Способ формирования yba2cu3o7-x-х пленок с высокой токонесущей способностью на золотом буферном подслое

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих пленок. Изобретение обеспечивает получение на золотом буферном подслое сверхпроводящих пленок с высокими токонесущими свойствами, обеспечивающими значения плотности сверхпроводящего критического тока не ниже 105 А/см2. В способе формирования YBa2Cu3O7-x пленок с высокой токонесущей способностью на золотом буферном подслое золотая контактная площадка формируется на диэлектрической подложке перед нанесением пленок YBa2Cu3O7-x на диэлектрической подложке. Для распылении мишеней из золота и керамики YBa2Cu3O7 используется лазер с длиной волны излучения 1,06 мкм, длительностью импульса 10÷20 нс и частотой повторения импульсов 10 Гц, плотностью мощности лазерного излучения (5÷7)·108 Вт/см2, при этом предварительно нагревается мишень из золота и подложка до температуры T=450-500°C, устанавливается давление 0,1÷0,5 Па, после этого распыляется мишень из золота на подложку через маску, расположенную на расстоянии 0,3÷0,5 мм от подложки, затем нагревается мишень YBa2Cu3O7 до T=600÷700°C, нагревается подложка до температуры 800÷840°C, устанавливается давление 50-100 Па, и распыляется мишень YBa2Cu3O7 на сформированные контактные площадки до толщины 50 -200 нм с образованием пленок с критической температурой сверхпроводящего перехода Tc=88-89 K, шириной сверхпроводящего перехода ΔTc= 2÷3 K, плотностью критического тока Jc>105 А/см2. 6 ил.

 

Изобретение относится к способам формирования методом лазерного напыления на золотом буферном подслое сверхпроводящих YBa2Cu3O7-x (YBCO) пленок. Необходимость создания надежных контактных площадок к сверхпроводящим пленкам обусловлена возможностью изготовления из них элементов сверхпроводниковой электроники.

В настоящее время существуют различные способы формирования контактных площадок к тонким YBCO пленкам для электрической связи тонкопленочных элементов сверхпроводниковой электроники с электронной навеской. Традиционно металлические контактные площадки к YBCO пленкам наносятся поверх пленок [1, 2]. Такая технология изготовления контактных площадок имеет существенный недостаток, состоящий в том, что при нанесении контактных площадок YBCO пленка подвергается температурному воздействию в условиях вакуума, приводящему к кислородному обеднению материала пленки и разрушению сверхпроводимости приповерхностной области, связанному с образованием слоев ВаО и ВаСО3, являющихся диэлектриками. Для поддержания оптимального значения кислородного индекса применяется, например, плазменное травление поверхности YBCO непосредственно перед нанесением металла с целью удаления деградированного слоя. После нанесения контактных площадок образцы подвергаются дополнительному термоотжигу в атмосфере кислорода. Несмотря на хорошие результаты, достигнутые с применением ионно-плазменной очистки поверхности, такая очистка сопровождается разрушением сверхпроводимости в приповерхностном слое толщиной несколько нанометров из-за разрыва Cu-O связей и диффузии кислорода. Более эффективный метод очистки - катодное распыление поверхности - также не приводит к полному удалению деградированного слоя. Для изготовления контактных площадок к YBCO материалам подходят металлы, у которых энергия связи меньше, чем у Cu-O. К таким металлам относятся: Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, Hg. Другие металлы активно взаимодействуют с материалом YBCO, образуя плохопроводящие или непроводящие слои. Все применяемые контактные материалы можно подразделить на следующие группы: благородные металлы и их сплавы (серебро, золото, металлы платиновой группы и сплавы на их основе), неблагородные металлы и сплавы на их основе, металлокерамические композиции [3]. Для малонагруженных контактов применяют золото, родий, палладий, платину и их сплавы; для средненагруженных - палладий, платину, серебро, вольфрам, никель и их сплавы; для высоконагруженных - серебро, вольфрам, никель, медь, их сплавы и металлокерамические композиции, а также ртуть и графит. При малых контактных нагрузках и коммутировании малых токов условия работы контактов очень сложны, и им удовлетворяют только сплавы на основе платины, палладия и золота. Золото обладает высокими электро- и теплопроводностью, устойчивостью против коррозии, не окисляется и не образует окисных пленок, имеет низкое и стабильное переходное сопротивление в различных атмосферных условиях при нормальной, повышенной и пониженной температурах.

