Способ изготовления изделий из порошков соединений ряда карбидов и связующая композиция для осуществления способа

Изобретение относится к области порошковой металлургии, в частности к изготовлению изделий из порошков твердых сплавов на основе карбидов. Смешивают временное связующее, содержащее двухкомпонентный диспергатор и двухкомпонентную смазочную добавку в весовом соотношении от 1:3,6 до 1:13,1, и порошкообразную смесь неорганических порошков, содержащую порошки карбидов и постоянного связующего. Формируют деталь и проводят термическое удаление временного связующего в два этапа в вакууме. На первом этапе остаточное давление поддерживают в диапазоне от 13 до 1,3 Па при нагреве от комнатной температуры до 300°С, на втором этапе - в интервале значений от 1,3 до 0,13 Па при нагреве от комнатной температуры до 1370°С или 1390°С. Спекание детали осуществляют под избыточным давлением инертного газа в диапазоне температур от 1370 до 1390°С. Обеспечивается энерго- и ресурсосберегающее получение изделий с высокими эксплуатационными характеристиками. 2 н. и 7 з.п. ф-лы, 1 табл., 1 пр.

 

Изобретение относится к области порошковой металлургии, а именно технологии производства изделий методом экструзии или прессования порошков неорганических материалов на основе карбидов и последующего термического удаления временной связки при низком остаточном давлении и спекания тела изделия при избыточном давлении инертного газа. Способ относится к энерго- и ресурсосберегающим технологиям изделий твердых сплавов и требует только доводочной обработки изделия, при этом обеспечивает высокие эксплуатационные характеристики конечного продукта. Качество спеченного изделия определяется наличием неоднородностей, пор, не релаксированных механических напряжений несоответствия параметров решетки сопрягаемых неорганических материалов. Поры и неоднородности обусловлены, с одной стороны, выбором связующего, обеспечивающего гомогенизацию смеси и способность ее к формообразованию, с другой - технологическим приемом его удаления.

Известны составы и соотношения компонентов неорганических наполнителей однокарбидных, двухкарбидных и трехкарбидных твердых сплавов с постоянной связкой кобальта, известно влияние степени дисперсности тугоплавкой фазы на физико-химические и механические свойства конечного изделия, например, из обзорного материала «Твердые сплавы» Симсталь (http://simstal.ru/ri/material/tviordye-splavy), свойства которых приведены в таблице для сравнения.

Близким аналогом предлагаемого технического решения, обеспечивающего получение качественного изделия методом порошковой металлургии, может быть патент РФ №2046114, дата публикации 20.101995 г., МПК С04В 35/00, патентообладатель Хехст А.Г. название «Формовочная масса и способ ее приготовления», в котором формовочную массу, включающую керамический или металлический порошкообразный наполнитель, расплав воска и сополимера этиленвинилацетата, органические перекиси, перемешивают и создают условия для полимеризации и фиксирования формы изделию, подвергают термическому удалению временной связки в среде, обогащенной кислородом, со скоростью от 2 до 5°С/мин до температуры 1400°С и спекают. Недостатком данного технического решения являются жесткие требования к физико-химическим свойствам номенклатуры исходных связок, необходимость в кислороде для их термического удаления при избыточном давлении.

Наиболее близким аналогом предлагаемого технического решения является патент РФ №2169056, дата публикации 20.06.2001 г., МПК B22F3/20, заявитель Карпентер Технолоджи Корпорейшн (US) «Способ изготовления деталей из неорганического порошкообразного материала (варианты) и связующая композиция для осуществления способа», в котором используют многокомпонентное связующее, вводимое в расплавленном виде. Основным критерием подбора компонентов связующего является соотношение давления их насыщенных паров при температуре разложения наиболее нестабильного, что обеспечивает постепенное удаление временной связки по мере повышения температуры спекания со скоростью 0,5-10°С/мин, кроме того, возможна выдержка при максимальной температуре 180 мин. Общее время спекания менее 12 часов. Недостатком данного технического решения является то, что термическая обработка по удалению связующего и спекание осуществляют в едином процессе, что экономически нецелесообразно, т.к. на низкотемпературном участке удаления связующего можно использовать менее дорогостоящее в эксплуатации оборудование, кроме того, удаление связующего целесообразнее производить в условиях вакуума, обеспечивающего уплотнение тела детали.

