охлаждающей смесью до получения сжиженного природного газа. В способе первая и вторая охлаждающая смеси содержат один насыщенный углеводород и этилен. Изобретение позволяет упростить установку, а также получить лучший тепловой КПД способа. 5 з.п. ф-лы, 5 ил.

Группа изобретений относится к способу ввода в действие установки сжиженного природного газа, содержащей блок сжижения, расположенный на пути потока установки. Способ содержит следующие этапы: удаление сжиженного природного газа из первого положения на пути потока после блока сжижения; испарение удаленного сжиженного природного газа или нагрев таким образом, что удаленный сжиженный природный газ преобразуется в газообразную фазу; подача испаренного или преобразованного сжиженного природного газа обратно на путь потока во втором положении перед блоком сжижения; а также пропускание всего обратно поданного сжиженного природного газа через блок сжижения. Повторение этих этапов для циркуляции сжиженного природного газа через блок сжижения до тех пор, пока теплообменники в блоке сжижения не достигнут температуры, подходящей для нормальной работы установки сжиженного природного газа. Также описана установка для осуществления данного способа. Группа изобретений позволяет посредством рециркуляции сжиженного природного газа вместо использования природного газа непосредственно из впуска установки при ее запуске уменьшить или устранить выбросы, связанные со сжиганием на факеле. 2 н. и 8 з.п. ф-лы, 3 ил.

Группа изобретений относится к способу работы установки сжиженного природного газа с минимальной производительностью и к соответствующей установке сжиженного природного газа, причем установка содержит блок сжижения, расположенный на пути потока установки. Способ содержит следующие этапы: удаление сжиженного природного газа из первого положения на пути потока после установки сжижения газа. Далее испарение или нагревание удаленного сжиженного природного газа таким образом, что удаленный сжиженный природный газ преобразуется в газообразную фазу. А также подача испаренного или преобразованного сжиженного природного газа обратно на путь потока во втором положении перед блоком сжижения газа. Группа изобретений позволяет достигнуть более эффективной работы установки, экономить время для перезапуска установки, а также предотвратить износ установки во время остановки и перезапуска. 2 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к способу сжижения фракции, обогащенной углеводородами. Способ сжижения фракции, обогащенной углеводородами, включает следующие этапы. Охлаждение и сжижение фракции, обогащенной углеводородами, происходят путем косвенного теплообмена с холодильной смесью циркуляционного контура холодильной смеси. Охлаждение фракции, обогащенной углеводородами, происходит путем косвенного теплообмена с полностью испарившейся холодильной смесью циркуляционного контура холодильной смеси. Сжатая холодильная смесь циркуляционного контура холодильной смеси предварительно охлаждается с помощью циркуляционного контура чистого вещества. Состав холодильной смеси и/или конечное давление компрессора циркуляционного контура холодильной смеси выбираются таким образом, чтобы холодильная смесь полностью сжижалась с помощью циркуляционного контура чистого вещества. Изобретение направлено на повышение экономичности при незначительном повышении энергопотребления. 4 з.п. ф-лы, 1 ил.

Изобретение относится к способу и системе для выделения углеводородов, содержащихся в отходящем потоке процесса полимеризации. Способ включает снижение давления потока этилена от давления не менее 3,4 МПа до давления не более 1,4 МПа, охлаждение отходящего газа, включающего мономер, путем теплообмена с потоком этилена пониженного давления с получением первого конденсата, включающего часть мономера, захваченного первым легким газом, выделение первого конденсата и первого легкого газа, отделение первого конденсата от первого легкого газа, компримирование потока этилена пониженного давления до давления не менее 2,4 МПа и пропускание компримированного потока этилена в реактор полимеризации. Изобретение обеспечивает эффективное выделение углеводородов из отходящего газа, повторное применение значительной части олефинового мономера и повторное применение содержащихся в отходящем газе инертных компонентов. 2 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к технологии сжижения водорода. Устройство для изготовления жидкого водорода снабжено блоком (R) цикла охлаждения, в котором циркулирующий водород выполняет функцию охлаждающего вещества, и блоком (Р) генерирования жидкого водорода для генерирования жидкого водорода путем охлаждения водорода исходного материала под высоким давлением посредством блока (R) цикла охлаждения и путем адиабатического расширения водорода исходного материала посредством клапана (12) Джоуля-Томсона. Первый и второй теплообменники (E1, Е2) размещены вдоль блока (R) цикла охлаждения и блока (Р) генерирования жидкого водорода. Устройство (HS) для изготовления жидкого водорода снабжено приспособлением обработки испаряемого газа для генерирования жидкого водорода путем повторного сжижения испаряемого газа, генерируемого в цистерне для хранения жидкого водорода, в емкость (16) для транспортировки жидкого водорода. Испаряемый газ вводят в тракт (1) циркуляции водорода в части, в которой протекает циркулирующий водород, имеющий сверхнизкую температуру, а избыточный циркулирующий водород, генерируемый из указанного вводимого испаряемого газа, выпускают в тракт (11) для водорода исходного материала из части, в которой циркулирующий водород находится при комнатной температуре. Использование изобретения позволяет эффективно применять и повторно сжимать испаряемый из резервуара газ без потери энергии холода для восстановления жидкого водорода. 6 з.п. ф-лы, 1 ил., 1 табл.

