Способ стрельбы управляемой ракетой


 


Владельцы патента RU 2538509:

Открытое акционерное общество "Конструкторское бюро приборостроения им. академика А.Г. Шипунова" (RU)

Изобретение относится к области вооружения и может быть использовано для стрельбы управляемой ракетой (УР). Производят топографическую привязку целеуказателя и пусковой установки (ПУ) к местности наземным спутниковым приемником (СП), определяют координаты местоположения ПУ и эфемерид по каждому космическому аппарату системы спутникового позиционирования, обнаруживают и измеряют координаты цели, передают координаты цели в пульт управления огневой позиции (ОП), устанавливают единое компьютерное время в пульте разведчика и пульте управления ОП, рассчитывают и передают установки стрельбы в блок автоматики ПУ и ракету, осуществляют наведение ПУ, запускают ракету из транспортно-пускового контейнера по заданной баллистической траектории, осуществляют наведение ракеты бортовым навигационным СП, при подлете к цели осуществляют наведение ракеты по лазерному излучателю. Изобретение позволяет повысить вероятность попадания УР в заданную цель.

 

Изобретение относится к области управления и регулирования, а более конкретно к управляемому вооружению.

Изобретение предназначено для управления стрельбой управляемыми ракетами с пусковой установки.

Известен способ стрельбы [Патент RU №2468327 от 27.11.2012 г. МПК7 F41G 5/00, 7/22 - Способ стрельбы управляемой ракетой с лазерной полуактивной головкой самонаведения], который заключается в следующем. Огневая позиция (пусковая установка) располагается на большой дальности от линии соприкосновения с противником. К линии боевого соприкосновения высылается разведчик с лазерным целеуказателем - дальномером (ЛЦД), аппаратурой спутниковой навигации, цифровой радиостанцией и пультом разведчика, причем выходы ЛЦД, аппаратуры спутниковой навигации и цифровой радиостанции через разъемы подключены к пульту разведчика, у командира огневой позиции имеется пульт управления огневой позицией с аппаратурой спутниковой навигации и цифровой радиостанцией. С помощью аппаратуры спутниковой навигации определяются координаты ЛЦД и вводятся в пульт разведчика. В пульте управления огневой позицией с аппаратуры спутниковой навигации вводятся координаты пусковой установки. Разведчик с помощью ЛЦД производит замер дальности до цели, азимута и угла места цели относительно целеуказателя. Результаты замеров передаются в пульт разведчика, преобразуются в прямоугольную систему координат, отображаются на экране пульта разведчика и передаются в пульт управления огневой позиции по цифровому каналу радиосвязи. В пульте управления огневой позиции с использованием полученных по радиосвязи координат целей, замеренных координат пусковой установки рассчитываются установки стрельбы для управляемой ракеты и пусковой установки. Рассчитанные установки по цифровому каналу связи передаются в блок автоматики пусковой установки и далее в электронную аппаратуру управляемой ракеты. Осуществляют наведение пусковой установки по углу азимута и углу места. Оператор с пульта управления позицией выдает на пусковую установку команду на пуск, по которой осуществляется пуск ракеты.

В момент пуска на пульте управления огневой позиции считывается время пуска по показаниям таймера часов системы единого времени. Сообщение о факте выстрела и время включения ЛЦД в режим подсвета цели передается по цифровому каналу радиосвязи с пульта управления огневой позиции на пульт разведчика, где при наступлении необходимого времени выдается в ЛЦД сигнал на включение лазерного излучения, по которому осуществляется наведение управляемой ракеты на цель.

Недостатком прототипа является то, что в данном способе наведение ракеты на цель осуществляется только по сигналам с лазерной головки самонаведения при подсвете цели лазерным излучением целеуказателя, что происходит только на конечном участке траектории полета ракеты, а до этого момента ракета выдерживает направление на цель только под контролем гироскопической системы, что при стрельбе на большие дальности может не обеспечить выход ракеты в район цели и привести к промаху.

