Способ получения оксидной шихты, пригодной для производства цветных кристаллов корунда



 

C25B1/00 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2539874:

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)
Общество с ограниченной ответственностью "Альтаир" (RU)

Изобретение относится к способу получения оксидной шихты, пригодной для производства цветных кристаллов корунда, включающему анодное растворение сплава на основе алюминия высокой чистоты в водном растворе, содержащем катионы N H 4 + , Na+ или их смеси, отделение гидроксильного осадка, его промывку и прокаливание. При этом в алюминий высокой чистоты вводят окрашивающие добавки различных металлов при температуре 670-1050°C. Изобретение позволяет получать оксидную шихту высокой чистоты, пригодную для выращивания цветных кристаллов корунда, с высокими ювелирными свойствами, имеющих равномерное окрашивание поверхности и не имеющих внешних дефектов (трещин, сколов). 7 з.п. ф-лы, 1 пр., 1 табл.

 

Изобретение относится к области химии, в частности к электролитическим способам получения неорганических соединений, которые могут быть использованы в производстве цветных кристаллов корунда.

Известен способ получения оксида алюминия, включающий анодное растворение алюминия в водном растворе хлорида натрия, отделение гидроксида алюминия и прокаливание [пат. RU 2366608 C1, кл. C01F 7/42, опубл. 10.09.2009]. Анодное растворение алюминия осуществляют в водном растворе хлорида натрия концентрацией 30-300 г/л с помощью выпрямленного по двухполупериодной схеме переменного тока при плотности тока 0,015-0,045 А/см2. Обработка осадка гидроксида алюминия включает отмывку, фильтрование, сушку, прессование и прокаливание при температуре 600-1350°C с получением оксида алюминия.

Указанный способ получения сырья применяется, в основном, для выращивания прозрачных кристаллов корунда и не может быть непосредственно использован при получении цветных кристаллов. А механическое смешивание различных оксидов приводит к неравномерному окрашиванию полученных кристаллов, что является недостатком данного способа.

Известен другой способ получения оксида алюминия, пригодного для производства искусственных кристаллов корунда, включающий анодное растворение алюминия чистотой 99,950-99,999% в хлоридном растворе, содержащем 5-150 г/л хлорид-ионов при температуре 20-95°C и плотности тока 0,045-0,12 А/см2, отделение гидроксида алюминия, отмывку гидроксида алюминия специально подготовленной водой с удельным сопротивлением 0,4-18,0 МОм·см и прокаливание с получением оксида алюминия [пат. RU 2466937, кл. C01F 7/42, C25B 1/00, опубл. 20.11.2012].

Для получения разноцветных корундов необходимо смешивать чистый оксид алюминия, полученный данным способом, с оксидами других металлов. А это, как указывалось ранее, приводит к неравномерному окрашиванию булов. Кроме этого, полученные кристаллы имеют внешние дефекты - трещины и сколы, что недопустимо в ювелирной промышленности. Это также является недостатком данного способа.

Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является способ приготовления шихты для выращивания монокристаллов корунда [пат. RU 2049831, кл. C30B 29/20, C30B 11/00, опубл. 10.12.1995]. Способ заключается в приготовлении шихты на основе оксида алюминия, содержащей окрашивающие добавки кобальта, ванадия, магния, марганца, никеля, железа и фторида алюминия в следующем соотношении компонентов, масс.% в расчете на оксид алюминия: кобальт 0,1000-2,5000; ванадий 0,0001-0,6000; магний 0,0001-0,0035; марганец 0,0001-0,0500; никель 0,0001-0,6000; железо 0,0001-0,6000; фторид алюминия 1,0000-20,0000; оксид алюминия остальное. Для улучшения качества шихты окрашивающие примеси вводятся в виде раствора солей, содержащих однотипный анион с основным веществом, что обеспечивает более равномерный дисперсный состав пудры.

