Способ поиска неисправного блока в непрерывной динамической системе

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов. Технический результат заключается в уменьшении аппаратных и вычислительных затрат, связанных с уменьшением числа измеряемых сигналов объекта диагностирования. Он достигается тем, что предложен способ поиска неисправного блока в непрерывной динамической системе, в котором в отличие от прототипа определяют число групп динамических блоков N=2 так, что каждая группа имеет один входной и один выходной сигналы, назначают две контрольные точки для измерения выходных сигналов каждой группы, создают модели с пробными отклонениями для двух контрольных точек, для чего вводят пробное отклонение параметров в один из блоков каждой группы, вычисляют диагностические признаки наличия неисправной группы блоков, по минимуму значения диагностического признака определяют дефектную группу блоков, дефектную группу разбивают на две подгруппы путем назначения контрольной точки на выходе одного из динамических блоков дефектной группы так, чтобы каждая новая подгруппа содержала только один вход и один выход, контрольную точку на выходе группы блоков, не содержащих неисправность, удаляют, фиксируют контрольные точки на выходах подгрупп блоков, определяют модели с пробными отклонениями для каждой подгруппы, вычисляют диагностические признаки для каждой подгруппы блоков, определяют дефектную подгруппу блоков по минимуму диагностического признака, операции разбиения дефектной подгруппы блоков и определения пробных отклонений продолжают до тех пор, пока дефектная подгруппа не будет содержать только один блок, который принимается за неисправный. 2 ил.

 

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов.

Известен способ диагностирования динамических звеньев систем управления (патент на изобретение №2439648 от 10.01.2012 по заявке №2010142159/08(060530), МКИ6 G05B 23/02, 2012), основанный на многократном интегрировании выходного сигнала блока с весами e-αlt , где αl - вещественная константа, l - количество констант.

Недостатком этого способа является то, что он использует большое число контрольных точек и многократное вычисление интегральных оценок сигналов.

Наиболее близким техническим решением (прототипом) является способ поиска неисправного блока в динамической системе (патент на изобретение №2435189 от 27.11.2011 по заявке №2009123999/08(033242), МКИ6 G05B 23/02, 2011).

Недостатком этого способа является то, что он использует большое число контрольных точек для измерения сигналов на выходах блоков.

Технической задачей, на решение которой направлено данное изобретение, является уменьшение аппаратных и вычислительных затрат, связанных с уменьшением числа измеряемых сигналов объекта диагностирования.

