Способ изготовления кремниевого чувствительного элемента для люминесцентного наносенсора кислорода

Изобретение относится к технологии получения кремниевых наноструктур. В способе изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 1 до 10 мОм·см выращивается слой пористых кремниевых нанонитей методом последовательного выдерживания в следующих растворах: вначале в водном растворе нитрата серебра с концентрацией от 0.02 до 0.04 моль/л и плавиковой кислоты с концентрацией 5 моль/л в соотношении 1:1 в течение времени от 30 до 60 с для нанесения наночастиц серебра на поверхность кремниевой пластины, затем в смеси плавиковой кислоты с концентрацией 5 моль/л и 30% перекиси водорода в соотношении 10:1 в течение времени от 20 до 60 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра, и в завершении - в 65%-ном растворе азотной кислоты в течение времени от 10 до 20 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей, в результате чего получаются пористые кремниевые нанонити с длиной от 2 до 5 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода. 4 ил.

 

Изобретение относится к способам получения кремниевых наноструктур и устройств и может быть использовано для создания чувствительного элемента для люминесцентного сенсора кислорода, который может работать при комнатной температуре и измерять концентрацию молекул кислорода в газах и жидкостях, который может быть использован в аналитической химии, химической и пищевой промышленностях, медицине, биотехнологии, при экологическом мониторинге окружающей среды.

Из уровня техники известны несколько способов изготовления наносенсоров, в качестве чувствительных элементов (ЧЭ) которых выступают кремниевые нанонити.

Так, известен способ изготовления наносенсора (Z. Li, Y. Chen, X. Li, T.I. Kamins, K. Nauka, R.S. Williams. Sequence-specific label-free DNA sensors based on silicon nanowires // Nano Letters. 2004. V.4. PP.245-247), заключающийся в том, что основной ЧЭ наносенсора - кремниевая нанонить с омическими контактами на диэлектрическом слое на кремниевой подложке, которая формируется методами электронной литографии и реактивного ионного травления. К недостаткам данного технического решения относятся следующие. Во-первых, реактивное ионное травление кремниевых нанонитей приводит к дефектообразованию в кремнии (латеральной аморфизации кристалла кремния в нанонити), что снижает чувствительность наносенсоров и ограничивает минимальный размер работоспособных наносенсоров (50 нм ширина нанонити). Во-вторых, получаемые наносенсоры отличаются низкой чувствительностью и высокими шумами, вызванными, по-видимому, особенностями процесса реактивного ионного травления кремниевых нанонитей, сопровождаемого аморфизацией кремния в нанонитях. В результате данное обстоятельство не позволяет снизить ширину получаемых нанонитей до необходимых значений (менее 30 нм). В-третьих, реактивное ионное травление кремниевых нанонитей в структурах кремний-на-изоляторе отличается низкой селективностью по отношению к травлению нижележащего слоя заглубленного окисла кремния и приводит к накоплению подвижного электрического заряда в заглубленном окисле кремния и увеличению токов утечки через заглубленный окисел.

Другим техническим решением является способ изготовления наносенсора (Е. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B. Turner-Evans, A.D. Hamilton, D.A. La Van, T.M. Fahmy, M.A. Reed. Label-free immunodetection with CMOS-compatible semiconducting nanowires // Nature. 2007. V.445. PP.519-522), заключающийся в том, что ЧЭ наносенсора - кремниевая нанонить с омическими контактами на диэлектрическом слое на кремниевой подложке - формируется жидкостным химическим травлением кремния в гидроксиде тетраметиламмония через маску диэлектрической двуокиси кремния. К недостаткам данного технического решения относится следующее. Во-первых, в связи с особенностями способа, из-за анизотропного жидкостного травления кристалла кремния грань (111) травится в 100 раз медленнее других граней. Минимальная ширина кремниевых нанонитей с сечением в виде трапеции варьируется от 50 нм до 100 нм (ширина верхней грани). Во-вторых, особенности жидкостного травления кремния в углеродсодержащем органическом травителе предъявляют повышенные требования к дефектности маски и слоя кремния, а также дефектности заглубленного окисла в структурах кремний-на-изоляторе и не позволяют из-за капиллярных эффектов и гидродинамики жидкого травителя воспроизводимо снизить ширину получаемых кремниевых нанонитей до необходимых значений (менее 30 нм).

