Система автоматизированного контроля геометрических параметров шпал

Система предназначена для измерения и контроля геометрических параметров железобетонных шпал, влияющих на прочность и надежность работы рельсового пути. На каркасе установлена линейная направляющая, с перемещаемой кареткой. На каретке закреплены лазерные профилометры с возможностью их перемещения для смены позиции конвейером. В качестве лазерных профилометров используют закрепленные на кронштейне лазерные сканеры с одним лазерным излучателем и двумя приемниками отраженного сигнала, которые установлены в лазерных сканерах. Приемники считывают отраженный сигнал одновременно одного и того же поперечного сечения железобетонной шпалы. На каретке закреплены как минимум два лазерных сканера для одновременного измерения двух и более железобетонных шпал. Достигается упрощение системы и процесса измерения и повышение производительности и эффективности работы системы за счет обеспечения возможности измерения параметров двух и более шпал одновременно. 2 ил.

 

Изобретение относится к контрольно-измерительным устройствам специального назначения, в частности к устройствам для измерения и контроля геометрических параметров железобетонных шпал, влияющих на на прочность и надежность работы рельсового пути.

Известно устройство для измерения геометрических параметров подрельсовых площадок железобетонных шпал (варианты):

- вариант 1, характеризующийся по п.1 формулы, содержащий корпус, на концах которого установлены ловители, ручку транспортирования, правую и левую опоры, на которых установлены четыре опорных винта, на одном из которых закреплен датчик линейных перемещений, ручки ориентированы, одна из которых снабжена кнопкой, и основание с закрепленным на нем контроллером и отсеком питания;

- вариант 2, отличающийся от первого тем, что опоры выполнены с двумя опорными винтами и датчиком линейных перемещений на каждом из них, ручки ориентации, одна из которых снабжена кнопкой, основание с закрепленным на нем контроллером и отсеком питания, и подставку, закрепленную через вертикальные стержни в центральной части корпуса (RU, патент на изобретение №2246570, кл. E01B 35/02, B61K 9/08, опубл. 2003 г.).

Недостатками устройства являются:

- недостаточные точность измерения и количество контролируемых показателей, обусловленных применением контактного метода контроля;

- низкая оперативность измерения, связанная с непосредственным участием человека в процессе контроля.

Известна система автоматического сплошного контроля геометрических параметров шпал, принятая в качестве прототипа, с установленным на каркасе автоматизированным механизмом продольного линейного перемещения, включающим несущую линейную направляющую с первой подвижной кареткой, на которой закреплены четыре лазерных профилометра, система оснащена размещенным в корпусе автоматизированного механизма поперечного линейного перемещения, закрепленным на первой подвижной каретке лазерным измерителем отверстий, при этом автоматизированный механизм поперечного линейного перемещения оборудован несущей направляющей со второй подвижной кареткой, а для приведения его в действие используется сервопривод с шаговым двигателем, лазерные профилометры закреплены на одном конце первой подвижной каретки, а автоматизированный механизм поперечного линейного перемещения на другом лазерные профилометры и автоматизированный механизм поперечного линейного перемещения жестко закреплены к каркасу (RU, патент на полезную модель №100479, кл. B61K 9/08, опубл. 2010 г.).

Недостатками системы являются:

- большое количество измерительных приборов и наличие поперечного перемещения с кареткой и приводом с лазерным измерителем для измерения отверстий усложняет систему и процесс измерения, увеличивает цикл обработки;

- большое количество измерительных приборов в поперечном направлении направляющей линейки и большие габариты системы не позволяют измерение параметров двух шпал одновременно, которые установлены на технологической линии, что требует увеличение времени цикла работы линии и снижает производительность и эффективность работы системы.

Техническим результатом изобретения является упрощение системы и процесса измерения и повышение производительности и эффективности работы системы за счет обеспечения возможности измерения параметров двух и более шпал одновременно.

Указанный технический результат обеспечивается тем, что система автоматизированного контроля геометрических параметров шпал, содержит установленную на каркасе линейную направляющую, с перемещаемой кареткой от привода с датчиком измерения перемещения, на каретке закреплены лазерные профилометры для измерения железобетонных шпал с возможностью их перемещения для смены позиции конвейером; в качестве лазерных профилометров используют закрепленные на кронштейне лазерные сканеры с одним лазерным излучателем и двумя приемниками отраженного сигнала, которые установлены в лазерных сканерах, под углом, симметрично относительно оптической оси лазерного излучателя, причем приемники считывают отраженный сигнал одновременно одного и того же поперечного сечения железобетонной шпалы; на каретке закреплены как минимум два лазерных сканера для одновременного измерения двух и более железобетонных шпал.