Поставленная задача достигается тем, что в качестве динамической системы рассматривают систему, состоящую из произвольно соединенных динамических блоков, с количеством рассматриваемых одиночных дефектов блоков m, фиксируют глубину поиска неисправности до динамического блока системы, определяют число групп динамических блоков N=2 так, что каждая группа имеет один входной и один выходной сигналы (например - группа 1 и группа 2 на фиг.1), назначают две контрольные точки для измерения выходных сигналов каждой группы, создают модели с пробными отклонениями для двух контрольных точек, для чего вводят пробное отклонение параметров в один из блоков каждой группы, предварительно определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы, определяют параметр интегрального преобразования сигналов из соотношения α = 5 T к , предварительно определяют нормированные векторы Δ P ^ i ( α ) отклонений интегральных оценок сигналов модели, полученных в результате пробных отклонений для дефекта i-го блока по одному из каждой группы и определенного выше параметра интегрального преобразования α, для чего подают тестовый сигнал x(t) (единичный ступенчатый, линейно возрастающий, прямоугольный импульсный и т.д.) на вход системы управления с номинальными характеристиками, принципиальных ограничений на вид входного тестового воздействия предлагаемый способ не предусматривает, регистрируют реакцию системы fj ном(t), j=1, 2, на интервале t∈[0,TК] в двух контрольных точках двух групп динамических блоков и определяют интегральные оценки выходных сигналов Fj ном(α), j=1, 2, системы, для этого в момент подачи тестового сигнала на вход системы управления с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из двух контрольных точек с весами e-αt, где α = 5 T к , для чего сигналы системы управления подают на первые входы двух блоков перемножения, на вторые входы блоков перемножения подают экспоненциальный сигнал e-αt, выходные сигналы двух блоков перемножения подают на входы двух блоков интегрирования, интегрирование завершают в момент времени Tк, полученные в результате интегрирования оценки выходных сигналов Fj ном(α), j=1, 2, регистрируют, определяют интегральные оценки сигналов модели для каждой из двух контрольных точек, полученные в результате пробных отклонений одного из одиночных дефектов блоков каждой из двух групп, для чего поочередно для каждого параметра блоков разных групп динамической системы вводят пробное отклонение этих параметров передаточной функции, полученные в результате интегрирования оценки выходных сигналов для каждой из двух контрольных точек и каждого из двух пробных отклонений Pji(α), j=1, 2; i=1, 2, регистрируют, определяют отклонения интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров структурных блоков одной из групп ΔPji(α)=Pji(α)-Fj ном(α), j=1, 2; i=1, 2, определяют нормированные значения отклонений интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров блоков одной из групп по формуле: Δ P ^ j i ( α ) = Δ P j i ( α ) r = 1 2 Δ P r i 2 ( α ) , замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки сигналов контролируемой системы для двух контрольных точек Fj(α), j=1, 2, определяют отклонения интегральных оценок сигналов контролируемой системы для двух контрольных точек от номинальных значений ΔFj(α)=Fj(α)-Fj ном(α), j=1, 2, вычисляют нормированные значения отклонений интегральных оценок сигналов контролируемой системы по формуле: Δ F ^ j ( α ) = Δ F j ( α ) r = 1 2 Δ F r 2 ( α ) , вычисляют диагностические признаки наличия неисправной группы структурных блоков по формуле: J i = 1 [ j = 1 2 Δ P ^ j i ( α ) Δ F ^ j ( α ) ] 2 , i=1, 2, по минимуму значения диагностического признака находят дефектную группу, дефектную группу разбивают на две подгруппы путем назначения контрольной точки на выходе одного из динамических блоков дефектной группы так, чтобы каждая новая подгруппа содержала только один вход и один выход, контрольную точку на выходе группы блоков, не содержащих неисправность, удаляют, операции назначения контрольных точек внутри дефектной подгруппы повторяют до тех пор, пока диагностический признак наличия дефекта не укажет на отдельный динамический элемент, по минимуму диагностического признака считают неисправным данный динамический элемент.

Уменьшение вычислительных затрат на диагностирование достигается путем снижения числа используемых контрольных точек и вычисляемых диагностических признаков.

Сущность предлагаемого способа заключается в следующем.

Предлагаемый способ поиска неисправного блока сводится к выполнению следующих операций:

1. В качестве динамической системы рассматривают систему, состоящую из произвольно соединенных динамических блоков, с количеством рассматриваемых одиночных дефектов блоков m. Фиксируют глубину поиска неисправности до динамического блока системы.

2. Определяют число групп динамических блоков N=2 так, что каждая группа имеет один входной и один выходной сигналы (группа 1 и группа 2 на фиг.1).

3. Назначают две контрольные точки для измерения выходных сигналов каждой группы.

4. Предварительно определяют время контроля TК≥TПП, где TПП - время переходного процесса системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы.

5. Определяют параметр интегрального преобразования сигналов из соотношения α = 5 T к .

6. Создают модели с пробными отклонениями для двух контрольных точек, для чего вводят пробное отклонение параметров в один из блоков каждой группы.

7. Предварительно определяют нормированные векторы Δ P ^ i ( α ) отклонений интегральных оценок сигналов модели, полученных в результате пробных отклонений для i-го дефекта одного из блоков каждой из двух групп и определенного выше параметра интегрального преобразования α, для чего выполняют пункты 8-12.

8. Подают тестовый сигнал x(t) (единичный ступенчатый, линейно возрастающий, прямоугольный импульсный и т.д.) на вход системы управления с номинальными характеристиками. Принципиальных ограничений на вид входного тестового воздействия предлагаемый способ не предусматривает.

9. Регистрируют реакцию системы fj ном(t), j=1, 2, на интервале t∈[0,TК] в двух контрольных точках двух групп и определяют интегральные оценки выходных сигналов Fj ном(α), j=1, 2, системы. Для этого в момент подачи тестового сигнала на вход системы управления с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из двух контрольных точек с весами e-αt, где α = 5 T к , для чего сигналы системы управления подают на первые входы двух блоков перемножения, на вторые входы блоков перемножения подают экспоненциальный сигнал e-αt, выходные сигналы двух блоков перемножения подают на входы двух блоков интегрирования, интегрирование завершают в момент времени Тк, полученные в результате интегрирования оценки выходных сигналов Fj ном(α), j=1, 2, регистрируют.

