Устройство для измерения параметров диэлектриков при нагреве


 


Владельцы патента RU 2539124:

ОАО "Обнинское научно-производственное предприятие "Технология" (RU)

Изобретение относится к технике измерения диэлектриков методом объемного резонатора при нагреве в диапазоне температур до 2000°C. Устройство содержит цилиндрический резонатор, ограниченный с одной стороны торцевой стенкой волновода СВЧ, а с другой стороны подвижным поршнем со штоком, загрузочное окно для установки образца исследуемого материала, измеритель температуры, подвод защитного газа, механизм перемещения поршня со штоком. При этом торцевая стенка волновода СВЧ выполнена водоохлаждаемой, а нагреватель содержит ряд трубчатых элементов из графита с односторонним выводом на токоподводы. Поршень установлен на полом составном штоке, нагреваемая часть которого выполнена в виде тонкостенной трубы из термостойкого материала, а другая в виде трубы с водяным охлаждением и снабжена фланцем с уплотнительной прокладкой. Причем к водоохлаждаемой части штока герметично подсоединен оптический пирометр, а шток закреплен на платформе модуля линейного перемещения. Механизм перемещения поршня со штоком включает два последовательно работающих модуля линейных перемещений с электромеханическими приводами, совмещенных с единым датчиком измерения перемещений, а подвод защитного газа размещен в зоне окуляра пирометра. Технический результат заключается в повышении точности измерения параметров диэлектриков при температурах до 2000°C и автоматизации процесса измерения. 1 ил.

 

Изобретение относится к области измерительной высокочастотной техники измерения и может быть использовано для измерения диэлектрической проницаемости и тангенса угла диэлектрических потерь в материалах резонансным методом при высоких температурах не менее 2000°C.

Известны устройства для измерения параметров диэлектриков при нагреве, например, свидетельство на полезную модель 18201 U1 RU от 07.12.2000 г., МПК G01R 27/26.

Измерительный резонатор для измерения диэлектрических свойств материалов при нагреве исследуемого образца включает цилиндрический резонатор, ограниченный с одной стороны неподвижной торцевой стенкой волновода СВЧ, а с другой - короткозамыкающим поршнем, связанным с механизмом настройки. Цилиндр резонатора выполнен из 2-х частей, верхняя из которых снабжена рубашкой охлаждения, а нижняя установлена внутри нагревателя, который выполнен в виде проволочной спирали, при этом между ними размещена диэлектрическая пластина.

Измерения диэлектрических характеристик в данном устройстве осуществляется в условиях нагрева образцов. В качестве нагревателя используется проволочная спираль, охватывающая часть резонатора и работающая в атмосфере защитного газа. Материалами для проволочного нагревателя, имеющего необходимый ресурс работы, могут служить хромоникелевые сплавы типа нихром, фехраль. Они обеспечивают температуру нагрева не более 1200°C. Для нагрева на более высокую температуру необходимо применять молибден или вольфрам, работающие только в высоком вакууме 10-5 мм рт. ст. Эти материалы плохо поддаются механической обработке, поэтому изготовление нагревательных элементов связано с большими технологическими трудностями, что препятствует созданию устройств для измерения диэлектрических параметров материалов при нагреве до высоких температур не менее 2000°C. Кроме этого перемещение штока с поршнем осуществляется вручную винтовой парой при отсутствии в рассматриваемом устройстве конструктивных элементов измерения перемещение штока с поршнем для обеспечения фиксации положения резонанса в процессе измерения.

Наиболее близким по техническому решению является устройство по свидетельству на полезную модель 24292 U1 RU, МПК G01R 27/26 от 13.11.2001 г. "Измерительная ячейка для измерения параметров диэлектриков на СВЧ".

Устройство содержит термоизолированный герметичный корпус, установленный на нем цилиндрический резонатор, снабженный нагревателем. Верхний торец цилиндра резонатора закрыт неподвижной крышкой, являющейся верхней торцевой стенкой резонатора, связанный с трактом СВЧ. Нижняя торцевая стенка резонатора образована поршнем, установленным на вертикальном штоке, который неподвижно соединен с ходовым винтом механического приводного механизма комбинированного типа, включающего систему "винт-гайку" и шестеренчатую пару. Для измерения температуры внутри штока предусмотрен канал для размещения термопары и подвод нейтрального газа для защиты нагревателя.

К недостаткам рассматриваемого устройства относится то, что точную установку поршня в резонаторе в положение резонанса, а также обеспечение многократно повторяемой фиксации этого положения в процессе измерения осуществляется механическим приводом, включающем 2-ступенчатую винтовую пару.