Известен способ изготовления наносенсора (Патент РФ №2359359, H01L 21/308, опубликован 15.11.2007), который позволяет устранить указанные выше недостатки. В способе изготовления наносенсора, заключающемся в том, что на кремниевой подложке создают диэлектрический слой, на поверхности которого формируют слой кремния, из которого через маску травлением формируют нанопроволоку с омическими контактами, травление для формирования нанопроволоки с омическими контактами заданных размеров проводят в парах дифторида ксенона со скоростью от 36 до 100 нм/мин, при температуре от 5 до 20°C, в течение времени от 0,3 до 1,3 мин, слой кремния, из которого травлением формируют нанопроволоку с омическими контактами, создают толщиной от 11 до 45 нм, а в качестве маски для травления используют маску полимера полиметилметакрилата толщиной от 50 до 150 нм. Такой способ изготовления наносенсора позволяет уменьшить размеры и улучшить электрофизические свойства формируемых нанонитей, в том числе снизить токи утечки через нижний диэлектрический слой, увеличить управляемость наносенсора за счет расширения диапазона напряжений от нижнего затвора и повысить чувствительность наносенсоров благодаря большей проводимости при меньшей концентрации носителей заряда.

Известен способ травления материала на основе кремния (Патент РФ №2429553, H01L 21/306, опубликован 23.01.2007). Сущность изобретения состоит в способе травления кремниевой подложки n-типа проводимости с удельным сопротивлением от 2 до 10 Ω*см с образованием кремниевых нитей. Для этого подложку выдерживают в водном растворе - фтористоводородной кислоты или ее соли, при концентрации от 1,5 до 10 М, соли металла при содержании от 5 до 100 мМ, способной к химическому осаждению металла на поверхность кремния в присутствии ионов фторида и спирта при содержании последнего от 1 до 40 об.%. Однако получаемые кремниевые нанонити обладают слабой люминесценцией и не могут быть использованы для создания ЧЭ люминесцентного наносенсора кислорода.

Наиболее близким к теме настоящего исследования является изобретение по патенту US 6815706В2 «Nano optical sensors via molecular self-assembly». В патенте, в частности, описывается изобретение, которое относится к нанооптическим датчикам и фотоприемникам, и, в частности, к таким устройствам и их изготовлению, где используется самосборка молекул. Понятие молекулярной самосборки применяется в покрывании функциональными молекулами поверхности кремниевых нанонитей. Требование к молекулам (гидроксильные группы в молекулах) является минимальным с точки зрения синтетической трудности и совместимости. Самоорганизация будет происходить ультратонкой пленкой с сильной химической связи на поверхности, которая не может быть легко достигнута с помощью других традиционных методов. Таким образом, в обсуждаемом патенте предложен способ создания оптического сенсора на молекулярный кислород с помощью кремниевых нанонитей покрытых органическими соединениями.

Задачей, на решение которой направленно заявляемое изобретение, является создание ЧЭ на основе кремниевых нанонитей без добавления дополнительных молекул красителей и использование собственной люминесценции от нанонитей в качестве детектирования молекулярного кислорода, что позволит сделать весь процесс более эффективным, а получаемый оптический сенсор - более простым и надежным.

В предлагаемом изобретении ЧЭ в виде ансамблей кремниевых нанонитей предлагается изготавливать методом химического травления пластин кристаллического кремния заданного уровня легирования, приводящем к формированию слоя кремниевых нанонитей, обладающих фотолюминесценцией в видимом и ближнем инфракрасном диапазонах спектра. При этом детектирование молекул осуществляется за счет тушения люминесценции кремниевых нанонитей. К плюсам данного технического решения относится тот факт, что с помощью выбранного метода формирования ЧЭ имеется возможность получить хорошо люминесцирующие кремниевые нанонити с заданными параметрами структуры. При этом не нужно получать кремниевые нанонити с очень малой шириной (менее 30 нм), а наличие собственной люминесценции у нанонитей избавляет от необходимости внедрять в ЧЭ дополнительные люминесцирующие агенты в виде красителей. Поверхность пористых кремниевых нанонитей покрыта тонким слоем оксида, формируемого в процессе их получения, который защищает их от дальнейшего окисления и модификации при контакте с молекулами окружающей среды, включая атмосферные газы и водные среды при нормальных условиях. В результате получаемый ЧЭ может быть использован для контроля концентрации кислорода в атмосфере и водных средах, включая биологические системы.