Настоящее изобретение относится к криогенной технике, а именно к технике и технологии сжижения природного газа и прежде всего к установкам малой и средней производительности. Природный газ высокого давления поступает на вход системы осушки 1, где происходит его очистка и осушка. После блока осушки он подается в теплообменный аппарат 2, где охлаждается и сжижается за счет теплообмена с потоком холодного азота низкого давления и затем дросселируется через клапан 3 до давления, при котором происходит его накопление и хранение в криогенном резервуаре 4. В основном контуре охлаждения в качестве хладагента используется азот, который циркулирует в замкнутом контуре, организованном на базе циркуляционного компрессора 5. На детандерную ступень турбодетандер-компрессорного агрегата 7 подается не весь поток охлажденного азота высокого давления. Небольшая часть указанного потока последовательно подвергается дополнительному охлаждению в теплообменнике 2 и дросселированию в клапане 10 для получения жидкой фазы азота, которая подается в теплообменник-испаритель 11, где происходит переохлаждение потока сжиженного природного газа за счет теплообмена с кипящим жидким азотом. Образующиеся при кипении пары азота из теплообменника-испарителя 11 смешиваются с потоком азота низкого давления с выхода детандерной ступени турбодетандер-компрессорного агрегата 7, и далее объединенный поток поступает в теплообменник 2, а после снова во всасывающую магистраль циркуляционного компрессора 5. 2 з.п. ф-лы, 3 ил., 2 табл.

Группа изобретений относится к установке и способу производства жидкого гелия. Установка для производства жидкого гелия содержит устройство охлаждения/сжижения, включающее в себя контур полезной нагрузки, подвергающий рабочее вещество, обогащенное гелием, термодинамическому циклу. Причем контур содержит устройство сжатия рабочего вещества и множество теплообменников для охлаждения/нагревания жидкого вещества до заданных уровней температуры в течение цикла. Установка содержит множество трубопроводов рекуперации жидкого вещества. Передние концы этих трубопроводов избирательно соединены с соответствующими мобильными резервуарами на полуприцепах для перемещения жидкого вещества из резервуаров к устройству охлаждения/сжижения. Контур полезной нагрузки является контуром открытого типа и принимает, избирательно, жидкое вещество, находящееся снаружи контура, на уровне трубопроводов рекуперации. Установка содержит первый аккумулирующий трубопровод, передний конец которого соединен с трубопроводами рекуперации. Также задний конец, соединенный с приемником, который способен обеспечить снабжение контура полезной нагрузки рабочим веществом. Установка содержит один второй и один третий аккумулирующие трубопроводы, каждый из которых имеет передний конец, соединенный с трубопроводами рекуперации, и задний конец, соединенный с контуром полезной нагрузки. Задние концы второго и третьего аккумулирующих трубопроводов соединены с различными заданными точками контура полезной нагрузки, которые соответствуют различным уровням температуры рабочего вещества в контуре полезной нагрузки. Группа изобретений позволяет существенно повысить энергоэффективность установки. 2 н. и 12 з.п. ф-лы, 1 ил.

Изобретение относится к способу повторного сжижения отпарного газа, образовавшегося в первичном резервуаре жидкого водорода. Способ включает: примешивание отпарного газа к жидкому водороду, хранящемуся во вторичном резервуаре жидкого водорода таким образом, что часть отпарного газа сжижается за счет криогенной тепловой энергии жидкого водорода; подачуоставшейся несжиженной части отпарного газа и парообразного водорода, образовавшегося в указанном вторичном резервуаре жидкого водорода, в блок получения жидкого водорода аппарата для получения жидкого водорода из газообразного водорода; при этом указанный аппарат, наряду с указанным блоком получения жидкого водорода, включает секцию цикла охлаждения, в которой циркулирующий водород выполняет функцию хладагента; сжижение оставшейся несжиженной части отпарного газа и парообразного водорода с помощью аппарата получения жидкого водорода. Изобретение позволяет производить повторное сжижение отпарного газа с целью его дальнейшего использования в жидком виде без причинения помех при эксплуатации установки сжижения водорода. 2 з.п. ф-лы, 1 ил., 1 табл.
Наверх