Работа движущей системы "винт-гайка" неизбежно связана с наличием люфта в винтовом соединении, особенно при больших шагах резьбы. Люфт в резьбе сказывается на точности измерения осевого перемещения поршня и соответственно находящегося на нем образца. Метод объемного резонатора для измерения диэлектрических характеристик материалов основан на сравнительном измерении резонаторной длины при фиксации положения поршня с образцом и без образца.

Поэтому погрешности фиксации поршня в резонансном положении напрямую влияют на точность измерения диэлектрических характеристик. В рассматриваемом устройстве отдельного точного измерителя перемещений не предусмотрено, а отсчет осевого перемещения может осуществляться только по осевому ходу винта в системе "винт-гайка", что не может обеспечить высокую точность измерения.

В описании данного устройства указано, что цилиндрический резонатор может быть снабжен нагревателем. Рассмотрение конструктивных элементов механического привода и их размещение показывает, что установить нагреватель известной конструкции большой мощности для достижения высоких температур невозможно, так как это вызывает необходимость введения значительной по размерам теплоизоляции, которая может обеспечить нормальную работу механического привода перемещения штока с поршнем.

Разрешить это противоречие в рассматриваемой конструкции невозможно. Кроме того, в описании указано, что верхняя торцевая стенка резонатора является неохлаждаемой, поэтому работоспособность рассматриваемой конструкции не может быть реализована при высоких температурах нагрева.

Целью изобретения является повышение точности измерений и расширение диапазона нагрева исследуемых образцов до величин не менее 2000°C.

Это достигается тем, что предложено устройство для измерения параметров диэлектриков при нагреве, содержащее термоизолированный герметичный корпус, нагреватель, цилиндрический резонатор, ограниченный с одной стороны торцевой стенкой волновода СВЧ, а с другой стороны подвижным поршнем со штоком, загрузочное окно для установки образца исследуемого материала, измеритель температуры, подвод защитного газа, механизм перемещения поршня со штоком, отличающееся тем, что торцевая стенка волновода СВЧ выполнена водоохлаждаемой, а нагреватель включает ряд трубчатых элементов из графита с односторонним выводом на токоподводы, при этом поршень установлен на полом составном штоке, нагреваемая часть которого выполнена в виде тонкостенной трубы из термостойкого материала, а другая в виде трубы с водяным охлаждением и снабжена фланцем с уплотнительной прокладкой, причем к водоохлаждаемой части штока герметично подсоединен оптический пирометр, шток закреплен на платформе модуля линейного перемещения, причем механизм перемещения поршня со штоком включает два последовательно работающих модуля линейных перемещений с электромеханическими приводами, совмещенных с единым датчиком измерения перемещений, а подвод защитного газа размещен в зоне окуляра пирометра.

Проведенная авторами на макетных образцах проверка работоспособности совокупности технических решений, заложенных в заявляемом устройстве, показала более высокий уровень достигнутых характеристик по сравнению с прототипом по точности измерения и максимальной температуре прогрева.

На приведенном чертеже изображен общий вид варианта исполнения заявляемого устройства.

Устройство для измерения параметров диэлектриков при нагреве включает теплоизолированный герметичный корпус 1, трубчатый графитовый нагреватель 2, цилиндрический резонатор 3, водоохлаждаемую торцевую стенку волновода СВЧ 4, волновод СВЧ 5, поршень 6, нагреваемую часть штока 7, водоохлаждаемую часть штока 8, фланец 9, прокладку 10, пирометр 11, платформу модуля линейного перемещения 13, модуль микрометрического линейного перемещения 12, серводвигатель 14, стойку рельсовую 15, траверсу 16, модуль линейного перемещения 17, серводвигатель 18, линейный измеритель расстояний 19, загрузочное окно 20, подвод защитного газа 21, токоподводы 22, блок управления 23 и блок формирования и обработки СВЧ-сигнала 24.

Работа устройства и взаимодействие его конструктивных элементов осуществляется следующим образом.