Сущность изобретения состоит в способе изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода, заключающимся в том, что на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 1 до 10 мΩ*см выращивается слой пористых кремниевых нанонитей методом последовательного выдерживания в следующих растворах: вначале в водном растворе нитрата серебра с концентрацией от 0.02 до 0.04 моль/л и плавиковой кислоты с концентрацией 5 моль/л в соотношении 1:1 в течение времени от 30 до 60 с для нанесения наночастиц серебра на поверхность кремниевой пластины; затем в смеси плавиковой кислоты с концентрацией 5 моль/л и 30% перекиси водорода в соотношении 10:1 в течение времени от 20 до 60 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра; и в завершении - в 65%-ном растворе азотной кислоты в течение времени от 10 до 20 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей, в результате чего получаются пористые кремниевые нанонити с длиной от 2 до 5 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода.

Техническим результатом изобретения является тот факт, что пористые нанонити обладают собственной люминесценцией и обладают чувствительностью к молекулярному окружению. При этом у слоев от 2 до 4 мкм нанонитей изменение интенсивности люминесценции при адсорбции - десорбции кислорода носит обратимый характер, что дает возможность многократного использования сенсоров на основе кремниевых нанонитей, при этом минимальное количество вещества детектируемых молекул кислорода составляет 1 пмоль.

Люминесценция пористых кремниевых нанонитей возникает вследствие излучательной рекомбинации фотовозбужденных носителей зарядов (экситонов) в нанокристаллах кремния, находящихся на поверхности нанонитей. В результате квантового размерного эффекта энергия рекомбинации экситонов лежит в оптическом диапазоне спектра от 600 до 1000 нм в зависимости от размера нанокристаллов. При адсорбции молекул кислорода на пористую поверхность кремниевых нанонитей формируются заряженные центры, которые тушат экситонную люминесценцию. Вследствие этого происходит уменьшение интенсивности фотолюминесценции кремниевых нанонитей. При десорбции молекул кислорода с поверхности нанонитей заряженные центры, связанные с адсорбированными молекулами кислорода, исчезают и интенсивность фотолюминесценции возрастает. Тем самым, изменение интенсивности фотолюминесценции кремниевых нанонитей из-за наличия молекул кислорода в окружающем их пространстве является обратимым, что позволяет использовать пористые кремниевые нанонити в качестве ЧЭ люминесцентного сенсора кислорода.

Сущность изобретения поясняется следующими фотографиями и чертежами.

На фиг.1 представлена фотография в сканирующем электронном микроскопе слоя кремниевых нанонитей, обозначенных цифрой 1, полученных на подложке кристаллического кремния, обозначенных цифрой 2, по заявляемому способу.

На фиг.2 представлена фотография в просвечивающем электронном микроскопе одиночной кремниевой нанонити, взятой из слоя, полученного по заявляемому способу, который демонстрирует пористую структуру получаемых нанонитей.

На фиг.3 представлена схема возможного люминесцентного наносенсора кислорода с ЧЭ на основе кремниевых нанонитей. При этом устройство, показанное на фиг.3, содержит источник возбуждающего света - фотодиод 1 с длиной волны излучения от 300 до 400 нм; ЧЭ на основе пористых кремниевых нанонитей 2; система фокусирующих линз 3 для сбора излучения фотолюминесценции от кремниевых нанонитей 2; светофильтр 4, выделяющий нужную длину волны фотолюминесценции в диапазоне от 720 до 780 нм, соответсующем максимуму спектра фотолюминесценции; фотоприемное устройство 5 в виде фотодиода для регистрации люминесцентного сигнала от ЧЭ.