Известен способ формирования сверхпроводящей тонкой пленки на поверхности металлической подложки [4], в котором на поверхности серебра, золота или платины формируется буферная пленка, содержащая висмут, свинец, медь и комбинацию щелочноземельного кальция со стронцием и 0-10% бария, впоследствии термически превращаемого в сверхпроводящую тонкую пленку. Способ достаточно сложен технологически, так как предусматривает большое количество операций и не обеспечивает получения сверхпроводников с высоким значением плотности критического тока.

Известен способ формирования сверхпроводящих тонких пленок [5] на металлической подложке путем магнетронного распыления оксидного соединения, в котором подложку и мишень располагают в вакуумной камере параллельно друг другу с возможным перемещением одной относительно другой. Способ позволяет получить сверхпроводящее пленочное покрытие, но с малым значением критического тока.

Наиболее близким к заявляемому является способ формирования сверхпроводящих тонких пленок YBCO на золотой или платиновой контактной площадке [6], в котором для обеспечения лучшего контакта при включении сверхпроводникового устройства в электрическую схему и сохранения сверхпроводящих свойств сверхпроводящие электроды напыляются поверх подслоя из золота или платины. Основными недостатками данного способа являются следующие: 1) золотые или платиновые контактные площадки наносятся на диэлектрическую подложку термическим напылением при температуре 1700-1800°C, что не обеспечивает необходимой адгезии золотой или платиновой пленки с диэлектрической подложкой; 2) сверхпроводящие транспортные свойства YBCO пленок на границе металл-сверхпроводник подавлены и плотность критического тока не превышает 103 А/см2, что приводит к относительно быстрой деградации сверхпроводящих свойств при хранении и эксплуатации сверхпроводящих датчиков из-за формирования несверхпроводящих межзеренных прослоек в материале YBCO пленки.

Задачей настоящего изобретения является разработка способа формирования методом лазерной абляции на золотом буферном подслое сверхпроводящих тонких YBCO пленок с высокими токонесущими свойствами, обеспечивающими значения плотности сверхпроводящего критического тока не ниже 105 А/см2, характерное для качественных межзеренных прослоек в материале YBCO пленки. Повышение качества межзеренных прослоек в свою очередь повышает устойчивость системы сверхпроводник-золото к деградации. Кроме того, данный способ позволяет формировать золотую контактную площадку толщиной до 500 нм, что достаточно для надежной сварки внешних электродов.