Задачей предлагаемого изобретения является повышение надежности поражения цели за счет реализации трехэтапного способа управления ракетой.

Указанная задача достигается за счет того, что в известном способе стрельбы управляемой ракетой, включающем топографическую привязку целеуказателя и пусковой установки к местности, обнаружение цели целеуказателем, измерение целеуказателем координат цели и передачу их в пульт управления огневой позиции, установку единого компьютерного времени в пульте разведчика и пульте управления огневой позиции, расчет в пульте управления огневой позиции установок стрельбы управляемой ракеты и пусковой установки, передачу установок стрельбы по пусковой установке и ракете в блок автоматики пусковой установки и далее в ракету, наведение пусковой установки, подачу с пульта управления огневой позиции в блок автоматики пусковой установки команды на пуск и производство пуска с фиксацией момента его производства, передачу с пульта управления огневой позиции на пульт разведчика по каналу цифровой связи времени включения лазерного излучения целеуказателя, автоматическую посылку из пульта разведчика в целеуказатель сигнала включения лазерного излучения при достижении необходимого времени включения, наведение управляемой ракеты на цель, подсвеченную лазерным излучением целеуказателя, новым является то, что топопривязку пусковой установки осуществляют наземным спутниковым приемником с одновременным определением координат местоположения пусковой установки и эфемерид по каждому космическому аппарату системы спутникового позиционирования, при передаче установок стрельбы в управляемую ракету дополнительно передают координаты цели и эфемериды спутниковой группировки, наведение управляемой ракеты на цель осуществляют в три этапа: на первом этапе после пуска и выхода ракеты из транспортно-пускового контейнера ракета летит по заданной баллистической траектории, на втором этапе наведения управление ракетой на траектории осуществляется под контролем бортового навигационного спутникового приемника, на третьем этапе при подлете к цели наведение осуществляется на цель, подсвеченную лазерным излучением целеуказателя по сигналам от лазерной головки самонаведения, причем на первом этапе наведения бортовой навигационный спутниковый приемник ракеты начинает определять координаты местоположения ракеты по эфемеридам, введенным перед пуском.

Управление стрельбой управляемой ракетой с пусковой установки по предлагаемому способу осуществляется следующим образом.

С помощью навигационной спутниковой аппаратуры пульта управления огневой позиции определяют координаты местоположения пусковой установки и эфемериды по каждому космическому аппарату системы спутникового позиционирования.

К пульту управления огневой позиции, например, по интерфейсу ГОСТ Р 520070-2003 подключается блок автоматики пусковой установки. Пусковая установка с заряженными в нее ракетами может находиться на расстоянии до 100 м от пульта управления огневой позиции. Кроме того, к пульту управления огневой позиции подключается комплект средств связи, с помощью которого организуется цифровой канал связи с разведчиком, находящимся на командно-наблюдательном пункте на значительном расстоянии от огневой позиции в районе цели. Разведчик имеет пульт разведчика, к которому подключается целеуказатель и комплект средств связи. Разведчик с помощью пульта разведчика определяет координаты местоположения, с помощью целеуказателя обнаруживает цель и вводит координаты цели в полярной системе координат в пульт разведчика. Информация о цели передается по цифровому каналу связи на пульт управления огневой позиции. В пульте управления огневой позиции рассчитываются установки стрельбы по цели для пусковой установки и управляемой ракеты.

По команде с пульта управления огневой позиции по цифровому каналу связи с блоком автоматики пусковой установки осуществляется дистанционная подготовка управляемой ракеты к пуску, которая включает в себя следующие операции: подачу напряжения на выбранную управляемую ракету, передачу и запись в электронную аппаратуру ракеты рассчитанных установок стрельбы.

При передаче установок стрельбы в управляемую ракету дополнительно передают координаты цели и эфемериды спутниковой группировки. Информация об эфемеридах спутниковой группировки из электронной аппаратуры управляемой ракеты передается в бортовой навигационный спутниковый приемник, который сразу же при подаче питания выходит в режим определения координат местоположения ракеты без потери времени на поиск спутников.