На фиг.1 представлен вид с торца на линейную направляющую системы и на фиг.2 - вид сбоку на линейную направляющую.

Система автоматизированного контроля геометрических параметров шпал, содержащая установленную на каркасе 1 линейную направляющую 2, с перемещаемой кареткой 3 от привода 10 с датчиком измерения перемещения 11, на каретке 3 закреплены лазерные профилометры для измерения железобетонных шпал 7, 8 с возможностью их перемещения для смены позиции конвейером 9; в качестве лазерных профилометров используют закрепленные на кронштейне 4 лазерные сканеры 5, 6 с одним лазерным излучателем 14 и двумя приемниками отраженного сигнала 12, 13, которые установлены в лазерных сканерах 5, 6, под углом α симметрично относительно оптической оси лазерного излучателя 14, причем приемники 12, 13 сканера 5 одновременно считывают отраженный сигнал одного и того же поперечного сечения железобетонной шпалы 7, а приемники 12, 13 сканера 6 одновременно считывают отраженный сигнал одного и того же поперечного сечения железобетонной шпалы 8; на каретке 3 с помощью кронштейна 4 закреплены как минимум два лазерных сканера 5, 6 для одновременного измерения двух и более железобетонных шпал 7, 8.

Система автоматизированного контроля геометрических параметров шпал работает следующим образом.

Перед проведением измерений в соответствии с технологией железобетонные шпалы 7, 8 конвейером 9 устанавливаются в позицию их измерения, с пульта управления системой подается команда на включение привода 10 автоматизированного продольного линейного перемещения каретки 3 с лазерными сканерами 5, 6 и запускается процесс сканирования железобетонных шпал 7, 8. В зависимости от числа измеряемых параметров железобетонных шпал 7, 8 количество лазерных сканеров 5, 6 может составлять один или два для одной сканируемой железобетонной шпалы, а количество одновременно сканируемых железобетонных шпал может составлять от одной до двух и более в зависимости от технологического процесса. При перемещении каретки 3 и одновременном перемещении лазерных сканеров 5, 6 измеряются множество размерных поперечных сечений вдоль всей длины железобетонных шпал 7, 8, на основании которых специализированное программное обеспечение компьютера строит трехмерные модели железобетонных шпал 7, 8, по которым вычисляются все необходимые геометрические параметры. Использование в сканерах 5, 6 двух приемников 12, 13 и одного лазерного излучателя 14 при считывании профиля сечения шпалы позволяет исключить влияние теневых зон при построении трехмерной модели, повысить точность измерения, упростить процесс измерения, уменьшить поперечные габариты измерительной аппаратуры, повысить производительность и эффективность работы системы за счет обеспечения возможности измерения параметров двух и более железобетонных шпал 7, 8 одновременно.

Система автоматизированного контроля геометрических параметров шпал, содержащая установленную на каркасе линейную направляющую, с перемещаемой кареткой от привода с датчиком измерения перемещения, на каретке закреплены лазерные профилометры для измерения железобетонных шпал с возможностью их перемещения для смены позиции конвейером, отличающаяся тем, что в качестве лазерных профилометров используют, закрепленные на кронштейне лазерные сканеры с одним лазерным излучателем и двумя приемниками отраженного сигнала, которые установлены в лазерных сканерах под углом, симметрично относительно оптической оси лазерного излучателя, причем приемники считывают отраженный сигнал одновременно одного и того же поперечного сечения железобетонной шпалы; на каретке закреплены как минимум два лазерных сканера для одновременного измерения двух и более железобетонных шпал.



 

Похожие патенты:

Настоящее изобретение относится к области оптической связи. Согласно способу используют лазерный луч, который состоит из импульсов длительностью не менее 1 нс, которые формируют из множества волн путем фазовой синхронизации и интерференции.