Указанный технический результат достигается тем, что золотая контактная площадка формируется на диэлектрической подложке (например, SiTiO3, LaAlO3 и др.) методом лазерного напыления с использованием специальной нихромовой маски, плотность прилегания которой к диэлектрической подложке регулируется дополнительной тонкой нихромовой пластиной толщиной d=0,3-0,5 мм, как показано на фиг.1. Зазор между маской и подложкой позволяет формировать золотую пленку переменной толщины, как показано на фиг.2. В области тени наблюдается резкий спад толщины золотой пленки от 500 до 50 нм, как показано на фиг.3, а далее на расстояниях несколько сот микрометров происходит плавное падение толщины золотой пленки от 50 нм до нуля. Ширина этого тонкого участка варьируется степенью прилегания маски. Далее на подложке с золотой пленкой методом лазерного напыления выращивается сверхпроводящая YBCO пленка для формирования системы YBCO/Au/подложка с применением другой нихромовой маски, закрывающей на золотой пленке места будущих контактных площадок, как показано на фиг.4. На тонких участках золотой пленки толщиной 0-50 нм формируется сверхпроводящая пленка толщиной 50-200 нм, имеющая достаточно высокие сверхпроводящие параметры: критическая температура сверхпроводящего перехода Tc≈88-89 K, ширина сверхпроводящего перехода ΔT≈2-3 K, плотность критического тока Jc≈105 А/см2. Удельное электрическое сопротивление контакта не превышает удельное сопротивление золотой пленки и составляет значение порядка 10-10 Ом·см2. На фиг.5 представлены микрофотографии зарождения на тонкой золотой пленке островков YBCO пленки (а), их слияние (б) и дальнейший рост сплошной YBCO пленки (в). По мнению авторов высокие значения сверхпроводящих параметров, в особенности плотности критического тока, указывают на эпитаксиальный рост YBCO пленки на золотой пленке, что, в свою очередь, является следствием эффекта дальнодействия (способность монокристаллических подложек влиять на ориентацию тонких пленок через буферные слои различных веществ). Причиной дальнодействия при данных значениях толщины буферной золотой пленки могут служить упругие напряжения между подложкой и буферным слоем [7], образуя упругонапряженные области с определенным распределением упругой энергии, в том числе с изменением плотности упругой энергии в зависимости от угла ориентации. Для примера, на фиг.6. представлена фотография YBCO пленки с золотыми контактными площадками.

Для осуществления способа использовалась экспериментальная установка с напылительной вакуумной камерой и мощный импульсный лазер Nd:YAG с длиной волны излучения 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц. Плотность мощности лазерного излучения на поверхности золотой мишени составляет (5-7)·108 Вт/см2. Лазерный луч падает на золотую мишень, пройдя через фокусирующую линзу и кварцевое окно вакуумной камеры. Распыляемый материал золотой мишени осаждается на диэлектрическую подложку через нихромовую маску с требуемой геометрией рисунка. Нихромовая маска фиксируется на расстоянии 0,3-0,5 мм от подложки. Подложка с маской устанавливается на расстоянии 4-6 мм от золотой мишени рабочей поверхностью к мишени. В вакуумной камере устанавливается давление 0,1-0,5 Па, что обеспечивает необходимый размер и форму плазменного факела. Производится нагрев мишени и подложки до температуры 450-500°C. После процесса напыления производится напуск воздуха в вакуумную камеру до нормального атмосферного давления и остывание образца до комнатной температуры. Для напыления сверхпроводящей пленки участки золотой пленки, предназначенные для сварки золотых контактных проволок, закрываются нихромовой маской. При напылении YBCO пленок устанавливаются температура подложки 800-840°C, температура мишени 600-700°C, давления в вакуумной камере 50-100 Па, расстояния мишень-подложка 25-30 мм, плотность мощности лазерного излучения на поверхности YBCO мишени (3-5)·108 Вт/см2. После процесса напыления производится напуск воздуха в вакуумную камеру до нормального атмосферного давления и остывание образца до комнатной температуры при специальном режиме отжига.

Литература

1. С.Peroz, С.Villard, D. Buzon and P. Tixador. Current limitation properties of YBCO/Au thin films // Supercond. Sci. Technol. 16 (2003), p.54-59.

2. D. Liu, M. Zhou, X. Wang, H. Suo, T. Zuo, M. Schindl and R. Flukiger. Epitaxial growth of biaxially oriented YBCO films on silver // Supercond. Sci. Technol. 14 (2001), p.806-809.

3. Пятин Ю.М. Материалы в приборостроении и автоматике. M.: Машиностроение, 1982, 528 с.

4. Заявка ЕПВ 0490784, кл. H01L 39/24, С 04 В 35/00, 1990.

5. Заявка ЕПВ 0462906, кл. H01L 39/24, 1990.

6. Патент РФ №2133525 «Сверхпроводящий квантовый интерференционный датчик и способ его изготовления».