Формируется разрешение на пуск и по команде на пуск автоматически производится пуск управляемой ракеты.

В момент пуска на пульте управления огневой позиции автоматически и дистанционно фиксируется время пуска путем опроса соответствующих контактов наличия ракеты на пусковой установке. С пульта управления огневой позиции по цифровому каналу связи на пульт разведчика передается время включения лазерного излучения целеуказателя.

Наведение управляемой ракеты на цель осуществляют в три этапа. На первом этапе после пуска и выхода ракеты из транспортно-пускового контейнера ракета летит по заданной баллистической траектории, при этом бортовой навигационный спутниковый приемник начинает определять текущее местоположение ракеты через несколько секунд после выхода из контейнера за счет ввода перед пуском в ракету информации об эфемеридах по каждому космическому аппарату системы спутникового позиционирования.

На втором этапе наведения управление ракетой на траектории осуществляется под контролем бортового навигационного спутникового приемника. При этом осуществляется корректировка траектории полета ракеты с учетом текущего местоположения ракеты и введенной перед пуском информации о координатах цели.

Целеуказатель автоматически включается в режим подсвета цели лазерным излучением в заданный момент времени, при этом ракета находится в районе цели. Начинается третий этап наведение ракеты на цель, подсвеченную лазерным излучением целеуказателя, по сигналам от лазерной полуактивной головки самонаведения.

Для реализации описанного способа может использоваться аппаратура, описанная в патенте [Патент RU №2468327 от 27.11.2012 г. МПК7 F41G 5/00, 7/22 - Способ стрельбы управляемой ракетой с лазерной полуактивной головкой самонаведения].

Использование предлагаемого изобретения позволит обеспечить наведение ракеты на цель не только по сигналам лазерной полуактивной головки самонаведения, но и по сигналам бортового навигационного спутникового приемника, что повысит вероятность поражения цели. Эффективность способа проверена на макетном образце управляемой ракеты.

Способ стрельбы управляемой ракетой, включающий топографическую привязку целеуказателя и пусковой установки к местности, обнаружение цели целеуказателем, измерение целеуказателем координат цели и передачу их в пульт управления огневой позиции, установку единого компьютерного времени в пульте разведчика и пульте управления огневой позиции, расчет в пульте управления огневой позиции установок стрельбы управляемой ракеты и пусковой установки, передачу установок стрельбы по пусковой установке и ракете в блок автоматики пусковой установки и далее в ракету, наведение пусковой установки, подачу с пульта управления огневой позиции в блок автоматики пусковой установки команды на пуск и производство пуска с фиксацией момента его производства, передачу с пульта управления огневой позиции на пульт разведчика по каналу цифровой связи времени включения лазерного излучения целеуказателя, автоматическую посылку из пульта разведчика в целеуказатель сигнала включения лазерного излучения при достижении необходимого времени включения, наведение управляемой ракеты на цель, подсвеченную лазерным излучением целеуказателя, отличающийся тем, что топопривязку пусковой установки осуществляют наземным спутниковым приемником с одновременным определением координат местоположения пусковой установки и эфемерид по каждому космическому аппарату системы спутникового позиционирования, при передаче установок стрельбы в управляемую ракету дополнительно передают координаты цели и эфемериды спутниковой группировки, а наведение управляемой ракеты на цель осуществляют в три этапа: на первом этапе после пуска и выхода ракеты из транспортно-пускового контейнера наведение осуществляют по заданной баллистической траектории, на втором этапе наведения управление ракетой на траектории осуществляют под контролем бортового навигационного спутникового приемника, на третьем этапе при подлете к цели наведение осуществляют на цель, подсвеченную лазерным излучением целеуказателя по сигналам от лазерной головки самонаведения, причем на первом этапе наведения с помощью бортового навигационного спутникового приемника ракеты начинают определять координаты местоположения ракеты по эфемеридам, введенным перед пуском.