На фиг.4 показаны спектры фотолюминесценции слоя пористых кремниевых нанонитей, находящихся в атмосфере азота и кислорода при давлении 1 атм., демонстрирующие принцип формирования отклика предлагаемого ЧЭ, где кривая 1 (сплошная линия) представляет собой спектр фотолюминесценции кремниевых нанонитей в атмосфере азота, кривая 2 (пунктирная линия) - спектр фотолюминесценции кремниевых нанонитей после напуска кислорода, а кривая 3 (штрихпунктирная линия) - спектр фотолюминесценции кремниевых нанонитей после откачки кислорода и напуска азота. Данные фиг.4 показывают уменьшение интенсивности фотолюминесценции в атмосфере кислорода примерно в 2 раза (кривая 2) относительно интенсивности исходной фотолюминесценции в атмосфере азота (кривая 1). При этом интенсивность фотолюминесценции нанонитей при их повторном помещении в атмосферу азота практически полностью восстанавливалась (кривая 3). Представленные на фиг.4 данные свидетельствуют о том, что ЧЭ на основе кремниевых нанонитей чувствителен к кислороду, при этом интенсивность люминесценции при адсорбции - десорбции кислорода носит обратимый характер, что дает возможность многократного использования наносенсоров с ЧЭ на основе кремниевых нанонитей. При этом минимальное количество вещества детектируемых молекул определяется стабильностью интенсивности возбуждающего света светодиода 1 на фиг.3 и чувствительностью фотодетектора 5 на фиг.3, и для существующих в настоящее время устройств может составлять не менее 1 пмоль.

Следующий пример иллюстрирует предложенный способ изготовления ЧЭ для люминесцентного наносенсора кислорода.

Пример.

Берется пластина кремния площадью 1 см2 p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением 2 мΩ*см и погружается в плавиковую кислоту (49%) на время от 5 до 10 с для удаления поверхностного оксида. После чего пластина кремния помещается в ячейку для жидкостного химического травления с 50 мл раствора следующего состава:

25 мл нитрата серебра с концентрацией 0.02 моль/л;

25 мл плавиковой кислоты с концентрацией 5 моль/л.

Пластина кремния оставляется на 30 с для нанесения наночастиц серебра на поверхность кремниевой пластины.

После чего кремниевая пластина с нанесенными наночастицами серебра на ее поверхности помещается в 110 мл травящего раствора следующего состава:

10 мл перекиси водорода (30%);

100 мл плавиковой кислоты с концентрацией 5 моль/л.

Пластина кремния оставляется на 20 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра. После этого кремниевая пластина с кремниевыми нанонитями промывается в деионизированной воде, сушится и погружается в 50 мл азотной кислоты (65%) на 15 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей. После этого пластина кремния еще раз промывается в деионизированной воде и высушивается.

Все действия проводятся при комнатной температуре. В результате получаются пористые кремниевые нанонити с длиной 2.2 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода.

Способ изготовления кремниевого чувствительного элемента для люминесцентного сенсора кислорода, заключающийся в том, что на подложке монокристаллического кремния p-типа проводимости с кристаллографической ориентацией поверхности (100) с удельным сопротивлением от 1 до 10 мОм∗см выращивается слой пористых кремниевых нанонитей методом последовательного выдерживания в следующих растворах: вначале в водном растворе нитрата серебра с концентрацией от 0.02 до 0.04 моль/л и плавиковой кислоты с концентрацией 5 моль/л в соотношении 1:1 в течение времени от 30 до 60 с для нанесения наночастиц серебра на поверхность кремниевой пластины; затем в смеси плавиковой кислоты с концентрацией 5 моль/л и 30% перекиси водорода в соотношении 10:1 в течение времени от 20 до 60 мин для образования кремниевых нанонитей в результате химического травления кремниевой пластины в местах, покрытых наночастицами серебра; и в завершении - в 65%-ном растворе азотной кислоты в течение времени от 10 до 20 мин для удаления наночастиц серебра и стабилизации поверхности кремниевых нанонитей, в результате чего получаются пористые кремниевые нанонити с длиной от 2 до 5 мкм, размером поперечного сечения от 30 до 300 нм, обладающие люминесценцией в диапазоне от 650 до 850 нм, интенсивность которой зависит от присутствия молекул кислорода.



 

Похожие патенты:

Изобретение относится в технологии производства пленок карбида кремния на кремнии, которые могут быть использованы в качестве подложек или функциональных слоев при изготовлении приборов полупроводниковой электроники, работающих в экстремальных условиях - повышенных уровнях радиации и температур.