Недостатком указанного способа является то, что при механическом перемешивании оксида алюминия и окрашивающих добавок состав шихты получается неоднородным, вследствие чего получаемый кристалл корунда имеет неравномерное распределение цвета по объему и низкие ювелирные свойства. Также из-за сильных различий в физических свойствах компонентов шихты получаемый кристалл корунда имеет внешние дефекты (трещины, сколы).

Техническим результатом предлагаемого изобретения является получение оксидной шихты высокой чистоты, пригодной для выращивания цветных кристаллов корунда, с высокими ювелирными свойствами, имеющих равномерное окрашивание кристалла и не имеющих внешних дефектов (трещин, сколов).

Достигается это тем, что в алюминий чистотой 99,950-99,999%, что является алюминием высокой чистоты, вводят окрашивающие добавки различных металлов при температуре 670-1050°C. Массовая доля вводимых в алюминий окрашивающих добавок различных металлов от общей массы сплава:

- для получения шихты, пригодной для производства синего кристалла корунда (сапфир) - 0,001-1,500% Ti, 0,050-2,500% Fe;

- для получения шихты, пригодной для производства красного кристалла корунда (рубин) - 0,050-4,500% Cr;

- для получения шихты, пригодной для производства желтого кристалла корунда (топаз) - 0,250-4,000% Ni;

- для получения шихты, пригодной для производства темно-зеленого кристалла корунда (александрит) - 0,100-3,000% V;

- для получения шихты, пригодной для производства фиолетового кристалла корунда (аметист) - 0,050-4,500% Cr, 0,050-2,500% Fe.

В процессе анодного растворения полученного сплава будет протекать образование многокомпонентного гидроокисла и гидроксида алюминия. Полученный осадок промывается дистиллированной водой в целях улучшения качества материала. Сушится для удаления связанной и несвязанной влаги и прокаливается до полного перехода гидроокислов в оксиды. Поскольку полученная предлагаемым методом оксидная шихта имеет состав многокомпонентных оксидов, состоящих из алюминия и окрашивающих добавок цветных металлов, то производимые кристаллы корунда будут иметь определенную окраску по всему объему и целостность формы, что отвечает высоким ювелирным свойствам.

Интервал температуры введения в алюминий чистотой 99,950-99,999% окрашивающих добавок разных металлов 670-1050°C обусловлен тем, что при температуре ниже 670°C алюминий находится в твердом состоянии и введение в него окрашивающих добавок невозможно, а при температуре выше 1050°C растворимость окрашивающих добавок в алюминии не меняется.

Интервал содержания гидроксидионов в растворе 5-500 г/л обусловлен тем, что при содержании гидроксидионов менее 5 г/л значительно повышается сопротивление электролита, вследствие чего процесс образования многокомпонентных гидроокислов невозможен из-за отсутствия тока, а при содержании гидроксидионов более 500 г/л происходит значительное загрязнение осадка щелочами, вследствие чего получаемые цветные кристаллы корунда не отвечает заявленным характеристикам.

Интервал плотностей тока 0,13-1,50 А/см2 обусловлен тем, что при плотности тока менее 0,13 А/см2 крупность осадка слишком велика для выращивания кристаллов корунда, а увеличение плотности тока выше 1,50 А/см2 приводит к срыву частичек металла с поверхности электродов, вследствие чего осадок загрязняется и получаемый кристалл корунда имеет внешние дефекты.

Интервал содержания титана в алюминии 0,001-1,500 масс.% обусловлен тем, что при содержании титана менее 0,001 масс.% получаемый кристалл корунда не имеет цвет, а при содержании титана более 1,500 масс.% получаемая оксидная шихта непригодна для получения кристалла корунда.

Интервал содержания железа в алюминии 0,050-2,500 масс.% обусловлен тем, что при содержании железа менее 0,050 масс.% получаемый кристалл корунда не имеет цвет, а при содержании железа более 2,500 масс.% получаемая оксидная шихта непригодна для получения кристалла корунда.

Интервал содержания хрома в алюминии 0,050-4,500 масс.% обусловлен тем, что при содержании хрома менее 0,050 масс.% получаемый кристалл корунда не имеет цвет, а при содержании хрома более 4,500 масс.% получаемая оксидная шихта непригодна для получения кристалла корунда.