 

Похожие патенты:

Изобретение относится к ракетному вооружению, в частности к области малогабаритных управляемых снарядов. Управляемый снаряд выполнен по аэродинамической схеме «утка».

Предлагаемая группа изобретений относится к области военной техники, а именно к способу и средствам укладки парашюта и скреплённого с ним контейнера. Способ укладки парашюта и скрепленного с ним контейнера с полезным снаряжением в головную часть корпуса гранаты включает укладку купола парашюта, строп, а при наличии и металлического удлинителя в головную часть гранаты.

Изобретение относится к военной технике и может быть использовано для отработки старта ракеты из контейнера. Бортовое командное устройство содержит источник питания, электрически связанный с катапультирующим устройством, двигателем первой ступени, рулевыми машинами через переключатели с нормально разомкнутыми контактами, переключатель, взаимодействующий с датчиком выхода макета, блок временной задержки запуска двигателя относительно момента срабатывания датчика выхода, две параллельные цепи с инвертором для подачи на рулевые машины электрического сигнала нужной полярности.

Изобретение относится к способам поражения подводных целей. Способ поражения подводных целей заключается в доставке отделяемой боевой части подводного действия к району расположения цели, отделении боевой части на конечном участке траектории полета и ее задействовании после приводнения.

Изобретение относится к вооружению, в частности к способам поражения подводных целей. Способ поражения подводных целей заключается в доставке к району расположения цели отделяемой боевой части подводного действия и одного радиогидроакустического буя, посредством ракеты с использованием разгонного устройства, отделении боевой части на конечном участке траектории полета и ее задействовании после приводнения.

Боеприпас // 2529236
Изобретение относится к области военной техники, а именно к различным боеприпасам, преимущественно для гладкоствольного оружия. Боеприпас содержит корпус с хвостовой частью, откидывающиеся консоли стабилизирующего оперения и элементы шарнирного соединения консолей с хвостовой частью корпуса.

Изобретение относится к управлению траекторией полета тел, движущихся с высокими, в т. ч.

Изобретение относится к области управляемого артиллерийского вооружения, в частности к управляемым артиллерийским снарядам. Управляемый артиллерийский снаряд содержит корпус, блок автоматического управления, блок рулевого привода, блок тормозных устройств, боевую часть, комбинированное взрывательное устройство, стабилизатор и донный газогенератор.

Изобретение относится к области разработки систем наведения ракет и может быть использовано в комплексах ПТУР и ЗУР. В способе управления ракетой формируют управляющий сигнал автоколебательным приводом аэродинамических рулей с обратной связью и вибрационной линеаризацией и соответствующее отклонение приводом аэродинамических рулей.

Изобретение относится к области управления летательными аппаратами (ЛА), в частности, стабилизированными вращением. Способ использует информацию о векторе магнитного поля Земли (МПЗ), измеренном датчиком МПЗ в связанной с ЛА вращающейся по крену системе координат.

Изобретение относится к области ракетной техники, в частности к управляемым ракетам. Управляемая ракета содержит корпус с симметрично размещенными на нем основными органами управления - аэродинамическими поверхностями и рулями, а также гаргрот. Гаргрот размещен вдоль корпуса в развале рулей. На корпусе, на противоположной по отношению к гаргроту стороне, дополнительно установлена аэродинамическая поверхность. Достигается улучшение аэродинамики полета ракеты и повышение точности ее наведения на цель. 1 з.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике, в частности к ракетным частям со стабилизатором реактивных снарядов. Ракетная часть со стабилизатором реактивного снаряда содержит корпус с многосопловым блоком и раскрывающийся стабилизатор с лопастями. Лопасти установлены под нулевым углом к продольной оси корпуса. Лопасти стабилизатора выполнены плоскими и имеют несимметричное заострение передних кромок со скосом. Скос расположен на поверхности лопасти, обращенной в направлении, противоположном вращению ракетной части. Угол заострения в плоскости, перпендикулярной передним кромкам, находится в пределах β=10°…30°. Достигается повышение надежности функционирования ракетной части. 2 з.п. ф-лы, 2 ил.

