Способ оценки силы и коэффициента трения при холодной обработке металлов давлением и устройство для его реализации

Группа изобретений относится к обработке металлов давлением, а именно к оценке силы и коэффициента трения при холодной обработке металлов давлением. Представлен способ оценки параметров трения при холодной обработке металлов давлением, по которому протягивают через валки с заданным обжатием образцов с коническим участком с одного конца, длина которого позволяет обеспечивать прирост степени обжатия при протягивании образцов, визуально определяют место образования задиров на образцах, составляют для всех образцов график зависимости сила деформирования - перемещение, с помощью которого для места образования задиров определяют степень обжатия и напряжение сдвига второго образца и образцов с нанесенными смазочными материалами или покрытиями при их протягивании через жестко закрепленные валки, при этом определяют момент сопротивления вращению валков при их торможении и нормальную силу, действующую на валки со стороны образцов при их деформировании, посредством датчиков силы и устройства торможения валков, а из этих, фиксируемых датчиками силы, величин определяют силу трения по формуле:

Tтр.=Pдат.×L/R,

где Ттр. - сила трения,

R - радиус валка,

Рдат. - сила торможения, фиксируемая датчиком,

L - длина рычага тормозящего приспособления,

и коэффициент трения по формуле:

f=Tтр./2N=Pдат.×L/R×2N,

где f - коэффициент трения,

N - нормальная нагрузка, т.е. сила, действующая на валки со стороны образцов при их деформировании, определяемая датчиками силы.

Также описано устройство для реализации указанного способа.

Достигается расширение функциональных возможностей и повышение надежности оценки. 2 н.п. ф-лы, 1 пр., 1 табл., 5 ил.

 

Изобретение относится к обработке металлов давлением, а именно к способам оценки параметров трения - силы и коэффициента трения, а также противозадирных свойств технологических смазочных материалов.

Известен способ оценки противозадирных свойств (И.И.Карасик. Методы трибологических испытаний в национальных стандартах стран мира, под ред. проф. Кершенбаумана, Центр "Наука и техника", 1993 г., с.214-216), согласно которому к пластинчатому (ленточному) образцу исследуемого материала прижимают посредством сферического индентора такой же контробразец, при взаимном перемещении образцов регистрируют силы сдвига и сжатия, а также глубину внедрения индентора, по значениям которых судят о противозадирной стойкости поверхностных слоев образцов.

Недостатком аналога является отсутствие объемного формоизменения образца.

Известен также способ оценки эффективности смазочных слоев путем определения сил, идущих на дополнительную деформацию поверхностных слоев образцов (В.И. Лихтман, Е.Д. Шукин и П.А. Ребиндер «Физико-химическая механика металлов», издательство академии наук СССР, Москва, 1962 г., с.97-115), согласно которому протягивают образцы в виде прутков или полосок через свободно вращающиеся валки и тем самым определяют силу деформирования (Fд.), необходимую только для объемного формоизменения металла. Затем для оценки силы на дополнительную деформацию сдвига (трения), валки стопорят, определяют полную силу протягивания образцов Fобщ., из которой вычитают силу Fд. при свободновращающихся валках. Таким образом, определяют силу, идущую на дополнительную деформацию сдвига (трения), по формуле: Fтр.=Fобщ.-Fд., а напряжение сдвига (трения)=Fтр./S, где S - площадь очага деформации. По величинам Fтр. и судят об эффективности того или иного смазочного слоя.

Недостатком аналога является отсутствие связи между пластическим формоизменением (степенью деформации) образца (заготовки) нормальной нагрузкой (давлением) на инструмент и противозадирными свойствами поверхностных слоев.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ оценки противозадирных свойств технологических смазочных материалов для холодной обработки металлов давлением (патент РФ №2376601 от 20.12.2009 МНК G01N 33/39), включающий протягивание через валки, с заданным обжатием, образцов с коническим участком с одного конца, длина которого позволяет обеспечивать прирост степени обжатия при протягивании образцов, визуально определяют место образования задиров на образцах, составляют для всех образцов график зависимости сила деформирования - перемещение, с помощью которого для места образования задиров определяют степень обжатия и напряжение сдвига второго образца и образцов с нанесенными смазочными материалами или покрытиями при их протягивании через жестко закрепленные валки.

Недостатком ближайшего аналога способа являются ограниченные функциональные возможности, т.к. он не оценивает нормальную нагрузку (давление) на инструмент и заготовку и не регистрирует силу трения.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является устройство для определения энергосиловых параметров процессов при обработке давлением плоской заготовки (авторское свидетельство СССР №1797015, G01N 19/02, 23.02.1993), содержащее пару валков, механическую систему регулировки зазора между валками (механизм поджатия валков друг к другу) устройство торможения валков и датчики силы.