10. Определяют интегральные оценки сигналов модели для каждой из двух контрольных точек, полученные в результате пробных отклонений одного из одиночных дефектов блоков каждой из двух групп, для чего поочередно для одного параметра одного из блоков разных групп динамической системы вводят пробное отклонение параметра передаточной функции и выполняют пункты 8 и 9 для одного и того же тестового сигнала x(t). Полученные в результате интегрирования оценки выходных сигналов для каждой из двух контрольных точек и каждого из двух пробных отклонений Pji(α), j=1, 2; i=1, 2, регистрируют.

11. Определяют отклонения интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров структурных блоков каждой из групп ΔPji(α)=Pji(α)-Fj ном(α), j=1, 2; i=1, 2.

12. Определяют нормированные значения отклонений интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров блоков каждой из групп по формуле:

Δ P ^ j i ( α ) = Δ P j i ( α ) r = 1 2 Δ P r i 2 ( α ) .

13. Замещают систему с номинальными характеристиками контролируемой. На вход системы подают аналогичный тестовый сигнал x(t).

14. Определяют интегральные оценки сигналов контролируемой системы для двух контрольных точек Fj(α), j=1, 2, осуществляя операции, описанные в пункте 9 применительно к контролируемой системе.

15. Определяют отклонения интегральных оценок сигналов контролируемой системы для двух контрольных точек от номинальных значений ΔFj(α)=Fj(α)-Fj ном(α), j=1, 2.

16. Вычисляют нормированные значения отклонений интегральных оценок сигналов контролируемой системы по формуле:

Δ F ^ j ( α ) = Δ F j ( α ) r = 1 2 Δ F r 2 ( α ) .

17. Вычисляют диагностические признаки наличия неисправной группы блоков по формуле:

J i = 1 [ j = 1 2 Δ P ^ j i ( α ) Δ F ^ j ( α ) ] 2 , i=1, 2.

18. По минимуму значения диагностического признака находят дефектную группу.

19. Дефектную группу разбивают на две подгруппы путем назначения контрольной точки на выходе одного из динамических блоков дефектной группы, так, чтобы каждая новая подгруппа содержала только один вход и один выход. Контрольную точку на выходе группы блоков, не содержащих неисправность, удаляют.

20. Повторяют пункты 6-19 до тех пор, пока дефектная подгруппа не будет содержать только один блок, который принимается неисправным.

Рассмотрим реализацию предлагаемого способа поиска одиночного дефекта для системы, структурная схема которой представлена на фиг.2.

Передаточные функции блоков:

W 1 = k 1 ( T 1 p + 1 ) p ; W 2 = k 2 T 2 p + 1 ; W 3 = k 3 T 3 p + 1 ,

номинальные значения параметров: T1=5 с; К1=1; К2=1; Т2=1 с; К3=1; Т3=5 с. При поиске одиночного дефекта в виде отклонения постоянной времени T1=4 с в блоке 1, путем подачи ступенчатого тестового входного сигнала единичной амплитуды и интегрального преобразования сигналов для параметра α=0.5 и Тк=10 с получены значения диагностических признаков по формуле: J i = 1 [ j = 1 2 Δ P ^ j i ( α ) Δ F ^ j ( α ) ] 2 , i=1, 2, при использовании двух контрольных точек, расположенных на выходах блоков 2 и 3 (фиг.1): J1=0; J2=0.2219. Минимальное значение признака J1 однозначно указывает на наличие дефекта в первой группе, а разность между этими признаками может количественно характеризовать фактическую различимость этого дефекта. Разобьем дефектную группу на две подгруппы, назначив дополнительную контрольную точку на выходе блока 1 и вычислим значения диагностических признаков двух подгрупп: J1=0; J2=0.7556. Анализ значений диагностических признаков показывает, что значения первого и второго признака, полученные при использовании второго этапа алгоритма, указывают на дефект в блоке 1 системы. Дефекты блоков 2 и 3 при поиске их с использованием данного алгоритма также находятся не хуже.

Моделирование процессов поиска дефектов в блоке 2 (в виде уменьшения параметра Т2 на 20%) для данного объекта диагностирования приводит к вычислению диагностических признаков на первом этапе для двух групп блоков, определенных выше: J1=0, J2=0.222. Различимость дефекта: ΔJ=J3-J1=0.222.