7. В.М. Иевлев, Л.И. Трусов, В.А. Холмянский. Структурные превращения в тонких пленках. M.: Металлургия, 1982, 248 с.

Способ формирования YBa2Cu3O7-x пленок с высокой токонесущей способностью на золотом буферном подслое, в котором контактные площадки формируют перед нанесением пленок YBa2Cu3O7-x на диэлектрической подложке, отличающийся тем, что для распылении мишеней из золота и керамики YBa2Cu3O7 используется лазер с длиной волны излучения λ=1,06 мкм, длительностью импульса τ=10÷20 нс и частотой повторения импульсов ν=10 Гц, плотностью мощности лазерного излучения P=(5÷7)·108 Вт/см2, при этом предварительно нагревается мишень из золота и подложка до температуры T=450÷500°C, устанавливается давление p=0,1÷0,5 Па, после этого распыляется мишень из золота, расположенная на расстоянии 4÷6 мм до подложки, на подложку через маску, расположенную на расстоянии 0,3÷0,5 мм от подложки и формирующую пленку переменной толщины 0÷500 нм, затем нагревается мишень YBa2Cu3O7 до T=600÷700°C, расположенная на расстоянии 25÷30 мм от подложки, нагревается подложка до температуры T=800÷840°C, устанавливается давление p=50÷100 Па, после чего распыляется мишень YBa2Cu3O7 на сформированные контактные площадки до толщины L=50÷200 нм с образованием пленок с критической температурой сверхпроводящего перехода Tc≈88÷89 K, шириной сверхпроводящего перехода ΔTc 2÷3 K, плотностью критического тока Jc>105 А/см2.



 

Похожие патенты:

Изобретение относится к технологии криоэлектроники и может быть использовано при изготовлении высокотемпературных сверхпроводящих (ВТСП) схем. Техническим результатом изобретения является повышение качества ВТСП схем, увеличение их температурного рабочего диапазона, повышение удельного сопротивления ВТСП материала в нормальном состоянии путем введения ферромагнитной примеси в ВТСП пленку при электроискровой обработке отрицательными импульсами, мощность которых находится из заявленного соотношения.

Изобретение относится к сборке из металлических элементов, составляющей заготовки для сверхпроводника. Сборка содержит, по меньшей мере, один проводниковый элемент, адаптированный для обеспечения сверхпроводящей нити в конечном сверхпроводнике, и по меньшей мере один легирующий элемент, обеспечивающий источник легирования для легирования проводникового элемента, и источник олова.

Изобретение относится к области высокотемпературной сверхпроводимости и может использоваться для изготовления ленточных высокотемпературных сверхпроводников второго поколения.

Изобретение относится к электричеству, к электрофизике и теплопроводности материалов, к явлению нулевого электрического сопротивления, т.е. к гиперпроводимости, и нулевого теплового сопротивления, т.е.

Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов, в частности к изготовлению подложек для этих материалов.
Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов и может быть использовано при промышленном производстве длинномерных сверхпроводящих лент для создания токопроводящих кабелей, токоограничителей, обмоток мощных электромагнитов, электродвигателей и т.д.

Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к способу получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (BTCП), которые могут быть использованы в устройствах передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем.

Изобретение относится к области получения сверхпроводящих соединений и изготовления нанопроводников и приборов на их основе, что может быть использовано в электротехнической, радиотехнической, медицинской и других отраслях промышленности, в частности для оптического тестирования интегральных микросхем, исследования излучения квантовых точек и в системах квантовой криптографии.

Изобретение относится к способам формирования методом лазерного напыления нанопленок сложного металлооксидного соединения состава YВа2Сu3O7-х (YBCO) повышенной проводимости и может быть использовано при создании элементов наноэлектроники.

Изобретение относится к устройствам для высокотемпературного осаждения сверхпроводящих слоев на подложках в форме ленты с использованием импульсного лазера и может быть использовано в электротехнической промышленности.