Недостатком ближайшего аналога устройства являются ограниченные функциональные возможности, обусловленные обработкой только плоских заготовок.

Задачей изобретения является расширение функциональных возможностей способа за счет оценки силы и коэффициента трения, а техническим результатом - создание устройства, которое позволяет осуществлять непосредственное измерение силы трения и нормальной нагрузки, как в момент образования риски (задира) на контактной поверхности заготовки, так и во всех других случаях деформирования.

Поставленная задача решается, а технический результат достигается тем, что в способе оценки параметров трения при холодной обработке металлов давлением, по которому протягивают через валки с заданным обжатием образцов с коническим участком с одного конца, длина которого позволяет обеспечивать прирост степени обжатия при протягивании образцов, визуально определяют место образования задиров на образцах, составляют для всех образцов график зависимости сила деформирования - перемещение, с помощью которого для места образования задиров определяют степень обжатия и напряжение сдвига второго образца и образцов с нанесенными смазочными материалами или покрытиями при их протягивании через жестко закрепленные валки, согласно изобретению, определяют момент сопротивления вращению валков при их торможении и нормальную силу, действующую на валки со стороны образцов при их деформировании, посредством датчиков силы и устройства торможения валков, а из этих, фиксируемых датчиками силы, величин определяют силу трения по формуле:

Tтр.=Pдат.×L/R,

где Ттр. - сила трения,

R - радиус валка,

Рдат. - сила торможения, фиксируемая датчиком,

L - длина рычага тормозящего приспособления,

и коэффициент трения по формуле:

f=Tтр./2N=Pдат.×L/R×2N,

где f - коэффициент трения,

N - нормальная нагрузка, т.е. сила, действующая на валки со стороны образцов при их деформировании, определяемая датчиками силы.

Так как валка два, то величина нормальной нагрузки, действующей со стороны деформируемой заготовки на инструмент (валки) будет равна 2N.

Поставленная задача решается, а технический результат достигается также тем, что в устройстве оценки параметров трения при холодной обработке металлов давлением, содержащем пару валков, механическую систему регулировки зазора между валками, рычаг устройства торможения валков и датчики силы, согласно изобретению, валки установлены на двухвалковом прокатном стане, имеющем станину с подшипниками и зубчатую передачу, с возможностью передачи моментов вращения и торможения между валками, при этом один датчик силы прикреплен к подвижной траверсе разрывной машины и к рычагу устройства торможения валков, а два других датчика силы установлены в станине блока под корпусами подшипников одного валка, т.е. каждый из трех датчиков силы соединен соответственно с каждым аналогово-цифровым преобразователем.

Первый датчик регистрирует силу деформирования заготовки, второй - нормальную нагрузку на валки, а третий - силу торможения валков.

Существо изобретения поясняется чертежами.

На фиг.1 изображена принципиальная схема устройства оценки параметров трения при холодной обработке металлов давлением, на фиг.2 - схема деформирования заготовок в виде полос и круглых прутков, на фиг.3 - схема деформирования заготовок образцов в виде полос и круглых прутков с коническим участком. На фиг.4 показаны зависимости «сила деформирования - перемещение траверсы» - 14, «нормальная нагрузка - перемещение траверсы» - 15, «сила трения - перемещение траверсы» - 16, где Рд - сила, затраченная только на деформацию заготовки, Тр - сила трения, Рд+Тр - суммарная сила деформирования заготовки, N - нормальная нагрузка на валки. На участке Л-В валки свободно вращаются, в точке В валки стопорятся и начиная с точки С идет процесс волочения с силой Рд+Тр. На фиг.5 изображены зависимости «сила деформирования - перемещение траверсы» - 14, «нормальная нагрузка - перемещение траверсы» - 15, «сила трения - перемещение траверсы» - 16.

Устройство оценки параметров трения при холодной обработке металлов давлением (фиг.1) содержит двухвалковый прокатный стан (с валками 1, через которые с определенным обжатием протягивают заготовку 2), имеющий станину с подшипниками и механическую систему регулировки зазора между валками 3, зубчатую передачу 4 с возможностью передачи моментов вращения и торможения между валками. Устройство торможения валков 5, имеющее рычаг, первый 6, второй 7 и третий 8 датчики силы закреплены на подвижной траверсе разрывной машины 9. Разрывная машина имеет захват 10, при этом первый датчик силы 6 связан с первым аналого-цифровым преобразователем 11, второй датчик силы 7 связан со вторым с аналого-цифровым преобразователям 12, а третий датчик силы 8 связан с третьим аналого-цифровым преобразователем 13.