Вычисление диагностических признаков на втором этапе для двух подгрупп первой группы: J1=0.7541, J2=0. Различимость дефекта: ΔJ=J3-J1=0.7541.

Моделирование процессов поиска дефектов в блоке 3 (в виде уменьшения параметра T3 на 20%) для данного объекта диагностирования приводит к вычислению диагностических признаков на первом этапе: J1=0.221, J2=0. Дефект определен за один этап. Различимость дефекта: ΔJ=J3-J1=0.221.

Вычисление диагностических признаков на втором этапе не производится, так как вторая группа состоит только из одного блока 3.

Минимальное значение диагностического признака последнего этапа во всех случаях правильно указывает на дефектный блок.

Способ поиска неисправного блока в непрерывной динамической системе, основанный на том, что фиксируют число динамических блоков, входящих в состав системы, определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы, определяют параметр интегрального преобразования сигналов из соотношения α = 5 T к , фиксируют число k контрольных точек системы, регистрируют реакцию объекта диагностирования и модели, регистрируют реакцию заведомо исправной системы fj ном(t), j=1, 2, …, k на интервале t∈[0,TК] в k контрольных точках, и определяют интегральные оценки выходных сигналов Fj ном(α), j=1,…,k системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из k контрольных точек с весами e-αt, где α = 5 T к , путем подачи на первые входы k блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал e-αt, выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени Tк, полученные в результате интегрирования оценки выходных сигналов Fj ном(α), j=1,…,k регистрируют, фиксируют число различных пробных отклонений m, определяют интегральные оценки сигналов модели для каждой из k контрольных точек, полученные в результате пробных отклонений параметров блоков, для чего поочередно для каждого блока динамической системы вводят пробное отклонение параметра его передаточной функции и находят интегральные оценки выходных сигналов системы для параметра α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждого пробного отклонения Pji(α), j=1, …, k; i=1, …, m регистрируют, определяют отклонения интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров соответствующих блоков ΔPji(α)=Pji(α)-Fj ном(α), j=1, …, k; i=1, …, m, определяют нормированные значения отклонений интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров соответствующих блоков из соотношения
Δ P ^ j i ( α ) = Δ P j i ( α ) n = 1 k Δ P n i 2 ( α ) ,
замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки сигналов контролируемой системы для k контрольных точек Fj(α), j=1, …, k для параметра α, определяют отклонения интегральных оценок сигналов контролируемой системы для k контрольных точек от номинальных значений ΔFj(α)=Fj(α)-Fj ном(α), j=1, …, k, определяют нормированные значения отклонений интегральных оценок сигналов контролируемой системы из соотношения
Δ F ^ j ( α ) = Δ F j ( α ) n = 1 k Δ F n 2 ( α ) ,
определяют диагностические признаки из соотношения
J i = 1 [ j = 1 k Δ P ^ j i ( α ) Δ F ^ j ( α ) ] 2 , i=1, …, m
по минимуму диагностического признака определяют дефект, отличающийся тем, что определяют число групп динамических блоков N=2 так, что каждая группа имеет один входной и один выходной сигналы, назначают две контрольные точки для измерения выходных сигналов каждой группы, создают модели с пробными отклонениями для двух контрольных точек, для чего вводят пробное отклонение параметров в один из блоков каждой группы, вычисляют диагностические признаки наличия неисправной группы блоков по формуле
J i = 1 [ j = 1 2 Δ P ^ j i ( α ) Δ F ^ j ( α ) ] 2 , i=1, 2,
по минимуму значения диагностического признака определяют дефектную группу блоков, дефектную группу разбивают на две подгруппы путем назначения контрольной точки на выходе одного из динамических блоков дефектной группы так, чтобы каждая новая подгруппа содержала только один вход и один выход, контрольную точку на выходе группы блоков, не содержащих неисправность, удаляют, фиксируют контрольные точки на выходах подгрупп блоков, определяют модели с пробными отклонениями для каждой подгруппы, вычисляют диагностические признаки для каждой подгруппы блоков, определяют дефектную подгруппу блоков по минимуму диагностического признака, операции разбиения дефектной подгруппы блоков и определения пробных отклонений продолжают до тех пор, пока дефектная подгруппа не будет содержать только один блок, который принимается за неисправный.



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и может быть использовано при техническом обслуживании сложных технических объектов. Технической результат заключается в расширении полноты контроля объекта контроля.