Изобретение относится к формированию на диэлектрических подложках золотых контактных площадок к пленкам YBa2Cu3O7-х. Изобретение обеспечивает получение качественных золотых контактных площадок к сверхпроводящим пленкам. В способе формирования на диэлектрической подложке контактных площадок к пленкам YBa2Cu3O7-х контактные площадки формируют перед напылением пленок YBa2Cu3O7-х на диэлектрической подложке, для чего производится нагрев мишени и подложки до температуры 450-500°C, напыление контактной площадки из золота производится методом лазерного распыления мишени из золота твердотельным импульсным лазером с длиной волны излучения 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц, плотностью мощности лазерного излучения (5-7)·108 Вт/см2. Диэлектрическая подложка устанавливается на расстоянии 4-6 мм от золотой мишени рабочей поверхностью к мишени при давлении в вакуумной камере 0,1-0,5 Па. 2 ил.

Изобретение относится к способам формирования сверхпроводящих пленок с двух сторон диэлектрических подложек. Изобретение обеспечивает создание однородных по толщине сверхпроводящих пленок с двух сторон подложки в одном технологическом цикле. В способе формирования сверхпроводящих пленочных структур из материала YBaCuO с двух сторон подложки методом лазерной абляции вращение подложки осуществляют так, что каждая сторона подложки поочередно обращена к мишени YBa2Cu3О7 в течение времени 5÷7 секунд, при расстоянии до мишени 25÷30 мм. Данный способ позволяет формировать сверхпроводящие пленки YBaCuO как полностью однородные по толщине, так и с необходимым распределением толщины по поверхности подложки. 1 ил.

Использование: для получения высокотемпературных сверхпроводников и изготовления высокочувствительных приемников электромагнитного излучения. Сущность изобретения заключается в том, что способ включает в себя формирование пленки из высокотемпературного сверхпроводящего материала, который представляет собой монофазный текстурированный сверхпроводник состава (Bi,Pb)2Sr2Ca2Cu3O10, на диэлектрической подложке методом магнетронного распыления из мишени, изготовление чувствительного элемента, антенны и подводящих линий выполняется в едином процессе на одном слое образованной пленки ВТСП (Bi,Pb)2Sr2Ca2Cu3O10. Технический результат: обеспечение возможности повышения рабочей температуры детектора терагерцевого излучения и расширения частотного диапазона приемной антенны, увеличение надежности прибора.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих ультратонких пленок сложного металлооксидного соединения состава YBa2Cu3O7-x путем оптимизации параметров лазерного излучения и условий постростового отжига в напылительной камере. Изобретение обеспечивает получение ультратонких сверхпроводящих пленок толщиной 12-25 нм с неровностью поверхности в пределах 1-2 нм. В способе формирования сверхпроводящей ультратонкой пленки YBa2Cu3O7-x на диэлектрических подложках на керамическую мишень YBa2Cu3O7-x воздействуют лазерным излучением плотностью мощности 3·108÷5·108 Вт/см2, длиной волны 1,06 мкм, длительностью импульса 10-20 нс и частотой следования импульсов 10 Гц в течение времени 15÷30 с при давлении 50÷100 Па, при температуре мишени 600÷700°С, температуре подложки 800-840°С, в результате формируют сверхпроводящую пленку толщиной 12-25 нм, после чего в диапазоне температур 840-780°С производят отжиг пленки со скоростью остывания 4°С/мин, в диапазоне температур 780-700°С - со скоростью остывания 10°С/мин, в диапазоне температур 700-400°С - со скоростью остывания 15°С/мин, в диапазоне температур 400-20°С - со скоростью остывания 19°С/мин. 2 ил.