Целью настоящего изобретения является энерго- и ресурсосбережение, при сохранении достигнутого качества, использование номенклатуры компонентов временной связки, не относящихся к категории вредных или опасных.

Поставленная задача решается посредством удаления связующего в две стадии, что обеспечивает:

- дифференцированную загрузку вакуумного оборудования: для низкотемпературной стадии удаления связующего используют вакуумный сушильный шкаф, а высокотемпературной - вакуумную печь;

- смену стадий сопровождают термоударом, что обеспечивает релаксацию накопленных межзеренных механических напряжений в местах их сопряжений в системе «связка - неорганический наполнитель»;

- контролируемый выход продуктов разложения временной связки и скорость усадки обеспечивают согласованным поддержанием температуры и остаточного давления в вакуумной камере известными способами на всех стадиях удаления временного связующего;

- сохранение достигнутых качественных результатов обеспечивается посредством использования во временном связующем комбинации функционально раличающихся компонентов: диспергатор и смазочную добавку.

Диспергатор (поверхностно-активное вещество) двухкомпонентный:

- пчелиный воск, который в процессе удаления связующего конденсируют и возвращают в производство;

- винилацетат, продукты разложения которого откачиваются вакуумным насосом.

Смазочная добавка двухкомпонентная, обеспечивает выполнение своих псевдоожижающих функций в широком диапазоне температур:

- вазелиновое масло с длиной алкановой цепи (от С11 до С14);

- парафин с длиной алкановой цепи (от С20 до С30).

Парафиновые компоненты, которые раздельно конденсируют на стадии удаления связующего, возвращают в производство.

Согласованные изотермические и изобарические выдержки обеспечивают оптимизацию скорости усадки изделия и удаления временного связующего.

В качестве исходного неорганического наполнителя используют смесь порошков, в которой основная фаза - это карбид вольфрама, присадками служат фазы карбида тантала, карбида хрома, карбида ванадия, роль постоянной связки выполняет порошок кобальта. Соотношение компонентов определяет конечные свойства твердого сплава и возможные области его применения.

Способ по настоящему изобретению проиллюстрирован примерами конкретного выполнения.

Пример 1.

1.1. Приготовление связки для смеси неорганического порошкообразного материала. Перемешивают доведенные путем плавления до жидкого состояния 2 г пчелиного воска, 3 г сивилена (коммерческое название этиленвинилацетата) с 0.4 г вазелинового масла и 53 г парафина.

1.2. Перемешивают известным способом 100 г порошка кобальта гранулометрического состава ⌀50=0,5 мкм, 0,5 г порошка карбида хрома гранулометрического состава ⌀50=0,5 мкм, 0,5 г порошка карбида ванадия гранулометрического состава ⌀50=0,5 мкм, 20 г порошка карбида тантала гранулометрического состава ⌀50=0,5 мкм и 880 г порошка карбида вольфрама гранулометрического состава ⌀50=0,5 мкм.

1.3. Приготовление массы для формообразования детали.

Перемешивают 58.4 г жидкой временной связки с 1001 г неорганической порошкообразной смеси до однородного пластичного состояния системы с температурой в диапазоне от 100 до 120°С.

1.4. Придание геометрической формы изделиям известными методами и стабилизация его формы при комнатной температуре, благодаря соответственно эффектам тиксотропии (смазочная добавка) и гелеобразования (поверхностно-активная добавка).

1.5. Предварительное низкотемпературное удаление временной связки в вакуумном термошкафу (первая стадия).