Изобретение относится к области контрольно-измерительной техники. Техническим результатом является расширение полноты контроля объекта контроля.

Изобретение относится к области судовождения - автоматическому управлению движением судна. Система определения гидродинамических коэффициентов математической модели движения судна содержит задатчик идентификационных маневров управления движением судна, объект управления, а также блок формирования коэффициентов усиления в процессе идентификации гидродинамических коэффициентов судна.

Изобретение относится к области диагностики технического состояния систем с электрическим приводом. Технический результат заключается в обеспечении контроля технического состояния системы управления электроприводом.

Изобретение относится к техническим системам, а именно к способам оптимального моделирования устройств электронной техники. Технический результат - упрощение определения выходной реакции линейного устройства на входной сигнал в виде функции времени и расширение функциональных возможностей за счет возможности моделирования линейного устройства в виде дифференциальных уравнений с переменными коэффициентами.

Изобретение относится к области диагностики неисправностей радиоэлектронной аппаратуры. Техническим результатом является повышение эффективности диагностики радиоэлектронной аппаратуры или его отдельных элементов неконтактным способом.

Изобретение относится к средствам моделирования и оценивания факторов, затрудняющих восприятие информации операторами сложных технических систем. Технический результат заключается в обеспечении предобработки информации в ситуациях сложного (произвольного) воздействия на моделируемый объект дестабилизирующих факторов посредством применения однотипных фрагментов оснащаемого интеллектуального стенда.

Изобретение относится к контролю и диагностике систем автоматического управления и их элементов. Техническим результатом является уменьшение вычислительных затрат, связанных с реализацией моделей с пробными отклонениями параметров или анализом знаков передач сигналов.

Группа изобретений относится к планированию нагрузки электростанции. Техническим результатом является оптимизация планирования нагрузки в электростанции с целью минимизации эксплутационных затрат.

Изобретение относится к области техники контроля авиационного двигателя летательного аппарата, в частности к стандартизации данных, используемых для контроля авиационного двигателя.

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов. Техническим результатом является расширение функциональных возможностей способа за счет возможности поиска топологических дефектов. Технический результат достигается тем, что регистрируют реакцию заведомо исправной системы на интервале в контрольных точках и определяют и регистрируют интегральные оценки выходных сигналов системы; определяют и регистрируют интегральные оценки выходных сигналов модели для каждой из контрольных точек и каждого из пробных отклонений; определяют деформации интегральных оценок выходных сигналов модели; определяют нормированные значения деформаций интегральных оценок выходных сигналов модели; замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный входной сигнал, определяют интегральные оценки выходных сигналов контролируемой системы; определяют отклонения интегральных оценок выходных сигналов контролируемой системы для контрольных точек от номинальных значений; определяют нормированные значения отклонений интегральных оценок выходных сигналов контролируемой системы; определяют диагностические признаки; по минимуму диагностического признака определяют топологический дефект. 1 ил.

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов. Технический результат - поиск неисправностей. Предварительно регистрируют реакцию заведомо исправной дискретной во времени системы для дискретных тактов регистрации сигнала с дискретным постоянным шагом на интервале наблюдения в контрольных точках, и многократно определяют (одновременно) интегральные оценки выходных сигналов дискретной системы для значений параметра дискретного интегрирования, для чего в момент подачи тестового сигнала на вход дискретной системы с номинальными характеристиками одновременно начинают дискретное интегрирование сигналов системы управления с шагом для параметров интегрирования в каждой из контрольных точек с весами с шагом, путем подачи на первые входы блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают дискретные экспоненциальные сигналы с шагом для блоков дискретного интегрирования, выходные сигналы блоков перемножения подают на входы блоков дискретного интегрирования с шагом, интегрирование завершают в момент времени, полученные в результате дискретного интегрирования оценки выходных сигналов регистрируют, фиксируют число рассматриваемых одиночных дефектов блоков. Определяют элементы знаков передач сигналов каждого блока, входящего в состав системы для каждой контрольной точки. Элементы знаков передач сигналов используют в заявляемом способе вместо изменений интегральных оценок сигналов модели для всех контрольных точек, полученные для пробных отклонений параметров блоков. Затем определяют нормированные значения вектора знаков передач сигналов для каждого блока, замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал, определяют интегральные оценки сигналов контролируемой дискретной системы для контрольных точек и для параметров дискретного интегрирования, определяют отклонения интегральных оценок сигналов контролируемой дискретной системы для контрольных точек и параметров дискретного интегрирования от номинальных значений, определяют нормированные значения отклонений интегральных оценок сигналов контролируемой дискретной системы для параметров дискретного интегрирования, определяют диагностические признаки при параметрах дискретного интегрирования, по минимуму значения диагностического признака определяют неисправный блок. 1 ил.

