Способ прецизионного легирования тонких пленок на поверхности арсенида галлия

Изобретение относится к области синтеза тонких пленок на поверхности полупроводников AIIIBV и может быть применено в технологии создания твердотельных элементов газовых сенсоров. Технический результат изобретения заключается в создании на поверхности арсенида галлия тонкой оксидной пленки, содержащей прецизионно регулируемое количество легирующей примеси, с использованием простого оборудования экспрессным методом. В способе прецизионного легирования тонких пленок на поверхности арсенида галлия, включающем обработку поверхности пластины арсенида галлия концентрированной плавиковой кислотой в течение 10 минут, промывку пластины дистиллированной водой, сушку на воздухе, окисление пластины в присутствии активного хемостимулятора - оксида свинца (II) - при температуре 530°C, скорости потока кислорода 30 л/ч в течение сорока минут, согласно изобретению окисление проводится в присутствии оксида иттрия (III), причем его количественное содержание варьируется от 0 до 100 мол.% от оксида свинца (II). 1 ил.

 

Изобретение относится к области синтеза тонких пленок на поверхности полупроводников AIIIBV и может быть применено в технологии создания твердотельных элементов газовых сенсоров, а именно для анализа и определения содержания газов, обладающих восстановительными свойствами, таких как аммиак, угарный газ, пары этанола.

Известно, что такие методы легирования тонких пленок, как молекулярно-лучевая и газофазная эпитаксия обладают при всех их достоинствах существенными недостатками: они требуют дорогостоящего оборудования, имеют высокую токсичность используемых исходных соединений, а также сложность протекающих химических процессов.

Известны газочувствительные датчики для определения содержания кислорода [патент РФ 2235315, МПК G01N 27/12, опубл. 10.05.2004] и сероводорода [патент РФ 2231053, МПК G01N 27/02, опубл. 20.06.2004], в которых газочувствительный слой напылялся на монокристаллическую пластину арсенида галлия, а затем легировался кислородом. Недостатком такого способа изготовления газочувствительных датчиков является сложность изготовления.

Известны способы получения слаболегированных слоев на поверхности арсенида галлия термическим окислением с использованием нескольких хемостимуляторов: PbO и Bi2O3 [Пенской П.К., Салиева Е.К., Кострюков В.Ф., Рембеза С.И., Миттова И.Я. Газочувствительность слаболегированных слоев полученных окислением GaAs в присутствии PbO и Bi2O3 // Вестник ВГУ. Серия: химия, биология, фармация. 2008, №1, стр.26-31]; PbO и V2O5 [Миттова И.Я., Пшестанчик В.Р., Кузнецова И.В., Кострюков В.Ф., Скороходова С.М., Медведева К.М. Влияние размера частиц активаторов на процесс термооксидирования GaAs под воздействием композиции PbO и V2O5 // Журн. Неорган. Химии, 2005, Т.50, №10, С.1603-1606];

Прототипом настоящего изобретения является способ легирования поверхности арсенида галлия, изложенный в статье [Кострюков В.Ф. Термическое окисление GaAs при совместном и пространственно разделенном воздействии оксидов свинца (II) и марганца (IV) // Вестник ВГУ. Серия: химия, биология, фармация. 2006, №2, стр.69-76]. Согласно способу в эксперименте использовались полированные пластины арсенида галлия марки АГЦЧ-1, ориентации (111). Предокислительную обработку поверхности GaAs осуществляли в концентрированной плавиковой кислоте (49%) в течение 10 мин с последующей отмывкой в дистиллированной воде. В качестве активаторов использовалась композиция оксида свинца (II) и оксида марганца (IV) состава от одного чистого компонента до другого с шагом 20 мол.%. Навеску помещали в кварцевый контейнер, крышкой которого служила окисляемая пластина арсенида галлия (расстояние до пластины 10 мм), и располагали в рабочей зоне печи. Окисление проводили при температурах 530 и 560°C; рабочая сторона пластины была обращена к потоку композиции оксидов. Ток кислорода был постоянным и составлял 30 л/час. Окисление проводили методом доокисления за время 10-60 мин.