Изделия загружают в вакуумный термошкаф, камеру откачивают до остаточного давления 13 Па. Нагревают со скоростью в диапазоне от 10 градусов в час, обеспечивая вышеприведенное остаточное давление в камере или, другими словами, скорость ухода временной связки из тела изделия в режиме дросселирования. Изотермические выдержки для обеспечения вышеприведенного остаточного давления соответствуют температурам 50 и 120°С. Первая стадия до температуры 300°С выполнена на типовом оборудовании SPT-200.

1.6. Высокотемпературное удаление временной связки в вакуумной печи (вторая стадия).

Изделия перемещают из вакуумного термостата в вакуумную печь, подвергая его термоудару до комнатной температуры, что обеспечивает релаксацию механических напряжений несоответствия накопившихся в области сопряжения фазовых границ. Камеру вакуумной печи откачивают до остаточного давления 1.3 Па. Нагревают изделия со скоростью от 20 градусов в час до температуры 300°С и 180 градусов в час до температуры 1370°С в режиме дросселирования для поддержания остаточного давления 0.13 Па.

1.7. Спекают изделия при температуре 1370°С в атмосфере аргона при давлении 4.5·106 Па. Вторая стадия выполнялась на типовом оборудовании СНВ 1.31, подходят для этой цели вакуумно-компрессионные печи спекания типа COD733RL.

Пример 2.

2.1. Приготовление связки для смеси неорганического порошкообразного материала. Перемешивают доведенные путем плавления до жидкого состояния 8 г пчелиного воска, 9 г сивилена (коммерческое название этиленвинилацетата) с 1 г вазелинового масла и 60 г парафина.

2.2. Приготовление неорганической порошкообразной смеси материалов. Перемешивают известным способом 100 г порошка кобальта гранулометрического состава ⌀50=0,5 мкм, 1.5 г порошка карбида хрома гранулометрического состава ⌀50=0,5 мкм, 1.5 г порошка карбида ванадия гранулометрического состава ⌀50=0,5 мкм, 20 г порошка карбида тантала гранулометрического состава ⌀50=0,5 мкм и 880 г порошка карбида вольфрама гранулометрического состава ⌀50=0,5 мкм.

2.3. Приготовление массы для формообразования детали. Перемешивают 78 г жидкой временной связки с 1003 г неорганической порошкообразной смеси до однородного пластичного состояния системы с температурой в диапазоне от 100 до 120°С.

2.4. Придание геометрической формы изделиям известными методами и стабилизация его формы при комнатной температуре, благодаря соответственно эффектам тиксотропии (смазочная добавка) и гелеобразования (поверхностно-активная добавка).

2.5. Предварительное низкотемпературное удаление временной связки в вакуумном термошкафу (первая стадия).

Изделия загружают в вакуумный термошкаф, камеру откачивают до остаточного давления 1.3 Па. Нагревают со скоростью 20 градусов в час, обеспечивая вышеприведенное остаточное давление в камере или, другими словами, скорость ухода временной связки из тела изделия в режиме дросселирования. Изотермические выдержки для обеспечения вышеприведенного остаточного давления соответствуют температурам 50 и 120°С. Первая стадия до температуры 300°С выполнена на типовом оборудовании SPT-200.

2.6. Высокотемпературное удаление временной связки в вакуумной печи (вторая стадия).

Изделия перемещают из вакуумного термостата в вакуумную печь, подвергая его термоудару до комнатной температуры, что обеспечивает релаксацию механических напряжений несоответствия накопившихся в области сопряжения фазовых границ. Камеру вакуумной печи откачивают до остаточного давления 0.13 Па. Нагревают изделия со скоростью 30 градусов в час до температуры 300°С и 180 градусов в час до температуры 1390°С в режиме дросселирования для поддержания остаточного давления 0.13 Па.

2.7. Спекают изделия при температуре 1390°С в атмосфере аргона при давлении 5.5·106 Па. Вторая стадия выполнялась на типовом оборудовании СНВ 1.31, подходят для этой цели вакуумно-компрессионные печи спекания типа COD733RL.

Пример 3.