Способ формирования наноразмерных структур предназначен для получения полосок тонких пленок наноразмерной ширины с целью их исследования и формирования элементов наноэлектромеханических систем (НЭМС). Сущность изобретения заключается в том, что в способе формирования наноразмерных структур, включающем получение заготовок тонких пленок и выделение из них полосок тонких пленок, по меньшей мере, одну заготовку тонкой пленки закрепляют внутри заполненного объема, который устанавливают в держатель микротома таким образом, чтобы плоскость заготовки тонкой пленки оказалась непараллельна плоскости реза, после этого ножом осуществляют рез заполненного объема с, по меньшей мере, одной заготовкой тонкой пленки и получение плоского фрагмента с полоской тонкой пленки. Существуют варианты, в которых заполненный объем устанавливают в держателе микротома таким образом, чтобы плоскость заготовки тонкой пленки оказалась перпендикулярна плоскости реза и перпендикулярна направлению реза; или заполненный объем устанавливают в держателе микротома таким образом, чтобы плоскость заготовки тонкой пленки оказалась перпендикулярна плоскости реза и параллельна направлению реза. Существуют также варианты, в которых после осуществления реза проводят исследование зондом сканирующего зондового микроскопа поверхности заполненного объема с, по меньшей мере, одной заготовкой тонкой пленки; или производят модификацию заготовки тонкой пленки, расположенной внутри заполненного объема. Существуют также варианты, в которых модификация заготовки тонкой пленки заключается в механическом воздействии на нее зондом; или в электрическом воздействии на нее зондом; или в электрохимическом воздействии на нее зондом; или в воздействии на нее электронным пучком; или в воздействии на нее ионным пучком; или в воздействии на нее рентгеновским пучком; или в воздействии на нее пучком альфа-частиц; или в воздействии на нее пучком протонов; или в воздействии на нее пучком нейтронов. Существует также вариант, в котором внутри заполненного объема закрепляют набор заготовок тонких пленок; при этом заготовки тонких пленок расположены параллельно друг другу. Существует также вариант, в котором в качестве тонких пленок используется графен. Все перечисленные варианты способа расширяют его функциональные возможности.

Использование: для замкнутого цикла производства новых изделий наноэлектроники. Сущность изобретения заключается в том, что в нанотехнологический комплекс на основе ионных и зондовых технологий, включающий распределительную камеру со средствами откачки, в которой расположен центральный робот распределитель с возможностью осевого вращения, содержащий захват носителей подложек, при этом распределительная камера содержит фланцы, которыми она соединена с камерой загрузки и модулем ионной имплантации, захват носителей подложек имеет возможность взаимодействия с камерой загрузки и модулем ионной имплантации, введен измерительный модуль, включающий сканирующий зондовый микроскоп и модуль ионных пучков с системой газовых инжекторов, при этом они соединены с фланцами распределительной камеры и имеют возможность взаимодействия с захватом носителей подложек.

Способ получения слоистого наноматериала, включающий формирование слоев различного состава, отличается тем, что, по крайней мере, одну из граничащих друг с другом областей соседних слоев, в пределах ее толщины, по меньшей мере, равной трем монослоям, формируют из неоднородных по структуре элементов, которые хотя бы в одном направлении имеют размеры, кратные периоду решетки соседнего слоя и/или четверти длины волны своих валентных электронов.

Изобретение относится к технологии микроэлектроники и может быть использовано для получения слоев карбида кремния при изготовлении микроэлектромеханических устройств, фотопреобразователей с широкозонным окном 3С-SiC, ИК-микроизлучателей.

Изобретение относится к области нанотехнологий, а именно к способам создания эпитаксиальных медных структур на поверхности полупроводниковых подложек и может быть использовано при создании твердотельных электронных приборов.

Изобретение относится к технологии получения полупроводниковых материалов. Способ изготовления изделий, содержащих кремниевую подложку с пленкой карбида кремния на ее поверхности, осуществляется в газопроницаемой камере, размещенной в реакторе, в который подают смесь газов, включающую оксид углерода и кремнийсодержащий газ, при этом давление в реакторе 20-600 Па, температура 950-1400°C.

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Изобретение позволяет упростить технологию получения применением одной поликристаллической мишени, улучшить качество пленок за счет высокой адгезии.

Группа изобретений относится к полупроводниковым материалам. Способ (вариант 1) включает обеспечение реакционной камеры, обеспечение полупроводниковой подложки, обеспечение прекурсорного газа или газов, выполнение эпитаксиального CVD выращивания легированного полупроводникового материала на подложке в реакционной камере для формирования первого слоя, продувку реакционной камеры газовой смесью, включающей водород и газ, содержащий галоген, с обеспечением уменьшения эффекта памяти легирующей примеси без удаления сопутствующего осажденного слоя из зоны реакции и выполнение эпитаксиального CVD выращивания легированного полупроводникового материала на указанной подложке в реакционной камере для формирования второго слоя.