Недостатком всех вышеперечисленных способов является то, что во всех них в состав композиции оксидов входят два оксида-хемостимулятора. Это приводит к нелинейным зависимостям от состава композиции таких свойств пленки, как ее толщина и содержание хемостимулятора, что не позволяет заранее точно предсказать степень легирования растущей оксидной пленки хемостимулятором и прецизионно ее контролировать. Также в данных способах используется температурная регулировка содержания активатора в оксидной пленке, что не очень удобно, так как окисление полупроводников происходит в очень ограниченном температурном интервале, ниже которого окисление практически не наблюдается, а выше которого происходит необратимая деградация полупроводниковой подложки.

Задача настоящего изобретения заключается в разработке технически реализуемого способа создания на поверхности GaAs тонких пленок, содержащих заданное количество легирующего компонента в оксидном слое и обладающих газочувствительными свойствами.

Технический результат настоящего изобретения заключается в создании на поверхности GaAs тонкой оксидной пленки, содержащей прецизионно регулируемое количество легирующей примеси, с использованием простого оборудования экспрессным методом.

Технический результат достигается тем, что в способе прецизионного легирования тонких пленок на поверхности арсенида галлия, включающем обработку поверхности пластины арсенида галлия концентрированной плавиковой кислотой в течение 10 минут, промывку пластины дистиллированной водой, сушку на воздухе, окисление пластины в присутствии активного хемостимулятора - оксида свинца - (II) при температуре 530°C, скорости потока кислорода 30 л/ч в течение сорока минут, согласно изобретению, окисление проводится в присутствии оксида иттрия (III), причем его количественное содержание варьируется от 0 до 100 мол.% от оксида свинца (II).

На фиг.1 приведена таблица 1 полученных значений качественных показателей полученной оксидной пленки в зависимости от состава композиции.

Процесс формирования оксидных пленок на GaAs проводили в горизонтальном кварцевом реакторе диаметром 30 мм печи МТП-2М-50-500, предварительно разогретом до рабочей температуры 530°C. Скорость потока кислорода составляла 30 л/ч. Постоянство температуры в реакторе обеспечивалось измерителем и регулятором ТРМ-10 (±1°C).

Перед началом окисления поверхность полированных пластин GaAs обрабатывали концентрированной плавиковой кислотой. Время травления составляло 10 минут, после чего пластины промывались в дистиллированной воде и высушивались на воздухе. Обработка проводилась для удаления естественного оксидного слоя на поверхности и разного рода загрязнений.

Навеску композиции (PbO+Y2O3) заданного состава помещали в кварцевый контейнер, крышкой которого служила окисляемая пластина GaAs (расстояние до пластины 10 мм), и располагали в рабочей зоне печи. Составы композиций менялись от одного чистого компонента до другого с шагом 20 мол.%. Время оксидирования составляло 40 минут. Термооксидирование поверхности GaAs происходит при введении композиции оксидов через газовую фазу.

Такой способ формирования оксидных слоев на поверхности GaAs обеспечивает фиксированное содержание активатора в пленке (не более 3%), что необходимо для обеспечения газочувствительных свойств (на примере этанола, ацетона). Было установлено, что введение активного оксида в растущий на GaAs оксидный слой приводит к увеличению газового отклика (возрастание газовой чувствительности составляет от 20% до 40%). Величина газового отклика зависит от содержания активного оксида в пленке. Регулируя содержание активатора в оксидном слое, можно подбирать условия максимальной газовой чувствительности для того или иного газа. Была установлена строгая корреляция (линейная зависимость) содержания активного оксида (PbO) в пленке на поверхности GaAs от его содержания в композиции с инертным компонентом (Y2O3).