Изобретение относится к области металлургии, в частности к получению сверхпроводящего материала в виде покрытия, и может быть использовано при изготовлении экранов электронных схем от воздействия электромагнитного и ионизирующего излучений в энергетике, транспорте, связи, приборостроении, в ракетной и аэрокосмической отраслях промышленности. Способ получения сверхпроводящего покрытия включает подачу в плазмотрон порошка материала покрытия фракцией 80-150 мкм, его нагрев до температуры плавления в прикатодной высокотемпературной области плазменной струи и напыление на подложку с предварительно нанесенным на ее поверхность изоляционным слоем. При напылении плазменную струю с напыляемым порошком SmBa2Cu3O7 на всей дистанции напыления охватывают коаксиальным цилиндрическим потоком кислорода, а подложку охлаждают теплоносителем, при этом путем регулирования расхода кислорода и скорости взаимного перемещения плазменной струи и подложки обеспечивают температуру в пятне напыления 940-980°С. Сокращается время процесса получения сверхпроводящего материала с сохранением структуры и стехиометрии исходного спеченного материала. 4 ил.

Использование: для изготовления сверхпроводниковых туннельных или джозефсоновских переходов. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами включает формирование нанопроводов из веществ, обладающих сверхпроводящими свойствами, и преобразование их в несверхпроводящие в выбранных разделительных участках заданной ширины за счет селективного изменения атомного состава путем воздействия пучком ускоренных частиц через защитную маску с заданным рельефом. Технический результат: обеспечение возможности повышения производительности. 8 з.п. ф-лы, 2 ил.

Использование: для изготовления провода, кабеля, намотки и катушки. Сущность изобретения заключается в том, что высокотемпературный сверхпроводящий ленточный провод с гибкой металлической подложкой содержит по меньшей мере один промежуточный слой, который расположен на гибкой металлической подложке, и который на стороне, противоположной гибкой металлической подложке, содержит террасы, причем средняя ширина террас меньше 1 мкм, а средняя высота террас больше 20 нм, и который содержит по меньшей мере один расположенный на промежуточном слое высокотемпературный сверхпроводящий слой, который расположен на по меньшей мере одном промежуточном слое и имеет толщину слоя более 3 мкм, причем допустимая токовая нагрузка высокотемпературного сверхпроводящего ленточного провода, отнесенная к ширине провода, при 77 K превышает 600 А/см. Технический результат: обеспечение возможности создания ВТС-провода с большой предельно допустимой токовой нагрузкой. 9 з.п. ф-лы, 9 ил., 2 табл.

Изобретение относиться к способам формирования самоохлаждаемых автономных приборов и элементов электроники, которые могут эффективно работать без использования технологии жидкого азота, и другой криогенной техники. Способ формирования самоохлаждаемого автономного наноприбора заключается в том, что на подложке из монокристаллического материала с сформированным с одной стороны СКВИД-приемником на обратной стороне размещают устройство для поглощения тепла, которое содержит катод и анод, имеющие различную энергию Ферми электронов. Затем подложку через отверстие для монтажа заключают в вакуумную оболочку из ситалла, содержащую контактные электроды для двух сторон подложки. После этого отверстие для монтажа подложки закрывают крышкой из ситалла. Размещают данное устройство в вакуумной камере, в которой располагают также мишень из ситалла. Откачивают до давления 10-1 Па, нагревают мишень и крышку из ситалла до температуры 450÷500°С. Затем лазером с длиной волны излучения 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц, плотностью мощности 5·108÷8·108 Вт/см2 распыляют мишень из ситалла, находящуюся на расстоянии 8÷10 мм от крышки из ситалла в течение 10 минут. Изобретение обеспечивает создание такой конструкции СКВИДа (сверхпроводящего квантового интерференционного датчика), в которой исключены: деградация сверхпроводящих свойств в воздушной среде, зависимость достижения рабочей температуры от использования жидкого азота или других внешних криогенных установок с большими габаритами. 1 ил.