В начальном положении поршень находится вне цилиндра резонатора 3, функцию которого выполняет часть внутренней трубы нагреватель 2. При включении серводвигателя 18 модуля ускоренного подъема 17 траверса 16, закрепленная на 2-х рельсовых стойках 15 перемещается вверх. Вместе с траверсой перемещается закрепленный на ней модуль микрометрического линейного перемещения 12, на платформе 13 которой закреплен полый составной шток, включающий нагреваемую часть 7 и водоохлаждаемую часть 8. При достижении положения поршня 6, близкого к резонансному, модуль 17 отключают, при этом одновременно посредством фланца 9 с прокладкой 10 осуществляют герметизацию рабочей зоны нагревателя. Затем включают модуль 12, обеспечивающий малые перемещения поршня в положение резонанса, которое фиксируется блоком 23.

Суммарное перемещение поршня от начального положения до положения резонанса отсчитывают измерителем линейных перемещений 19 типа MICROSYN с точностью до 0,01 мм. Обратный ход штока с поршнем осуществляют модулем ускоренного линейного перемещения 17 до исходного положения согласно показаниям измерителя расстояний 19, которые совпадают с уровнем загрузочного окна 20.

Второй этап процесса измерения диэлектрических параметров включает установку образца на поршень 6 через загрузочное окно 20 и повторение вышеописанных действий. При этом разница суммарного перемещения, отмеченная по показаниям измерителя расстояний, в обоих случаях и является величиной изменения резонансной длины, по которой определяют значение диэлектрической проницаемости материала образца.

Нагрев рабочей зоны проводят предварительно. Электропитание к нагревателю из графита подводят через токоподводы 22, а величину тока определяют исходя из заданной температуры испытаний. При этом перед включением нагревателя проводят подачу защитного газа азота в рабочую зону и воды в системы охлаждения корпуса нагревателя, охлаждаемой части штока и торцевой стенки волновода СВЧ.

Значение температуры в заявляемом устройстве регистрируют пирометром 11, причем для обеспечения дополнительного охлаждения оптики подача азота осуществляется в зоне окуляра.

Управление вышеописанными действиями механизмов в заявляемом устройстве осуществляют автоматически по программе, заданной управляющим блоком 23, а радиометрические измерения обеспечивают блоком формирования и обработки СВЧ-сигналов 24.

Заявляемое устройство для измерения параметров диэлектриков при нагреве обеспечивает более высокую точность измерений при расширенном диапазоне температур вплоть до 2000°C и значительно сокращает время проведения измерений за счет автоматизации процесса.

Источники информации

1. Свидетельство на полезную модель 18201 U1, Ru от 07.12.2000 г., МПК G01R 27/26.

2. Свидетельство на полезную модель 24292 U1, Ru от 13.11.2001 г., МПК G01R 27/26.

Устройство для измерения параметров диэлектриков при нагреве, содержащее цилиндрический резонатор, ограниченный с одной стороны торцевой стенкой волновода СВЧ, а с другой стороны подвижным поршнем со штоком, загрузочное окно для установки образца исследуемого материала, измеритель температуры, подвод защитного газа, механизм перемещения поршня со штоком, отличающееся тем, что торцевая стенка волновода СВЧ выполнена водоохлаждаемой, а нагреватель включает ряд трубчатых элементов из графита с односторонним выводом на токоподводы, при этом поршень установлен на полом составном штоке, нагреваемая часть которого выполнена в виде тонкостенной трубы из термостойкого материала, а другая в виде трубы с водяным охлаждением и снабжена фланцем с уплотнительной прокладкой, причем к водоохлаждаемой части штока герметично подсоединен оптический пирометр, а шток закреплен на платформе модуля линейного перемещения, причем механизм перемещения поршня со штоком включает два последовательно работающих модуля линейных перемещений с электромеханическими приводами, совмещенных с единым датчиком измерения перемещений, а подвод защитного газа размещен в зоне окуляра пирометра.



 

Похожие патенты:

Изобретение относится к измерительной технике и предназначено для измерения параметров диссипативных CG-двухполюсников - эквивалентов емкостных измерительных преобразователей.

Изобретение относится к области радиотехники и электроники и может быть использовано для измерения электрофизических параметров материалов. Технический результат заключается в повышении разрешающей способности до порядка 1 микрометра, а также повышении чувствительности до уровня, достаточного для определения параметров материалов с диэлектрической проницаемостью в диапазоне 1.5÷400 и проводимостью в диапазоне 2·10-2 Oм-1·м-1÷107 Ом-1·м-1.Заявленное устройство содержит СВЧ-генератор с подключенным к нему прямоугольным волноводом, имеющим измерительное устройство с волноводной резонансной системой в качестве оконечного устройства, причем оконечное устройство содержит емкостную металлическую диафрагму, согласно решению на емкостную металлическую диафрагму наложен плоскопараллельный образец диэлектрика с площадью, равной площади фланца волновода, а на образец диэлектрика наложен зонд в виде металлической проволоки с длиной от 12 до 20 мм и диаметром от 0,1 до 0,5 мм с заостренным концом, изогнутым под прямым углом, отрезок зонда большей длины расположен на диэлектрической пластине перпендикулярно щели в диафрагме, отрезок зонда с заостренным концом меньшей длины перпендикулярен плоскости образца диэлектрика, при этом толщина плоскопараллельного образца диэлектрика t выбрана из условия t ε 〈 〈 λ в , где λв - длина волны основного типа в волноводе, ε - диэлектрическая проницаемость пластины.

Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого устройства является повышение точности измерения.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин резистивными датчиками.

Изобретение относится к области измерительной техники, в частности может быть использовано в спектроскопии диэлектриков для исследования диэлектрических характеристик веществ, знание которых необходимо при дистанционном электромагнитном зондировании, диэлектрическом каротаже, изучении молекулярного строения вещества.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано для измерения физических величин, контролируемых резистивными датчиками.

Изобретение относится к СВЧ технике, а именно к способам определения коэффициента потерь tgδ диэлектриков методом объемного резонатора. Образец измеряемого диэлектрика помещают в область максимального электрического поля резонатора, возбужденного на моде Е010, измеряют добротность резонатора с образцом и без образца и по результатам измерений судят о значении tgδ диэлектриков.

Изобретение относится к электроизмерительной технике, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния межвитковой изоляции обмотки асинхронного двигателя или трансформатора.

Изобретение относится к измерительной технике и может быть использовано для определения сопротивления и индуктивности рассеяния первичной обмотки трансформатора напряжения.

Изобретение относится к измерительной технике, в частности к устройствам измерения эквивалентных параметров CG-двухполюсников. .

Изобретение относится к технике измерения диэлектриков методом объемного резонатора при нормальной температуре. Устройство содержит волновод СВЧ, резонатор с цилиндрической частью, ограниченный с одной стороны торцевой стенкой волновода СВЧ, а с другой стороны короткозамыкающим поршнем с возможностью осевого перемещения внутри резонатора, механизм перемещения поршня и блок радиоизмерительного оборудования. При этом волновод СВЧ, цилиндр резонатора и механизм перемещения установлены в едином цилиндрическом корпусе. Цилиндр резонатора установлен внутри корпуса с возможностью осевого перемещения и снабжен зажимами для фиксации в корпусе, а поршень посредством штока закреплен на платформе модуля осевого перемещения с приводом от серводвигателя, совмещенного с измерителем линейного перемещения. Серводвигатель оснащен системой автоматического управления, связанной с радиометрическим блоком фиксации резонансного положения поршня. Технический результат заключается в повышении точности измерения параметров диэлектриков и автоматизации процесса измерения. 1 ил.

Изобретение относится к измерительной технике. В частности, оно может быть использовано в радиочастотных резонансных датчиках. Способ измерения заключается в том, что периодически на вход резонатора подают колебания с частотой, изменяющейся дискретно с заданным шагом в прямом и обратном направлении по симметричному закону в диапазоне изменения измеряемой резонансной частоты. При этом формируют случайный сигнал, которым модулируют колебания, подаваемые на вход резонатора, фиксируют в каждом полупериоде этих изменений экстремум АЧХ резонатора и соответствующую этому экстремуму частоту и определяют резонансную частоту как среднее значение зафиксированных частот экстремумов за n-ое количество периодов указанных изменений, которое рассчитывают по формуле n≥(Δf/δa)2/8, где Δf - шаг перестройки частоты колебаний, подаваемых на вход резонатора; δa - требуемая абсолютная погрешность определения резонансной частоты. При этом модулируют случайным сигналом амплитуду колебаний, подаваемых на вход резонатора. Технический результат - повышение точности измерений. 2 з.п. ф-лы, 3 ил.