Данный способ обладает преимуществом перед температурной регулировкой содержания активатора в оксидной пленке, поскольку окисление полупроводников происходит в очень ограниченном температурном интервале, ниже которого окисление практически не наблюдается, а выше которого происходит необратимая деградация полупроводниковой подложки.

Пример 1. Если необходимо вырастить на поверхности GaAs пленку, легированную 1% свинца, необходимо вычислить отношение содержание свинца в необходимой пленке (1%) к содержанию свинца в слое, полученном под воздействием индивидуального оксида свинца (2,36%). Эта величина составляет 0,424. Тогда для получения на поверхности GaAs пленки, легированной свинцом на 1%, необходимо провести термооксидирование пластины арсенида галлия в присутствии композиции состава 42,4% PbO + 57,6% Y2O3.

Толщину сформированной таким образом на поверхности GaAs пленки определяли эллипсометрическим методом на лазерном эллипсометре ЛЭФ-754 с абсолютной погрешностью ±1 нм.

Для определения состава полученной на поверхности GaAs пленки использовали метод локального рентгеноспектрального микроанализа (ЛРСМА). Полученные результаты представлены в табл.1.

Как следует из полученных результатов, имеет место линейная зависимость между содержанием оксида-хемостимулятора в композиции и оксидной пленке на поверхности GaAs, и, как следствие, между содержанием хемостимулятора и толщиной пленки на поверхности GaAs.

Способ прецизионного легирования тонких пленок на поверхности арсенида галлия, включающий обработку поверхности пластины арсенида галлия концентрированной плавиковой кислотой в течение 10 минут, промывку пластины дистиллированной водой, сушку на воздухе, окисление пластины в присутствии активного хемостимулятора - оксида свинца (II) - при температуре 530°C скорости потока кислорода 30 л/ч в течение 40 минут, отличающийся тем, что окисление проводится в присутствии оксида иттрия (III), причем его количественное содержание варьируется от 0 до 100 мол. % от оксида свинца (II).



 

Похожие патенты:

Изобретение относится к области полупроводниковой микроэлектроники, в частности к технологии изготовления р-n-переходов в кремнии методом "закрытой трубы" - методом откачанной запаянной кварцевой ампулы.
Изобретение относится к технологии проведения диффузии галлия для формирования р-области при изготовлении полупроводниковых приборов. Изобретение обеспечивает уменьшение разброса значений поверхностной концентрации и получение равномерного легирования по всей поверхности подложек.
Изобретение относится к технологии изготовления кремниевых мощных транзисторов, в частности может быть использовано для формирования активной ρ-области. Техническим результатом изобретения является уменьшение разброса значений поверхностных концентраций и получение равномерного легирования по длине лодочек.
Изобретение относится к технологии получения мощных кремниевых транзисторов, в частности к способам получения фосфоросиликатного стекла для формирования p-n-переходов.

Изобретение относится к области полупроводниковой микроэлектроники, в частности к технологии изготовления р-п-переходов в кремнии методом "закрытой трубы" - методом откачанной запаянной кварцевой ампулы.
Изобретение относится к технологии создания полупроводниковых приборов, в частности к области конструирования и производства мощных биполярных кремниевых СВЧ-транзисторов.