3.1. Приготовление связки для смеси неорганического порошкообразного материала.

Перемешивают доведенные путем плавления до жидкого состояния 2 г пчелиного воска, 2 г сивилена (коммерческое название этиленвинилацетата) с 0.5 г вазелинового масла и 52 г парафина.

3.2. Перемешивают известным способом 100 г порошка кобальта гранулометрического состава ⌀50=0,5 мкм, 0.5 г порошка карбида хрома гранулометрического состава ⌀50=0,5 мкм, 0.5 г порошка карбида ванадия гранулометрического состава ⌀50=0,5 мкм и 900 г порошка карбида вольфрама гранулометрического состава ⌀50=0,5 мкм.

3.3. Приготовление массы для формообразования детали.

Перемешивают 56.5 г жидкой временной связки с 1001 г неорганической порошкообразной смеси до однородного пластичного состояния системы с температурой в диапазоне от 100 до 120°С.

3.4. Придание геометрической формы изделиям известными методами и стабилизация его формы при комнатной температуре, благодаря соответственно эффектам тиксотропии (смазочная добавка) и гелеобразования (поверхностно-активная добавка).

3.5. Предварительное низкотемпературное удаление временной связки в вакуумном термошкафу (первая стадия).

Изделия загружают в вакуумный термошкаф, камеру откачивают до остаточного давления 13 Па. Нагревают со скоростью 10 градусов в час, обеспечивая вышеприведенное остаточное давление в камере или, другими словами, скорость ухода временной связки из тела изделия в режиме дросселирования. Изотермические выдержки для обеспечения вышеприведенного остаточного давления соответствуют температурам 50 и 120°С. Первая стадия до температуры 300°С выполнена на типовом оборудовании SPT-200.

3.6. Высокотемпературное удаление временной связки в вакуумной печи (вторая стадия). Изделия перемещают из вакуумного термостата в вакуумную печь, подвергая его термоудару до комнатной температуры, что обеспечивает релаксацию механических напряжений несоответствия накопившихся в области сопряжения фазовых границ. Камеру вакуумной печи откачивают до остаточного давления 1.3 Па. Нагревают изделия со скоростью 20 градусов в час до температуры 300°С и 180 градусов в час до температуры 1370°С в режиме дросселирования для поддержания остаточного давления 0.13 Па.

3.7. Спекают изделия при температуре 1370°С в атмосфере аргона при давлении 4.5·106 Па. Вторая стадия выполнялась на типовом оборудовании СНВ 1.31, подходят для этой цели вакуумно-компрессионные печи спекания типа COD733RL.

Пример 4.

4.1. Приготовление связки для смеси неорганического порошкообразного материала.

Перемешивают доведенные путем плавления до жидкого состояния 7 г пчелиного воска, 8 г сивилена (коммерческое название этиленвинилацетата) с 1 г вазелинового масла и 59 г парафина.

4.2. Приготовление неорганической порошкообразной смеси материалов.

Перемешивают известным способом 100 г порошка кобальта гранулометрического состава ⌀50=0,5 мкм, 1.5 г порошка карбида хрома гранулометрического состава ⌀50=0,5 мкм, 1.5 г порошка карбида ванадия гранулометрического состава ⌀50=0,5 мкм и 900 г порошка карбида вольфрама гранулометрического состава ⌀50=0,5 мкм.

4.3. Приготовление массы для формообразования детали.

Перемешивают 75 г жидкой временной связки с 1003 г неорганической порошкообразной смеси до однородного пластичного состояния системы с температурой в диапазоне от 100 до 120°С.

4.4. Придание геометрической формы изделиям известными методами и стабилизация его формы при комнатной температуре, благодаря соответственно эффектам тиксотропии (смазочная добавка) и гелеобразования (поверхностно-активная добавка).

4.5. Предварительное низкотемпературное удаление временной связки в вакуумном термошкафу (первая стадия).