Изобретение относится к электронной технике, в частности к устройствам для получения многослойных полупроводниковых гетероструктур. Устройство содержит корпус 1 с крышкой 2, контейнер 3 с емкостями для исходных расплавов, снабженный поршнями 4, многосекционный держатель 14 подложек, камеру роста 5 и каналы для подачи и вывода расплавов.

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы.

Изобретение относится к наноматериалам, а именно к композитам, содержащим высокореакционные наноразмерные частицы металла, стабилизированные полимерной матрицей.
Изобретение может использоваться для получения биологических радиоактивных меток. Способ получения меченных тритием наноалмазов методом термической активации трития включает приготовление водной суспензии наноалмазов со средним размером частиц не более 125 нм и содержанием дисперсной фазы от 0,15 до 0,6 мг, равномерное нанесение полученной суспензии на стенки сосуда, содержащего установленную с возможностью подключения электрического тока вольфрамовую нить для активации трития, с последующей лиофилизацией и удалением воздуха.

Изобретение относится к способу получения углеродных нановолокон и/или углеродных нанотрубок. Способ включает пиролиз дисперсного целлюлозного и/или углеводного субстрата, импрегнированного соединением элемента или элементов, металл или сплав которых, соответственно, способен образовывать карбиды, в по существу свободной от кислорода атмосфере, содержащей летучее соединение кремния, необязательно в присутствии соединения углерода.

Изобретение относится в технологии производства пленок карбида кремния на кремнии, которые могут быть использованы в качестве подложек или функциональных слоев при изготовлении приборов полупроводниковой электроники, работающих в экстремальных условиях - повышенных уровнях радиации и температур.

Изобретение относится к полупроводниковой технологии и может быть использовано для изготовления приборных структур. В подложку из кремния проводят имплантацию ионов с формированием слоя, предназначенного для переноса.

Изобретение относится к коллоидной химии и может быть использовано в люминесцентных метках, а также при изготовлении материалов для лазеров, светодиодов, солнечных батарей, фотокатализаторов.
Изобретение относится к получению материала для электронной промышленности, в частности, для литий-ионных аккумуляторов. Способ получения нанопорошков композита на основе титаната лития Li4Ti5O12/C включает смешивание диоксида титана, карбоната лития и крахмала и термическую обработку полученной смеси до получения материала с 100% структурой шпинели.

Изобретение относится к химии высокомолекулярных соединений, нанотехнологий и фотохимии и касается разработки фотоотверждаемой композиции для получения полимерного материала, обладающего трехмерной нанопористой структурой с гидрофобной поверхностью пор, одностадийного способа его получения и пористого полимерного материала с селективными сорбирующими свойствами и одностадийного формирования на его основе водоотделяющих фильтрующих элементов с заданной геометрией и требуемой механической прочностью, применяемых в устройствах для очистки органических жидкостей, преимущественно углеводородных топлив, масел, нефтепродуктов, от эмульгированной воды и механических примесей.

Композиция для получения покрытия для снижения механических потерь высокоскоростного ротора электрической машины относится к гибридным органо-неорганическим нанокомпозиционным покрытиям, способным снижать механические потери высокоскоростного ротора электрической машины в охлаждающей газообразной среде.

Порошковая проволока может быть использована при механизированной и автоматической подводной сварке и наплавке металлических деталей. Порошковая проволока состоит из стальной оболочки и размещенной внутри нее шихты. На ее поверхности выполнено композиционное покрытие в виде медной матрицы с распределенными в ней наноразмерными частицами активирующего флюса, содержащего фторид щелочного металла. Шихта содержит компоненты в следующем соотношении, мас.%: рутиловый концентрат 24-38,5; двуокись кремния 1,5-6,6; гематит 2,8-16,5; железный порошок 32-45; ферромарганец 5-12; никель 1-3; карбонат щелочного металла 3-7; комплексный фторид щелочного металла 2-8. Порошковая проволока обладает хорошими сварочно-технологическими свойствами, обеспечивает мелкокапельный переход, стабильность горения дуги и позволяет улучшить качество сварных соединений за счет активных металлургических реакций по связыванию водяного пара и водорода. 2 з.п. ф-лы, 1 ил., 1 табл.
Наверх