Интервал содержания никеля в алюминии 0,250-4,000 масс.% обусловлен тем, что при содержании никеля менее 0,250 масс.% получаемый кристалл корунда не имеет цвет, а при содержании никеля более 4,000 масс.% получаемая оксидная шихта непригодна для получения кристалла корунда.

Интервал содержания ванадия в алюминии 0,100-3,000 масс.% обусловлен тем, что при содержании ванадия менее 0,100 масс.% получаемый кристалл корунда не имеет цвет, а при содержании ванадия более 3,000 масс.% получаемая оксидная шихта непригодна для получения кристалла корунда.

Интервал содержания хрома в алюминии 0,050-4,500 масс.% обусловлен тем, что при содержании хрома менее 0,050 масс.% получаемый кристалл корунда не имеет цвет, а при содержании хрома более 4,5 масс.% получаемая оксидная шихта непригодна для получения кристалла корунда.

Интервал содержания железа в алюминии 0,050-2,500 масс.% обусловлен тем, что при содержании железа менее 0,05 масс.% получаемый кристалл корунда не имеет цвет, а при содержании железа более 2,500 масс.% получаемая оксидная шихта непригодна для получения кристалла корунда.

Пример осуществления изобретения

В электролизер заливают электролит - водный раствор щелочей заданного состава и концентрации. В электролит помещают электроды, состоящие из сплава АВЧ с окрашивающими добавками разных металлов, и подключают к источнику постоянного тока. Температура введения окрашивающих добавок в алюминий чистотой 99,950-99,999% составляла: «Опыт 1» - 670°C; «Опыт 2» - 750°C; «Опыт 3» - 750°C; «Опыт 4» - 850°C; «Опыт 5» - 800°C; «Опыт 6» - 1050°C; «Опыт 7» - 900°C. Устанавливают режим подачи тока. Включают ток и поддерживают в соответствии с заданной плотностью тока. В процессе электролиза происходит образование многокомпонентного гидроокисла и гидроксида алюминия. Образовавшийся осадок промывают дистиллированной водой. Затем отмытый осадок сушат до полного удаления влаги и прокаливают в электрической печи до получения оксидной шихты. Для проверки качества полученной шихты из нее методом Вернейля выращивают кристаллы корунда. Полученные результаты приведены в таблице 1.

Таблица 1
Результаты экспериментов
№ опыта Используемые компоненты, масс.% Состав сплава, масс.% Соединения, присутствующие в составе оксидной шихты Кристалл корунда
Al Ti Fe Cr Ni V Наличие внешних дефектов Распределение цвета по объему кристалла Цвет
Название Код GIA* RGB**
Опыт 1 99,949 0,001 0,050 - - - 99,949 Al Al2TiO5, FeAl2O4, FeTiO3, Al2O3 Нет равномерное очень слабо зеленовато-синий vslgB R:10 G:89 B:170
0,05 Fe
0,001 Ti
Опыт 2 98,100 0,700 1,200 - - - 95,81 Al Al2TiO5, FeAl2O4, FeTiO3, A12O3 Нет равномерное Синий В R:9 G:22 B:165
2,94 FeAl3
1,88 TiAl3
Опыт 3 96,000 1,500 2,500 - - - 89,83 Al Al2TiO5, FeAl2O4, FeTiO3, Al2O3 Нет равномерное фиолетовато-синий vB R:8 G:8 B:160
6,13 FeAl3
4,04 TiAl3
Опыт 4 98,800 - - 1,200 - - 94,92 Al Al2(CrO4)3, Al2(Cr2O7)3, Al2O3 Нет равномерное Красный R R:250 G:3 B:3
5,08 Al7Cr
Опыт 5 99,750 - - - 0,250 - 99,41 Al NiAl2O4, Al2O3 Нет равномерное зеленовато-желтый gY R:206 G:230 B:0
0,59 Al3Ni
Опыт 6 98,400 - - - - 1,600 89,51 Al AlVO4, Al2O3 Нет равномерное зелено-синий GB R:0 G:184 B:147
10,49 Al21V2
Опыт 7 97,800 - 1,300 0,900 - - 93,02 Al Al2(CrO4)3, Al2(Cr2O7)3, FeAlO4, Al2O3 Нет равномерное Фиолетовый V R:123 G:10 B:180
3,81 Al7Cr
3,17 FeAl3
* - международная система классификации цвета для цветных драгоценных камней
** - аддитивная цветовая модель «красный - зеленый - синий»