Изделия загружают в вакуумный термошкаф, камеру откачивают до остаточного давления 1.3 Па. Нагревают со скоростью 20 градусов в час, обеспечивая вышеприведенное остаточное давление в камере или, другими словами, скорость ухода временной связки из тела изделия в режиме дросселирования. Изотермические выдержки для обеспечения вышеприведенного остаточного давления соответствуют температурам 50 и 120°С. Первая стадия до температуры 300°С выполнена на типовом оборудовании SPT-200.

4.6. Высокотемпературное удаление временной связки в вакуумной печи (вторая стадия).

Изделия перемещают из вакуумного термостата в вакуумную печь, подвергая его термоудару до комнатной температуры, что обеспечивает релаксацию механических напряжений несоответствия накопившихся в области сопряжения фазовых границ. Камеру вакуумной печи откачивают до остаточного давления 0.13 Па. Нагревают изделия со скоростью 30 градусов в час до температуры 300°С и 180 градусов в час до температуры 1390°С в режиме дросселирования для поддержания остаточного давления 0.13 Па.

4.7. Спекают изделия при температуре 1390°С в атмосфере аргона при давлении 5.5·106 Па. Вторая стадия выполнялась на типовом оборудовании СНВ 1.31, подходят для этой цели вакуумно-компрессионные печи спекания типа COD733RL.

Сравнительные физико-химические и механические характеристики качества полученных изделий приведены в таблице

Наименование показателей Аналоги Эксперимент
Т5К10 ВК10 MC131 Пример 1 Пример 4
WC ТаС Со we Co WC ТаС Co WC ТаС Со WC Со
Состав (% вес.) 85 6 9 90 10 85 5 10 88 2 10 90 10
Плотность (г/см3) 12.4-13.1 14.5 11.35-11.51 14.59 14.55
Прочн. изг. (МПа) 1421 2800 1400 1780 1820
HRA (не менее) 88.5 87.5 91 91
HV10 1200
HV30 1430-1570
¯ (мкм) 0.5 0.5 0.5 0.5 0.5

Т.о. предлагается способ изготовления изделий твердых сплавов из порошков соединений ряда карбидов, включающий перемешивание со связкой, придание геометрической формы детали, термическое удаление временного связующего и спекание детали, при этом термическое удаление временного связующего производят в два этапа в вакууме, причем на первом этапе остаточное давление и температуру поддерживают в диапазоне от 13 до 1.3 Па в диапазоне температур от комнатной до 300°С, на втором этапе - в интервале значений от 1.3 до 0.13 Па в диапазоне температур от комнатной до 1350°С, затем деталь спекают под избыточным давлением инертного газа в диапазоне температур от 1370 до 1390°С. При остаточном давлении продуктов разложения временной связки от 13 до 1.3 Па и от 1.3 до 0.13 Па при температурах 50°С и 120°С выполняют изотермическую выдержку до стабилизации остаточного давления в приведенных интервалах. Изделие спекают в атмосфере инертного газа под давлением от 4.5·106 до 5.5·106 Па в диапазоне температур от 1370 до 1390°С.

Также предлагается связующая композиция для осуществления способа, включающая временную связку и постоянную для порошкообразных смесей компонентов ряда карбидов и состоящая из двухкомпонентного диспергатора и двухкомпонентной смазочной добавки в соотношении (вес.) от 1:3.6 до 1:13.1. В состав временной связки входит двухкомпонентный диспергатор: пчелиный воск и этиленвинилацетат в соотношении (вес.) от 1:1 до 1:1.15; также двухкомпонентная смазочная добавка: вазелиновое масло (от С11 до С14) и парафин (от С20 до С30) в соотношении от 1:104 до 1:132. В качестве постоянной связки использован кобальт в соотношении (вес.) с неорганическими материалами порошков карбида хрома, карбида ванадия, карбида тантала и карбида вольфрама соответственно от 66.6:1:1:13.3:586.6 до 200:1:1:40:1760 одного гранулометрического состава от 0.5 до 1.0 мкм. В качестве постоянной связки использован кобальт в соотношении (вес.) с неорганическими материалами порошков карбида хрома, карбида ванадия и карбида вольфрама соответственно от 66:1:1:600 до 200:1:1:1800 одного гранулометрического состава от 0.5 до 1.0 мкм. Соотношение (вес.) временной связки и порошкообразной смеси неорганических компонентов до формообразования составляет соответственно от 1:12.8 до 1:17.7.