Изобретение относится к боеприпасам, в частности к блокам системы управления для реактивных снарядов. Блок системы управления реактивного снаряда содержит корпус с оживальной частью, раскладывающиеся в полете аэродинамические рули с приводами и блоком управления, смонтированные на оживальной части. Каждый руль оснащен контрфорсом. Контрфорс размещен перед передней кромкой руля соосно с осью раскладывания. Профиль передней части контрфорса конгруэнтен профилю оживальной части корпуса. Диаметр максимальной описанной окружности контрфорсов всех рулей не превышает калибра блока. Оси раскладывания рулей смещены к оси блока относительно его калибра на величину не менее 0,5 максимальной толщины руля у корневой хорды его раскладывающейся части. Достигается повышение точности стрельбы снарядом. 2 з.п. ф-лы, 2 ил.

Изобретение относится к ракетному вооружению, в частности к области малогабаритных управляемых снарядов. Управляемый снаряд выполнен по аэродинамической схеме «утка». Снаряд с одноканальной системой управления и вращающийся по крену. Снаряд содержит маршевый двигатель, руль в одной плоскости и стабилизатор с расположением неподвижных несущих поверхностей по Х-образной схеме относительно плоскости консолей руля. На головной части корпуса управляемого снаряда в плоскости, перпендикулярной плоскости консолей руля, установлены пилоны. Неподвижные консоли пилонов в поперечной плоскости расположены под углом 45…60 градусов относительно консолей стабилизатора. Консоли пилона по геометрической форме в плане выполнены подобно консолям руля с соотношением площадей пилона и руля как 0,5…1,0. Отношение площадей консоли пилона и консоли стабилизатора выполнено как 0,05…0,1. Достигается повышение эффективности управления, улучшение баллистических и динамических характеристик снаряда. 2 ил.

Изобретение относится к области огнестрельного гладкоствольного оружия, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом содержит гладкую цилиндрическую часть, в которой выполнена полость питания, соединенная с наружной цилиндрической поверхностью через питающие устройства. Полость питания предназначена для создания давления в несущем газовом слое. Полость питания заполнена веществом, имеющим высокую скорость горения. Полость питания соединена с тыльной частью снаряда через термитный фитиль. Термитный фитиль выполнен в виде прокладки, размещенной на внутренней стенке полости питания и поджатой к этой стенке подпружиненной пятой. Достигается уменьшение размера снаряда и увеличение дальности стрельбы. 3 ил.

Изобретение относится к военной технике и может быть использовано в крылатых ракетах (КР). Разгоняют вращающуюся ракету до маршевой скорости с помощью твердотопливного отделяемого стартового ускорителя, поддерживают маршевую скорость тягой малогабаритного одноразового турбореактивного двигателя, закручивают и поддерживают режим вращения вокруг оси крена с помощью скошенных относительно продольной оси хвостовых стабилизаторов и/или газодинамической насадки на турбореактивном двигателе, формируют аэродинамическую подъемную силу в режиме вращения с помощью n-пар малогабаритных складывающихся крыльев. Изобретение позволяет увеличить дальность полета КР. 2 ил.

Изобретение относится к области боеприпасов и ракетной техники, в частности к контейнерам бакового типа боевых частей ракет и боеприпасов. Контейнер бакового типа боевой части содержит обтекатель, тонкостенный корпус-бак, переднее и заднее донья, устройство для разброса и воспламенения наполнителя. Между обтекателем и передним дном выполнена буферная полость, в которой размещены компенсаторы массы контейнера. Обтекатель контейнера выполнен в виде упрочненного плоского дна со скругленными краями, скрепленными с оболочкой контейнера посредством резьбового соединения. Переднее дно контейнера выполнено в виде конического отражателя. Угол раствора отражателя составляет 120-140°. Корпус-бак снабжен центрирующим утолщением, размещенным на расстоянии 3,6-3,8 калибра от обтекателя. Устройство разброса и воспламенения наполнителя расположено вдоль продольной оси контейнера и смещено внутрь буферной полости на 0,010-0,015 его длины и скреплено с крестообразной опорой. Достигается повышение эффективности действия ракеты или боеприпаса с таким контейнером. 1 ил.