Изобретение относится к электроизмерительной технике, в частности к устройствам для контроля качества изоляции, характеризуемого ее пробивным напряжением, и может быть использовано в средствах для диагностики состояния межвитковой изоляции обмотки асинхронного или синхронного двигателя. Микроконтроллерное устройство диагностики межвитковой изоляции обмотки электродвигателя содержит (фиг.) МК 1, делитель напряжения 2, управляемый источник опорного напряжения 3, первый управляемый ключ 4, индикатор 5, источник постоянного напряжения 6, диагностируемую обмотку электродвигателя 7, второй ключ 8 и образцовую индуктивность 9. Первый вывод источника постоянного напряжения 6 подключен к первым выводам индуктивностей 7 (диагностируемая обмотка электродвигателя) и 9 (образцовая индуктивность), вторые выводы которых подключаются ко второму выводу второго ключа, который может находиться либо в «верхнем» (подключается индуктивность 7), либо в «нижнем» (подключается образцовая индуктивность 9) положении. Первый вывод второго ключа подключен ко вторым выводам первого управляемого ключа и делителя напряжения. Вывод управления первого ключа подключен к МК 1, вход управления источника опорного напряжения 3 подключен в выходу широтно-импульсного модулятора (на фиг. не показан) МК 1, выход источника опорного напряжения 3 подключен к первому входу аналогового компаратора (на фиг. не показан) МК 1, ко второму входу аналогового компаратора МК 1 подключен средний вывод делителя напряжения 2, первый крайний вывод делителя напряжения 2 подключен к первым выводам первого управляемого ключа 4 и источника постоянного напряжения 6, индикатор 5 подключен к выходу соответствующего порта МК 1. Технический результат заключается в повышении точности устройства за счет организации сравнения ЭДС самоиндукции образцовой и диагностируемой обмоток. 1 ил.

Изобретение относится к области измерения характеристик материалов и может быть использовано для определения диэлектрической проницаемости изоляционных композитных и других материалов. Способ основан на измерении комплексного коэффициента отражения электромагнитных волн от отрезка линии передачи, на конце которого устанавливают калибровочные меры и испытуемый образец материала, с последующей обработкой материалов. На входе отрезка линии передачи с волновым сопротивлением Zв параллельно ему подключают резистивный элемент с сопротивлением R=(0,1-0,2)Zв, по результатам калибровочных измерений определяют параметры рассеяния цепи, соединяющей плоскость измерения коэффициента отражения с плоскостью подключения испытуемого участка линии с испытуемым образцом. Обрабатывая массив данных, находят диэлектрическую проницаемость и тангенс угла потерь испытуемого материала. Предложено устройство для осуществления способа. Технический результат заключается в повышении точности определения диэлектрической проницаемости в широком диапазоне частот. 2 н. и 3 з.п. ф-лы, 5 ил., 1 табл.
Предложен способ определения диэлектрической проницаемости и толщины твердых образцов на металле. Техническим результатом изобретения является повышение точности определения толщины и диэлектрической проницаемости материала на металле. Способ предусматривает возбуждение электромагнитного колебания определенной пространственной структуры и измерение резонансных частот при замене одного из торцов резонатора образцом поочередно стороной покрытия и металла, для чего дополнительно на одной из торцевых стенок устанавливают диэлектрик высотой h, диэлектрической проницаемостью εд и диаметром, равным диаметру резонатора, возбуждают пространственное колебание типа H011, измеряют резонансные частоты резонатора f1 и f2 соответственно при установке на открытую противоположную торцевую стенку образца поочередно стороной покрытия и металлической подложки, закрывают открытую торцевую стенку, измеряют резонансные частоты f3 и f4 соответственно при замене другой торцевой стенки, где расположен возмущающий диэлектрик, образцом поочередно стороной покрытия и металлической подложки, по разности частот Δf21=f2-f1 определяют толщину покрытия Δh, а по разности Δf43-Δf21 определяют диэлектрическую проницаемость εn покрытия на металле, где Δf43=f4-f3, при этом, варьируя высоту h и диэлектрическую проницаемость εд возмущающего резонатор диэлектрика, можно изменять чувствительность к диэлектрической проницаемости εn покрытия на металле. 1 з.п. ф-лы, 6 ил.