В данной заявке показаны качественные показатели предлагаемого технического решения, его практическая применимость, изобретательский уровень, новизна.

1. Способ изготовления порошковых изделий из твердых сплавов на основе карбидов, включающий смешивание временного связующего и порошкообразной смеси неорганических порошков, содержащий порошки карбидов и постоянного связующего, формирование детали, термическое удаление временного связующего и спекание детали, отличающийся тем, что используют временное связующее, содержащее двухкомпонентный диспергатор и двухкомпонентную смазочную добавку в весовом соотношении от 1:3,6 до 1:13,1, при этом термическое удаление временного связующего производят в два этапа в вакууме, причем на первом этапе остаточное давление поддерживают в диапазоне от 13 до 1,3 Па при нагреве от комнатной температуры до 300°С, на втором этапе - в интервале значений от 1,3 до 0,13 Па при нагреве от комнатной температуры до 1370°С или 1390°С, а спекание осуществляют под избыточным давлением инертного газа в диапазоне температур от 1370 до 1390°С.

2. Способ по п.1, отличающийся тем, что при остаточном давлении продуктов разложения временного связующего от 13 до 1,3 Па и от 1,3 до 0,13 Па при температурах 50°С и 120°С выполняют изотермическую выдержку до стабилизации остаточного давления.

3. Способ по п.1, отличающийся тем, что изделие спекают в атмосфере инертного газа под давлением от 4,5·106 до 5,5·106 Па.

4. Способ по п.1, отличающийся тем, что в качестве постоянного связующего используют порошок кобальта, а в качестве карбидов порошки карбида хрома, карбида ванадия, карбида тантала и карбида вольфрама при следующем весовом соотношении компонентов, соответственно от 66,6:1:1:13,3:586,6 до 200:1:1:40:1760, при этом используемые порошки имеют одинаковый гранулометрический состав от 0,5 до 1,0 мкм.

5. Способ по п.1, отличающийся тем, что в качестве постоянного связующего используют порошок кобальта, а в качестве карбидов порошки карбида хрома, карбида ванадия и карбида вольфрама при следующем весовом соотношении компонентов, соответственно от 66:1:1:600 до 200:1:1:1800 при этом используемые порошки имеют одинаковый гранулометрический состав от 0,5 до 1,0 мкм.

6. Способ по п.1, отличающийся тем, что весовое соотношение временного связующего и порошкообразной смеси неорганических компонентов до формирования детали составляет соответственно от 1:12,8 до 1:17,7.

7. Временное связующее для формирования детали при изготовлении порошковых изделий из твердых сплавов на основе карбидов способом по любому из пп.1-6, содержащее двухкомпонентный диспергатор и двухкомпонентную смазочную добавку в весовом соотношении от 1:3,6 до 1:13,1.

8. Временное связующее по п.7, отличающееся тем, что в качестве двухкомпонентного диспергатора оно содержит пчелиный воск и этиленвинилацетат в весовом соотношении от 1:1 до 1:1,15.

9. Временное связующее по п.7, отличающееся тем, что в качестве двухкомпонентной смазочной добавки оно содержит вазелиновое масло (от С11 до С14) и парафин (от С20 до С30) в весовом соотношении от 1:104 до 1:132.



 

Похожие патенты:

Изобретение относится к порошковой металлургии, в частности к твердосплавным композициям. .

Изобретение относится к металлокерамическим сплавам с металлическим связующим инструментального назначения и может быть использовано для изготовления высокоресурсного режущего инструмента и пар трения для экстремальных условий эксплуатации.
Изобретение относится к производству твердых сплавов и может использоваться для изготовления режущего инструмента с повышенными требованиями по износостойкости.