Изобретение относится к пленкам с чрезвычайно низким сопротивлением (ЧНС-пленки). Способ улучшения рабочих характеристик пленки с чрезвычайно низким сопротивлением, содержащей материал с чрезвычайно низким сопротивлением (ЧНС-материал), имеющий кристаллическую структуру, включает: наслаивание модифицирующего материала на грань ЧНС-материала, которая не является по существу параллельной с-плоскости кристаллической структуры ЧНС-материала ЧНС-пленки, чтобы создать модифицированную ЧНС-пленку, при этом модифицированная ЧНС-пленка обладает улучшенными рабочими характеристиками по сравнению с ЧНС-пленкой без модифицирующего материала. Изобретение обеспечивает получение ЧНС пленок с улучшенными рабочими характеристиками. 3 н. и 35 з.п. ф-лы, 46 ил.

Изобретение относится к сверхпроводникам и технологии их получения. Оксидный сверхпроводящий провод включает лентообразный оксидный сверхпроводящий слоистый материал 1, сформированный путем нанесения промежуточного слоя 4 на стороне передней поверхности металлической лентообразной подложки 3, оксидного сверхпроводящего слоя 5 на промежуточном слое 4 и защитного слоя 6 на оксидном сверхпроводящем слое 5, и покрытие, включающее металлическую ленту 2 и слой металла с низкой точкой плавления 7, при этом ширина металлической ленты 2 больше, чем ширина оксидного сверхпроводящего слоистого материала 1, и лента 2 закрывает поверхность защитного слоя 6 оксидного сверхпроводящего слоистого материала 1, обе боковые поверхности оксидного сверхпроводящего слоистого материала 1 и оба концевых участка 3а задней поверхности подложки 3 в поперечном направлении, причем оба концевых участка металлической ленты 2 в поперечном направлении закрывают оба концевых участка 3а задней поверхности подложки 3а, слой металла с низкой точкой плавления 7 заполняет щели между оксидным сверхпроводящим слоистым материалом 1 и металлической лентой 2, окружающей оксидный сверхпроводящий слоистый материал 1, и соединяет металлическую ленту 2 и оксидный сверхпроводящий слоистый материал 1 друг с другом, а часть 7с заполняющего слоя металла с низкой точкой плавления продолжается в область углубленного участка 2d, сформированного между обоими концевыми участками металлической ленты 2 в поперечном направлении. Полученная структура сверхпроводящего провода способна предотвращать проникновение влаги, в результате чего оксидный сверхпроводящий слой не разрушается. 4 н. и 11 з.п. ф-лы, 10 ил., 6 табл.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих пленок. Изобретение обеспечивает получение на золотом буферном подслое сверхпроводящих пленок с высокими токонесущими свойствами, обеспечивающими значения плотности сверхпроводящего критического тока не ниже 105 Асм2. В способе формирования YBa2Cu3O7-x пленок с высокой токонесущей способностью на золотом буферном подслое золотая контактная площадка формируется на диэлектрической подложке перед нанесением пленок YBa2Cu3O7-x на диэлектрической подложке. Для распылении мишеней из золота и керамики YBa2Cu3O7 используется лазер с длиной волны излучения 1,06 мкм, длительностью импульса 10÷20 нс и частотой повторения импульсов 10 Гц, плотностью мощности лазерного излучения ·108 Втсм2, при этом предварительно нагревается мишень из золота и подложка до температуры T450-500°C, устанавливается давление 0,1÷0,5 Па, после этого распыляется мишень из золота на подложку через маску, расположенную на расстоянии 0,3÷0,5 мм от подложки, затем нагревается мишень YBa2Cu3O7 до T600÷700°C, нагревается подложка до температуры 800÷840°C, устанавливается давление 50-100 Па, и распыляется мишень YBa2Cu3O7 на сформированные контактные площадки до толщины 50 -200 нм с образованием пленок с критической температурой сверхпроводящего перехода Tc88-89 K, шириной сверхпроводящего перехода ΔTc 2÷3 K, плотностью критического тока Jc>105 Асм2. 6 ил.

Наверх