Устройство оценки параметров трения при холодной обработке металлов давлением (фиг.1) работает следующим образом. Датчики силы с аналого-цифровыми преобразователями фиксируют величины силы деформирования образцов различной формы (фиг.2 и фиг.3), крутящего момента и нормальной нагрузки, а с помощью программных обеспечений осуществляют сбор и обработку данных на компьютере и регистрируют зависимости «сила деформирования - перемещение траверсы» (график 14 фиг.4 и фиг.5), «нормальная нагрузка - перемещение траверсы» (график 15 фиг.4 и фиг.5), «крутящий момент - перемещение траверсы» (график 16 фиг.4 и фиг.5).

Пример конкретной реализации способа

Для определения сил трения и оценки эффективности различных вариантов подготовки поверхности использовали заготовки из металлов и сплавов в виде полос, круглых прутков (фиг.2 и фиг.3) и другой формы с максимальным диаметром или толщиной 9 мм, шириной 150 мм и длиной 500 мм.

Деформируемая заготовка закреплялась в захвате разрывной машины (фиг.1). С помощью механической системы регулировки зазора между валками устанавливали необходимую степень обжатия заготовки. В случае проведения испытаний с регистрацией крутящего момента (силы трения), валки стопорят, используя устройство торможения валков с датчиком силы модели 1925 ИС-М-5,0-1,0-В12. Два датчика силы модели СММ-ТЗ, установленные в станине блока под корпусами подшипников, фиксируют нормальную нагрузку на валки со стороны заготовки.

Для оценки противозадирных свойств использовали образцы с конусной частью (фиг.3), которую получают с помощью приспособления на плоскошлифовальном станке. Одновременно шлифовали несколько заготовок. Приспособление позволяет менять угол конусности, и тем самым задавать степень максимального обжатия в процессе деформирования.

При деформировании плоских и круглых образцов вид регистрируемых графиков показан на фиг.4, при деформировании конусной заготовки - на фиг.5.

Из значений полученных графических зависимостей «сила деформирования - перемещение траверсы» (график 14 фиг.4 и фиг.5), «нормальная нагрузка - перемещение траверсы» (график 15 фиг.4 и фиг.5), «крутящий момент - перемещение траверсы» (график 16 фиг.4 и фиг.5), определяли силу трения и коэффициент трения.

Деформировали полосу толщиной 3 мм, шириной 30 мм и длиной 415 мм из алюминиевого сплава АД31 со скоростью деформирования 10 мм/мин со степенью обжатия 0,41. Радиус валка равен 23,5 мм, длина рычага тормозящего приспособления равна 190 мм. Значения параметров трения при деформировании с двумя различными смазочными композициями приведены в таблице 1.

Крутящий момент, создаваемый силой трения на двух валках (без учета момента трения в подшипнике), будет равен:

Мтр.=Tтр.R=Pдат.L,

где Мтр. - момент трения, создаваемый силой трения относительно оси вращения валка,

Ттр. - сила трения,

R - радиус валка,

Рдат. - сила торможения валков, фиксируемая датчиком,

L - длина рычага тормозящего приспособления (фиг.1).

Из этого соотношения определяли силу трения как:

Tтр.=Pдат.L/R.

Известно, что силу трения в общем случае по закону Амонтона-Кулона можно определить как:

Ттр.=2fN,

где f - коэффициент трения,

N - нормальная нагрузка, т.е. сила, определяемая датчиками модели СММ-Т3 на один валок.

Тогда коэффициент трения определяется как:

f=Tтр./2N=Pдат.L/R2N.

Таблица 1
Значения параметров трения при деформировании полосы из алюминиевого сплава АД31 с двумя различными смазочными композициями
Параметры трения Смазочная композиция
Технологический смазочный материал с поверхностно-активными присадками Полифункциональная синтетическая основа с добавками дисульфида молибдена, серы и графита
Рдат. 470 90
Ттр.дат.L/R 3800 730
N 2200 2400
f=Tтр./2N 0,86 0,15

Итак, предлагаемый способ позволяет расширить функциональные возможности методов определения параметров трения в процессах обработки металлов давлением за счет оценки нормальной нагрузки (давления) на инструмент и заготовку и силы трения с помощью устройства для его реализации.