Изобретение относится к контрольному устройству распределительного шкафа, которое через промышленную сеть соединено с различными датчиками и/или исполнительными устройствами для контроля и управления различными функциями распределительного шкафа, такими как кондиционирование, регулирование влажности, контроль доступа. Технический результат заключается в создании контрольного устройства распределительного шкафа с надежной передачей данных и возможностью приспособления к разным случаям применения распределительных шкафов. Для этого предложены контрольное устройство и способ, в которых по меньшей мере часть датчиков и/или исполнительных устройств в качестве датчиков прямого подключения и/или исполнительных механизмов прямого подключения оснащены собственными схемами подключения к шине и через них подсоединены к промышленной сети, и устройство управления имеет блок инициализации или выполнено с возможностью соединения с подобным блоком, через который датчики прямого подключения и/или исполнительные механизмы прямого подключения являются инициализируемыми перед их запуском в работу и при этом автоматически адресуемыми, а затем на основании индивидуально присвоенных адресов посредством устройства управления являются соединенными с обменом данными для их работы. 2 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к способам контроля, управления и к контрольно-измерительной технике и может быть использовано в системах управления и контроля эксплуатации сложных технических объектов. Технический результат - повышение оперативности принятия решений при отклонениях от нормального хода операций с объектом. Способ позволяет визуализировать контролируемые параметры объекта, ход работ с объектом и оперативно формировать. В систему в дополнение к блоку визуализации контролируемых параметров и блокам хранения плановых, фактических и архивных графиков операций с объектом включены элементы формирования управляющих и информационных сообщений. 2 н. и 16 з.п. ф-лы, 4 ил.

Изобретение относится к способам для определения изменения параметра клапана для управления клапаном. Технический результат заключается в повышении точности диагностики клапанов в онлайн режимах. В способе диагностики регулирующего клапана данные о положении, отображающие положение регулирующего клапана, и данные давления, отображающие перепад давления на приводе клапана, и необязательно направление хода регулирующего клапана измеряют (41) во время работы регулирующего клапана в онлайн режиме. Данные о положении и данные о перепаде давления обрабатывают (42), чтобы они содержали данные вблизи исходных точек множества отдельных перемещений хода регулирующего клапана во время нормальной работы регулирующего клапана в онлайн режиме. Наконец, график изменения параметра клапана регулирующего клапана определяют (44) на основе обработанных данных о положении и о перепаде давления, собранных во множестве точек вдоль диапазона хода регулирующего клапана во время работы регулирующего клапана в онлайн режиме. 7 н. и 9 з.п. ф-лы, 10 ил.

Изобретение относится к системам контроля или управления промышленными процессами, в которых полевые устройства используются для контроля и управления промышленным процессом. Технический результат заключается в повышении надежности и сокращении времени простоя оборудования. Технологическое устройство (12) диагностики для использования в промышленном процессе содержит датчик технологического параметра или элемент (22) контроллера, который выполнен с возможностью восприятия (считывания) или управления технологическим параметром технологической текучей среды промышленного процесса. Схема (62) подсоединена к датчику технологического параметра или элементу (22) управления и выполнена с возможностью измерения или управления технологическим параметром промышленного процесса. Адаптер (30) беспроводной связи включает в себя схему беспроводной связи, выполненную с возможностью осуществления связи в промышленном процессе. Схема беспроводной связи дополнительно выполнена с возможностью приема технологического сигнала от другого технологического устройства. Схема диагностики выполнена с возможностью проведения диагностики выполнения промышленного процесса в зависимости от считанного технологического параметра и принятого технологического сигнала. 2 н. и 20 з.п. ф-лы, 6 ил.