Изобретение относится к приборостроению и предназначено для формирования лазерного растра систем управления, лазерных прицелов и может быть использовано при управлении, посадке и стыковке летательных аппаратов, проводке судов по сложным фарватерам, обнаружении оптикоэлектронных приборов по «блику», дистанционном управлении робототехническими устройствами.

Изобретение относится к области измерительной лазерной техники. Способ электронного сканирования пространства для получения трехмерной модели портрета сцены заключается в проецировании структурированной лазерной подсветки, формируемой с помощью нескольких лазерных генераторов линий, расположенных под фиксированными углами относительно друг друга, регистрации ее с помощью матричного фоторегистрирующего устройства, последовательно снимающего кадры с подсветкой и без подсветки для последующего дифференцирования фона, передаче изображения линий подсветки на вычислительное устройство и определении вычислительным устройством объемного изображения сцены триангуляционным методом.

Изобретение относится к автоматизированным системам обнаружения и мониторинга нефтегенных загрязнений морского нефтегазового промысла. Система включает в себя сеть флуоресцентных лидаров, установленных на нефтегазодобывающей платформе, танкерах, осуществляющих транспортировку нефти, и судах, обслуживающих промысел; сеть установленных на удалении от нефтегазодобывающей платформы автоматических плавучих комплексов мониторинга (КМ), каждый из которых содержит контактирующие с водой датчики регистрации нефтегенных углеводородов, физико-химических и гидрологических параметров воды, и находящийся в погружном, в частности, в подледном положении герметичный буй, в котором размещены программируемый контроллер с системами сбора, предварительной обработки и передачи данных, генерируемых датчиками КМ; а также единую автоматизированную информационную систему (ИС) с функциями сбора, обработки и хранения данных, генерируемых лидарами и плавучими КМ.

Изобретение относится к технике экологического контроля, в частности, к автоматизированным средствам измерения показателей качества водных объектов, преимущественно подверженных риску нефтегенных загрязнений, и может использоваться в составе систем экологического мониторинга природных сред.

Изобретение относится к области акустики и может быть использовано для ориентации на местности. Устройство акустического представления пространственной информации содержит генератор сигналов, усилитель тракта излучения и передатчик, правый и левый ультразвуковые преобразователи, первый и второй аналого-цифровые преобразователи, первый и второй блоки памяти, первый и второй цифроаналоговые преобразователи, первый и второй усилители, правый и левый головные телефоны.

Изобретение относится к области вооружений, в частности к неконтактным взрывателям реактивных боеприпасов. Устройство содержит два и более приемоизлучающих канала, размещенные вокруг продольной оси устройства, каждый из которых содержит электронный блок, импульсный источник оптического излучения и фотоприемник, соединенные с электронным блоком.

Изобретение относится к области экологии, рыбного хозяйства и может быть использовано для оценки функционирования биотических сообществ водных экосистем с целью сбора сведений о численности, биомассе и пространственном распределении ключевых видов гидробионтов.

Изобретение относится к лазерным локационным системам (ЛЛС), используемым, в частности, в процессе стыковки космических аппаратов (КА). Способ включает сканирование пространства путем разворота активного КА с жестко установленной на нем ЛЛС по каналу тангажа или курса до обнаружения пассивного КА.

Изобретение относится к области лазерной техники и используется для формирования информационного поля лазерных систем телеориентации и навигации, оптической связи и может быть использовано при управлении, посадке и стыковке летательных аппаратов, проводке судов через узости или своды мостов, дистанционном управлении робототехническими устройствами в опасных для человека зонах и т.п.

Изобретение относится к области строительства. .

Изобретение относится к области измерительной техники и может быть использовано для автоматизированного контроля прогиба рельса, например, при его рихтовке перед сваркой бесшовных рельсов.

Изобретение относится к измерению параметров рельсовой колеи многофункциональным шаблоном и предназначено для контроля этих измерений. .

Изобретение относится к области измерений рельсового пути и может быть использовано для замеров параметров железнодорожной колеи. .

Изобретение относится к устройствам для измерения отклонений геометрических параметров рельсов при эксплуатации, ремонте и строительстве железнодорожных путей. .

Изобретение относится к устройствам для измерения положения железнодорожного пути при его эксплуатации и ремонте. .

Изобретение относится к способам и средствам неразрушающего контроля материалов и может быть использовано для диагностики рельсов и других протяженных объектов.
Наверх