1. Способ оценки параметров трения при холодной обработке металлов давлением, по которому протягивают через валки с заданным обжатием образцов с коническим участком с одного конца, длина которого позволяет обеспечивать прирост степени обжатия при протягивании образцов, визуально определяют место образования задиров на образцах, составляют для всех образцов график зависимости сила деформирования - перемещение, с помощью которого для места образования задиров определяют степень обжатия и напряжение сдвига второго образца и образцов с нанесенными смазочными материалами или покрытиями при их протягивании через жестко закрепленные валки, отличающийся тем, что определяют момент сопротивления вращению валков при их торможении и нормальную силу, действующую на валки со стороны образцов при их деформировании, посредством датчиков силы и устройства торможения валков, а из этих, фиксируемых датчиками силы, величин определяют силу трения по формуле:
Tтр.=Pдат.×L/R,
где Ттр. - сила трения,
R - радиус валка,
Рдат. - сила торможения, фиксируемая датчиком,
L - длина рычага тормозящего приспособления,
и коэффициент трения по формуле:
f=Tтр./2N=Pдат.×L/R×2N,
где f - коэффициент трения,
N - нормальная нагрузка, т.е. сила, действующая на валки со стороны образцов при их деформировании, определяемая датчиками силы.

2. Устройство оценки параметров трения при холодной обработке металлов давлением, содержащее пару валков, механическую систему регулировки зазора между валками, устройство торможения валков с рычагом и датчики силы, отличающееся тем, что валки установлены на двухвалковом прокатном стане, имеющем станину с подшипниками и зубчатую передачу, с возможностью передачи моментов вращения и торможения между валками, при этом один датчик силы прикреплен к подвижной траверсе разрывной машины и к рычагу устройства торможения валков, а два других датчика силы установлены в станине блока под корпусами подшипников одного валка, т.е. каждый из трех датчиков силы соединен соответственно с каждым аналогово-цифровым преобразователем.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано при испытаниях с целью оценки эффективности смазочно-охлаждающей жидкости (СОЖ) для шлифования. Образец фиксируют и шлифуют с подачей СОЖ на расположенных на магнитной плите плоскошлифовального станка подвижных салазках с прикрепленной силоизмерительной системой для записи тангенциальных составляющих силы шлифования и сведения их в таблицу.
Изобретение относится к измерительной технике и может быть применено для определения характера и степени износа в парах трения. Сущность: на рабочую поверхность наносят материал испытуемого покрытия и изнашивают его путем истирания.

Изобретение относится к технике исследования триботехнических свойств материалов и покрытий и может быть использовано при испытаниях на трение и износ. Устройство содержит основание, узел нагружения, связанный с датчиком износа, регистрирующий прибор, привод вращения, взаимодействующий с держателем контробразца, силоизмеритель с упругими элементами и датчики деформации.

Изобретение относится к технологии контроля качества смазочных масел при их применении и совместимости с материалами деталей машин. Способ заключается в том, что пробу масла постоянной массы нагревают при постоянной температуре с перемешиванием, через равные промежутки времени отбирают часть пробы окисленного масла, в каждой из которых определяют фотометрированием коэффициент поглощения светового потока окисленного масла и испытывают его на противоизносные свойства, при этом определяют диаметр пятна износа и коэффициент противоизносных свойств П, равный Kп/U, где Кп - коэффициент поглощения светового потока, a U - диаметр пятна износа, мм, строят линейную графическую зависимость коэффициента противоизносных свойств П от коэффициента поглощения светового потока Кп, которую используют для определения противоизносных свойств смазочных масел.

Изобретение относится к области испытания полимерных композиционных материалов и может быть использовано для оценки их износостойкости. Сущность: проводят испытания плоских образцов на трение и износ при постоянной скорости цилиндрического контртела за один и тот же период времени по одному и тому же следу трения при кратно увеличивающихся нагрузках.

Изобретение относится к области триботехнических исследований материалов и может быть использовано для испытания материалов для подвижных уплотнений. Сущность: проводят испытание уплотнительных материалов в режимах жидкостного и полусухого трения при постоянной скорости вращения смазываемого диска о поверхность исследуемого материала.

Изобретение относится к технологии машиностроения, к устройствам для определения пластических деформаций и износа упрочненных материалов при испытаниях на контактную выносливость плоских поверхностей импульсной нагрузкой деталей вибрационных машин.

Изобретение относится к области машиностроения, в частности к конструкции стендов для испытаний на износ дисковых ножей рабочих органов для бестраншейной замены трубопроводов.