Изобретение относится к области химии и металлургии, а именно к поглощающим СВЧ-энергию материалам, и может быть использовано в электронной технике СВЧ. .
Изобретение относится к области порошковой металлургии и упрочнению конструкционных материалов, работающих в условиях интенсивных механических нагрузок (абразивное изнашивание в условиях трения скольжения).
Изобретение относится к порошковой металлургии, в частности к получению инструментальных твердых сплавов. .
Изобретение относится к порошковой металлургии, в частности к получению инструментальных твердых сплавов. .
Изобретение относится к порошковой металлургии, в частности к составам материалов для нанесения износостойких покрытий методами газотермического напыления. .

Изобретение относится к жаропрочным материалам для изготовления инструментов, применяемых при обработке давлением, резанием, для абразивной обработки, сохраняющим жаропрочность при 2300С.
Изобретение относится к области металлургии, а именно к литейным композиционным материалам (ЛКМ) на основе алюминия и его сплавов, и может применяться для изготовления деталей с повышенной жаропрочностью, твердостью и износостойкостью.
Изобретение относится к области металлургии, а именно к способам получения литейных композиционных материалов (ЛКМ) на основе алюминия и его сплавов. Способ получения литейного композиционного материала, содержащего матрицу из алюминия или сплава на его основе, и дисперсные интерметаллидные частицы TiAl3, включает образование в расплаве алюминия интерметаллидных частиц TiAl3 путем введения в расплав при температуре 700-800°С измельченной титановой губки с размером фракций не более 5 мм, причем измельченная титановая губка вводится в расплав алюминия в таком количестве, чтобы содержание образованных частиц TiAl3 не превышало 35 об.%.

Изобретение относится к металлургии, а именно к получению литейного композиционного материала (ЛКМ) на основе алюминиевого сплава, упрочненного короткими волокнами, и может использоваться в качестве конструкционных материалов при создании конструкций и оборудования авиационных средств.

Изобретение относится к электрохимическому получению лигатурных алюминий-титановых сплавов и может быть использовано для получения коррозионно-стойких алюминиевых сплавов.

Изобретение относится к порошковой металлургии, в частности к получению порошка сплава серебро-кадмий для изготовления контактов. Раствор нитратов серебра и кадмия обрабатывают раствором гидроксида натрия, выдерживают пульпу и отделяют осадок смеси AgOH и Cd(OH)2 от маточного раствора.

Изобретение относится к производству композиционного материала. Композиционный материал содержит металлический компонент металлической матрицы (201, 211) и расположенный в металлической матрице (201, 211) армирующий компонент (202) и дополнительный армирующий компонент.

Группа изобретений относится к технике производства тонких прутков и проволоки, обладающих эффектом «памяти» формы и сверхупругостью из сплавов системы никель-титан с эффектом «памяти» формы, используемых в авиации, радиоэлектронике, медицине, космической технике, машиностроении и других областях техники.

Изобретение относится к порошковой металлургии, в частности к высокотемпературным антифрикционным материалам. Может использоваться в высокотемпературных зонах промышленного оборудования, в частности на АЭС.

Изобретение относится к порошковой металлургии, в частности получению порошка интерметаллида NdNi5. Cинтез порошка осуществляется в герметичном сосуде в среде аргона, при температуре 850 К.

Изобретение относится к порошковой металлургии, в частности к получению алмазных абразивных инструментов. Композиционный алмазосодержащий материал содержит, мас.%: технический порошок алмазов зернистостью 315/250 мкм - 5,0-7,0; ультрадисперсный порошок алмазов зернистостью 2/0 мкм - 1,0-3,0; олово - 18,0-20,0; медь - остальное.
Изобретение относится к порошковой металлургии, в частности к производству графито-медных материалов для сильноточных электрических контактов. Шихта содержит, мас.%: частицы меди 20-85, частицы гидрида титана 1-10 и частицы графита - остальное.
Наверх