Изобретение относится к области радиолокации, в частности к юстировочным щитам. Юстировочный щит моделирует прямые и зеркально отраженные от земли радиосигналы, идущие от ракеты и цели на конечном участке наведения. Юстировочный щит находится в дальней зоне антенны радиопеленгатора и содержит лазерный и инфракрасный излучатели. Для имитации сигналов от приемоответчика ракеты и сигналов, отраженных от цели, щит снабжен генератором радиоимпульсов с синтезатором частот. Достигается повышение точности юстировки. 3 ил.

Группа изобретений относится к способам и системам управления летательными аппаратами. В способе формирования линеаризованного сигнала на вращающейся по углу крена ракете разбивают период вращения ракеты на временные интервалы, измеряют и запоминают их длительности определенным образом. Линеаризатор сигнала содержит цифровой интегратор, вычислитель, формирователь кренового сигнала, формирователь ступенчатого сигнала, регистр и формирователь тактовых импульсов. Переключаемый линеаризатор сигнала содержит цифровой интегратор, два вычислителя, формирователь кренового сигнала, формирователь ступенчатого сигнала, датчик крена, регистр, блок управления, коммутатор, формирователь тактовых импульсов. В способе интегрирования для формирования линеаризованного сигнала на вращающейся по углу крена ракете интегрируют амплитуду тактовых импульсов, производят поразрядное суммирование к-разрядных двоичных параллельных чисел для каждого фронта нарастания тактовых импульсов. Длительность интервала интегрирования устанавливают соответствующей длительности углового интервала 90 градусов. Затем процесс интегрирования повторяют, поменяв дискретную величину определенным образом перед его началом. Цифровой интегратор содержит последовательно соединенные цифровые одноразрядные ячейки. Ячейка содержит соединенные определенным образом D-триггер и сумматор. Обеспечивается высокая точность формирования команд управления ракетой. 5 н. и 6 з.п. ф-лы, 7 ил.

Изобретение относится к ракетной технике и может быть использовано для управления полетом ракеты при летных испытаниях. Постоянно обследуют в течение всего отрезка времени от установки ракеты в пусковую установку до ее пуска с помощью бортового радиолокационного комплекса дистанционного зондирования Земли штатное и прогнозируемое места уничтожения ракеты в результате возможного нештатного изменения траектории полета, регистрируют в обоих местах появление несанкционированных объектов, существование которых подвергается опасности при самоликвидации ракеты, фиксируют, выявляют и идентифицируют несанкционированные объекты, одновременно вводят в программную систему управления полетом команду отсрочки момента самоликвидации, включают команду отсрочки самоликвидации ракеты или отвода ее в безопасное место, если к моменту пуска ракеты несанкционированные объекты все еще будут находиться в одном из мест ликвидации ракеты, запускают ракету, определяют текущие координаты и параметры движения ракеты, рассчитывают вероятную траекторию, формируют и передают на ракету команды на изменение траектории полета, постоянно передают на командный пункт данные о состоянии окружающей среды на трассе летных испытаний, прогнозируют возможные нештатные изменения траектории полета, приводящие к загрязнению поверхности земли, водоемов и воздуха, передают на ракету команды либо на продолжение полета к цели, либо на отклонение от траектории и уничтожение ракеты в районе с минимальным ущербом для окружающей среды. Изобретение позволяет обеспечить безопасность несанкционированных объектов, находящихся в прогнозируемом месте ликвидации ракеты. 3 ил.
Наверх