Группа изобретений относится к медицине и может быть использована для емкостного измерения физического движения в пациенте, который содержит изменяющиеся во времени статические заряды. Система содержит зонд и электрет или сочетание электрически проводящего элемента и генератора напряжения, выполненного с возможностью обеспечения постоянного во времени статического заряда. Электрет или электрически проводящий элемент могут быть механически и электрически соединены с пациентом так, что они механически перемещаются с пациентом и подвергаются действию содержащегося изменяющегося во времени статического заряда. Зонд расположен удаленно от электрета или сочетания электрически проводящего элемента и генератора напряжения и имеет с ними бесконтактное емкостное соединение, такое, что относительное механическое движение между зондом и электретом или проводящим элементом вызывает изменения в выходном измерительном сигнале зонда. Постоянный во времени электрический статический заряд уменьшает вызванные изменяющимся во времени статическим зарядом искажения в выходном измерительном сигнале. При этом прикрепляют элемент, содержащий постоянный во времени электрический заряд, в месте измерения пациента так, что элемент содержит изменяющиеся во времени статические заряды. Формируют измерительный сигнал посредством емкостного измерения механического движения в пациенте с использованием зонда, который расположен удаленно от элемента, места измерения и объекта, так что зонд выполняет бесконтактное измерение механических движений объекта. Применение изобретений позволит повысить точность емкостного измерения пациента. 3 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к области сварочного производства. Представленные устройство и способ могут быть использованы для определения во время процесса сварки индуктивности сварочного кабеля на основе измерения размаха пульсации напряжения на выходных сварочных клеммах при переключении силовых полупроводниковых переключателей. Указанная индуктивность может быть использована, например, для управления параметрами процесса сварки. 2 н. и 13 з.п. ф-лы, 12 ил.

Техническое решение относится к измерительной технике и предназначено для измерения диэлектрической проницаемости и влажности материала. Способ включает в себя измерение напряжения зондирующего сигнала во входной цепи первичного преобразователя, заполняемого контролируемым материалом, причем первичный преобразователь выполнен в виде короткозамкнутого на конце отрезка длинной линии. Измерения напряжения выполняют одновременно в двух точках: непосредственно на входе преобразователя и на резисторе, включенном между генератором и преобразователем. Генератор перестраивают в диапазоне частот дискретными шагами. На каждом шаге вычисляют отношение напряжения на входе первичного преобразователя к напряжению на входе элемента и по минимуму этого отношения определяют частоты гармоник при заполнении первичного преобразователя воздухом и при заполнении его контролируемым материалом. По значениям частот нескольких гармоник вычисляют действительную составляющую показателя преломления материала. Мнимую составляющую показателя преломления вычисляют по величине отношения напряжения на входе первичного преобразователя к напряжению на входе резистора. Далее определяют влажность и другие физические параметры, влияющие на показатель преломления. Технический результат заключается в повышении точности измерений и расширении функциональных возможностей. 6 з.п. ф-лы, 5 ил.

Использование: для определения комплексной диэлектрической проницаемости материалов с помощью электромагнитных волн. Сущность изобретения заключается в том, что устройство содержит отрезок металлической волноводной линии передачи, плоскопараллельную пластину и дополнительно введены второй отрезок металлической волноводной линии передачи, снабженный фланцами с обоих концов, одинакового внутреннего поперечного сечения с первым отрезком металлической волноводной линии передачи, варакторный диод, внутренняя часть второго отрезка металлической волноводной линии передачи заполнена диэлектриком, плоскопараллельная пластина выполнена из металла и снабжена окном с размерами, равными размерам внутреннего поперечного сечения отрезка металлической волноводной линии передачи, металлические выводы варакторного диода и плоскопараллельная пластина разделены изолятором, плоскопараллельная пластина и фланец одного конца второго отрезка металлической волноводной линии передачи соединены между собой механически, длина второго отрезка металлической волноводной линии передачи кратна половине длины электромагнитной волны во втором отрезке металлической волноводной линии передачи с диэлектриком. Технический результат: обеспечение возможности увеличения точности определения комплексной диэлектрической проницаемости и определения одновременно действительной и мнимой частей комплексной диэлектрической проницаемости. 3 ил., 1 табл.

Изобретение относится к измерительной технике и предназначено для измерения физических параметров материала, в том числе и при экстремальных температурах. Способ включает в себя измерение напряжения зондирующего сигнала во входной цепи первичного преобразователя, заполняемого контролируемым материалом, причем первичный преобразователь выполнен в виде отрезка длинной линии. Измерения напряжения выполняют дистанционно, для чего между входом амплитудного детектора и входом первичного преобразователя включают первый дополнительный отрезок линии передачи, в котором создают режим бегущих волн. Подачу зондирующего сигнала с выхода генератора на вход первичного преобразователя производят через включенный между ними второй дополнительный отрезок линии передачи. Генератор перестраивают в диапазоне частот и определяют частоты гармоник при заполнении первичного преобразователя контролируемым материалом и воздухом. По значениям указанных частот определяют влажность, состав и другие физические параметры материала, влияющие на диэлектрическую проницаемость. Технический результат заключается в обеспечении измерений при экстремальных температурах, повышение точности измерения, расширение функциональных возможностей. 2 н. и 10 з.п. ф-лы, 4 ил.
Наверх