Изобретение относится к портативным устройствам эксплуатационного обслуживания. Технический результат - упрощение взаимодействия со сложной структурой меню полевых устройств за счет использования запрограммированных “горячих” клавиш. Портативное устройство содержит модуль связи, устройства отображения и пользовательского ввода и контроллер, соединенный с модулем связи производственного процесса, устройством пользовательского ввода и устройством отображения. Посредством контроллера осуществляют доступ к электронному описанию устройства (EDD), содержащему меню EDD, и руководству, содержащему список операций эксплуатационного обслуживания на основе задачи и набор последовательностей нажатия клавиш быстрого перехода, связанных со списком операций эксплуатационного обслуживания на основе задачи; формируют список операций эксплуатационного обслуживания на основе задачи на устройстве отображения; принимают пользовательский ввод для выбора операции эксплуатационного обслуживания на основе задачи из списка операций эксплутационного обслуживания на основе задачи и набора последовательностей нажатия клавиш быстрого перехода и используют руководство для обнаружения последовательности нажатия клавиш быстрого перехода для выбранной операции эксплуатационного обслуживания на основе задачи и автоматической навигации в меню EDD полевого устройства. 2 н. и 5 з.п. ф-лы, 8 ил. 2 табл.

Изобретение относится к области радиотехники и может быть использовано для интеллектуального анализа оценки устойчивости инфокоммуникационной системы. Техническим результатом является повышение устойчивости функционирования системы связи при воздействии деструктивных электромагнитных излучений на ее структурные элементы за счет оперативной реконфигурации и обработки характера деструктивных воздействий. Систему связи приводят в рабочее состояние, фиксируют деструктивные воздействия на ее структурные элементы, формируют имитационную модель системы связи, моделируют на ней деструктивные воздействия, по результатам моделирования реконфигурируют имитационную модель системы связи и представляют математическую модель функционирования системы, определяют параметры электромагнитных полей, воздействующих на подсистемы инфрокоммуникационной системы, и осуществляют оценку воздействия этих электромагнитных полей на работоспособность отдельных элементов и узлов системы, а также системы в целом, формируют сценарии электромагнитных воздействий на узлы инфокоммуникационной системы, учитывая модели электромагнитных излучений во всем диапазоне частот, проводят анализ информационного потока, обрабатываемого инфокоммуникационными узлами, и выявляют закономерности появления искаженных пакетов информации, периодичность и кратность частоты появления которых определяют на частоте формирования импульсов известными источниками электромагнитного излучения, при обнаружении факта воздействия известных источников электромагнитных излучений блокируют искаженную информацию и реконфигурируют систему, проводят сравнительный анализ соответствия данных требованиям используемого телекоммуникационного протокола, дополнительно проводят анализ сценариев поведения инфокоммуникационной системы при действии на ее элементы и узлы электромагнитных воздействий, с учетом моделей электромагнитного излучения на всем диапазоне частот, осуществляют расчет целевых показателей, характеризующих устойчивость системы в целом и его отдельных подсистем к воздействию электромагнитных излучений. 1 ил.

Изобретение относится к диагностике различных электронных продуктов. Технический результат - более точная настройка диагностики параметра, который является причиной неисправности, на основе информации о временной метке. Устройство для диагностики электронного продукта включает в себя множество датчиков для мониторинга параметров, ассоциированных с продуктом; множество конверторов для преобразования аналоговых сигналов в цифровые сигналы; модуль обработки для определения аномальных состояний параметров на основе сравнения цифровых сигналов с пороговыми значениями параметров; модуль памяти, хранящий информацию, ассоциированную с аномальными состояниями параметров и интерфейс связи. 2 н. и 13 з.п. ф-лы, 4 ил.

Изобретение относится к контролю и диагностированию систем автоматического управления. Технический результат - улучшение помехоустойчивости. Он достигается тем, что в дополнение к известному способу определяют n параметров интегрирования сигналов, кратных 5 Т К ; определяют интегральные оценки выходных сигналов системы и выходных сигналов модели для каждой из k контрольных точек и n параметров интегрирования, для чего поочередно для каждого блока динамической системы перемещают место подачи входного сигнала на выход каждого блока, подают через сумматор входной сигнал и находят интегральные оценки выходных сигналов системы для n параметров αl и тестового сигнала; определяют деформации интегральных оценок выходных сигналов модели; определяют нормированные значения деформаций интегральных оценок выходных сигналов модели; для k контрольных точек контролируемой системы и n параметров интегрирования определяют интегральные оценки выходных сигналов, деформации интегральных оценок выходных сигналов, нормированные значения деформаций интегральных оценок выходных сигналов контролируемой системы; определяют диагностические признаки, по минимуму которых определяют неисправный блок. 1 ил.
Наверх