Изобретение относится к технологии изготовления оптоэлектронных приборов, в частности солнечных фотоэлектрических элементов (СФЭ). .
Изобретение относится к устройствам, предназначенным для удержания полупроводниковых пластин во время диффузионной обработки. .
Изобретение относится к устройствам, предназначенным для удержания полупроводниковых пластин во время диффузионной термообработки при изготовлении полупроводниковых приборов.
Изобретение относится к технологии изготовления силовых кремниевых транзисторов и полупроводниковых приборов, в частности к способам обработки карбид-кремниевой трубы, применяемой для проведения высокотемпературных процессов в диффузионных печах.
Изобретение относится к технологии полупроводниковых приборов и, в частности, может быть использовано для глубокой диффузии фосфора при формировании диффузионных кремниевых структур. Способ диффузии фосфора из твердого планарного источника включает формирование диффузионных кремниевых структур с использованием твердого планарного источника фосфора. Процесс проводят при температуре 900°C на этапе загонки при следующем соотношении компонентов: O2=40±0,5 л/ч; N2=750 л/ч; H2=8 л/ч, и времени, равном 40 минут, на этапе разгонки процесс проводят при температуре 1000°C при следующем расходе газов: O2=40±0,5 л/ч; N2=750 л/ч, и времени разгонки, равном 75 часов. Техническим результатом изобретения является уменьшение температуры и времени проведения процесса, обеспечение точного регулирования глубины диффузионного слоя, получение глубины 180±10 мкм и повышение процента выхода годных изделий.

Изобретение относится к технологии наноэлектронных устройств на основе графена. Электронное устройство на основе графена включает в себя слой графена, имеющий первую работу выхода, и пленку оксида металла, расположенную на слое графена, причем пленка оксида металла имеет вторую работу выхода, превышающую первую работу выхода. Электроны переносятся из слоя графена к пленке оксида металла, образуя слой накопления дырок в слое графена. Изобретение исключает повреждение графеновой решетки и возникновение дефектов, ухудшающих рабочие характеристики устройства. 4 н. и 29 з.п. ф-лы, 16 ил.
Изобретение относится к технологии полупроводниковых приборов и мощных кремниевых транзисторов, в частности к способу формирования истоковой области силового транзистора. Техническим результатом изобретения является оптимизация процесса формирования истоковой области кремниевой транзисторной структуры, уменьшение температуры и времени проведения процесса, обеспечение точного регулирования глубины легируемого слоя и повышение процента выхода годных изделий. В способе формирования истоковой области силового транзистора диффузию проводят с использованием твердого планарного источника фосфора на этапе загонки фосфора при температуре T 1125°C и времени 40 мин при следующем соотношении компонентов: O2 40±0,5 л/ч, N2 750 л/ч, H2 8 л/ч, и на этапе разгонки фосфора при температуре 1250°C при расходах кислорода O2 40±0,5 л/ч и азота N2 750 л/ч и времени 72 ч.

Изобретение относится к печи для использования при термической обработке полупроводниковых подложек. Печь термической обработки полупроводниковых подложек включает цилиндрическую трубчатую оболочку, оба конца которой имеют проемы такого размера, чтобы обеспечить возможность введения и извлечения полупроводниковых подложек, нагреватель, крышки, каждая из которых разъемно установлена на трубчатой оболочке, тонкий газовпускной патрубок, расположенный у центра трубчатой оболочки в продольном измерении и тонкий газовпускной патрубок, проходящий сквозь одну из крышек. При непрерывной термической обработке, которая включает перемещение лодочек с полупроводниковыми подложками, перемещение первой лодочки с термообработанными полупроводниковыми подложками из одного из проемов трубчатой оболочки и перемещение второй лодочки в другой из проемов трубчатой оболочки выполняются в то же время, когда газ высокой степени чистоты вводится из тонкого газовпускного патрубка, расположенного у центра трубчатой оболочки в продольном измерении. Это снижает время ожидания между партиями в процессе последовательной термической обработки полупроводников, увеличивая тем самым производительность. 2 н. и 6 з.п. ф-лы, 10 ил., 1 табл.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления биполярных транзисторов с пониженными токами утечек. Изобретение обеспечивает снижение значений токов утечек, повышение технологичности, улучшение параметров приборов, повышение надежности и увеличение процента выхода годных. В способе изготовления полупроводникового прибора базовую область создают путем диффузии бора из анодных оксидных пленок в кремнии при температуре 1473 К в течение 90 мин в потоке азота 1,2·10-2 л/с. 1 табл.
Наверх