Изобретение относится к испытательной технике, а именно к устройствам для испытания на износ плоских поверхностей, и, преимущественно, может быть использовано при испытании панелей пола.

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации.

Изобретение относится к области механических испытаний материалов. Для определения статического и динамического коэффициентов внешнего трения используют два образца: базовый и подвижный.

Изобретение относится к устройствам определения физико-механических свойств транспортируемых грузов. Устройство для определения величины коэффициента трения сыпучего груза о грузонесущий орган транспортной машины содержит размещенную на опорной раме съемную пластину из материала грузонесущего органа транспортной машины с размещенной на пластине пробой транспортируемого груза.

Предлагаемое изобретение относится к области испытаний конструкционных материалов на трение и износ в узлах трения щетка-коллектор электродвигателя или электрогенератора, а также в узлах токосъемная вставка-троллей, вставка-токоподводящая шина, башмак-рельс, т.е.

Изобретение относится к измерительной и испытательной технике и предназначено для использования при исследовании сил трения в металлургическом производстве, а именно при прокатке металлов.

Изобретение относится к области измерительной техники, в частности к определению коэффициента трения покоя. Способ определения коэффициента трения покоя поверхностного слоя электропроводящего материала включает установку образца с возможностью поступательного перемещения в горизонтальной плоскости.

Изобретение относится к измерительным приборам. Прибор для определения коэффициента силы трения покоя содержит опорную платформу 1.

Изобретение относится к области изучения трения при обработке металлов давлением, предпочтительно в технологиях ковки. Сущность: осуществляют изготовление испытуемого образца, фиксацию его начальных геометрических параметров, осадку с уменьшением толщины образца, фиксацию геометрических параметров после осадки и установление по изменению этих параметров коэффициента трения.

Изобретение относится к материаловедению производств текстильной и легкой промышленности и предназначено для объективной оценки определения силы трения текстильных полотен.

Изобретение относится к области исследований и физических измерений. .

Изобретение относится к измерительным приборам. .

Изобретение относится к способам для определения коэффициента сцепления на искусственных поверхностях, преимущественно взлетно-посадочных полос аэродромов, а также дорожных покрытий. Способ осуществляют методом торможения, когда по поверхности искусственного покрытия катят измерительное колесо, которое тормозят в соответствии с состоянием поверхности покрытия. При этом определяют нормальную силу P нагрузки измерительного колеса на поверхность покрытия. Определяют момент силы M сцепления измерительного колеса с поверхностью покрытия, и в соответствии с полученным значением момента силы M сцепления измерительного колеса увеличивают или уменьшают момент силы Mg торможения электромагнитного тормоза или другого устройства торможения. При этом получают и поддерживают максимальное тормозное усилие Ртор.макс измерительного колеса с поверхностью искусственного покрытия, которое равно силе сцепления F измерительного колеса с поверхность покрытия (Ртор.макс=F). Коэффициент сцепления Ксцп вычисляют по формуле Ксцп=M/PR, R - радиус измерительного колеса. Технический результат - повышение точности измерений коэффициента сцепления. 3 ил.

Группа изобретений относится к обработке металлов давлением, а именно к оценке силы и коэффициента трения при холодной обработке металлов давлением. Представлен способ оценки параметров трения при холодной обработке металлов давлением, по которому протягивают через валки с заданным обжатием образцов с коническим участком с одного конца, длина которого позволяет обеспечивать прирост степени обжатия при протягивании образцов, визуально определяют место образования задиров на образцах, составляют для всех образцов график зависимости сила деформирования - перемещение, с помощью которого для места образования задиров определяют степень обжатия и напряжение сдвига второго образца и образцов с нанесенными смазочными материалами или покрытиями при их протягивании через жестко закрепленные валки, при этом определяют момент сопротивления вращению валков при их торможении и нормальную силу, действующую на валки со стороны образцов при их деформировании, посредством датчиков силы и устройства торможения валков, а из этих, фиксируемых датчиками силы, величин определяют силу трения по формуле:Tтр.Pдат.×LR,где Ттр. - сила трения,R - радиус валка,Рдат. - сила торможения, фиксируемая датчиком,L - длина рычага тормозящего приспособления,и коэффициент трения по формуле:fTтр.2NPдат.×LR×2N,где f - коэффициент трения,N - нормальная нагрузка, т.е. сила, действующая на валки со стороны образцов при их деформировании, определяемая датчиками силы.Также описано устройство для реализации указанного способа.Достигается расширение функциональных возможностей и повышение надежности оценки. 2 н.п. ф-лы, 1 пр., 1 табл., 5 ил.

Наверх