1. Способ получения оксидной шихты, пригодной для производства цветных кристаллов корунда, включающий анодное растворение сплава на основе алюминия высокой чистоты в водном растворе, содержащем катионы N H 4 + , Na+ или их смеси, отделение гидроксильного осадка, его промывку и прокаливание, отличающийся тем, что в алюминий высокой чистоты вводят окрашивающие добавки различных металлов при температуре 670-1050°C.

2. Способ по п.1, отличающийся тем, что для получения шихты, пригодной для производства синего кристалла корунда (сапфир), массовая доля вводимых в алюминий высокой чистоты окрашивающих добавок различных металлов от общей массы сплава должна составлять: 0,001-1,500% Ti, 0,050-2,500% Fe.

3. Способ по п.1, отличающийся тем, что для получения шихты, пригодной для производства красного кристалла корунда (рубин), массовая доля вводимых в алюминий высокой чистоты окрашивающих добавок различных металлов от общей массы сплава должна составлять: 0,050-4,500% Cr.

4. Способ по п.1, отличающийся тем, что для получения шихты, пригодной для производства желтого кристалла корунда (топаз), массовая доля вводимых в алюминий высокой чистоты окрашивающих добавок различных металлов от общей массы сплава должна составлять: 0,250-4,000% Ni.

5. Способ по п.1, отличающийся тем, что для получения шихты, пригодной для производства темно-зеленого кристалла корунда (александрит), массовая доля вводимых в алюминий высокой чистоты окрашивающих добавок различных металлов от общей массы сплава должна составлять: 0,100-3,000% V.

6. Способ по п.1, отличающийся тем, что для получения шихты, пригодной для производства фиолетового кристалла корунда (аметист), массовая доля вводимых в алюминий высокой чистоты окрашивающих добавок различных металлов от общей массы сплава должна составлять: 0,050-4,500% Cr, 0,050-2,500% Fe.

7. Способ по п.1, отличающийся тем, что анодное растворение сплава на основе алюминия осуществляют в щелочном растворе, содержащем 5-500 г/л гидроксид-ионов, используя при этом едкий аммоний, натрий или их смесь.

8. Способ по п.1, отличающийся тем, что анодное растворение сплава на основе алюминия ведут при реверсивной подаче постоянного тока при плотности тока 0,13-1,50 А/см2.



 

Похожие патенты:

Изобретение относится к технологии производства монокристаллов сапфира, используемых для изготовления синего или белого светодиодов. Устройство содержит печь 10, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха для обеспечения температуры внутри печи, превышающей температуру плавления обломков сапфира; тигель 20, расположенный в печи таким образом, чтобы обеспечить расплавление обломков сапфира в тигле 20 и рост монокристалла в длину из затравочного кристалла 51 в тигле 20; нагреватель 30, расположенный снаружи тигля 20 для расплавления обломков сапфира; и охлаждающие средства 40, расположенные на нижней части тигля 20 для предотвращения полного расплавления затравочного кристалла 51, при этом нагреватель 30 выполнен в виде нескольких отдельных нагревателей, которые управляются независимо друг от друга отдельно установленными температурными датчиками, регуляторами мощности и блоками регулирования температуры таким образом, что он равномерно поддерживает температуру внутри тигля в горизонтальном направлении.

Изобретение относится к керамике, в частности к технологии производства монокристаллического сапфира. .

Изобретение относится к технологии получения керамических материалов, в частности монокристаллического сапфира в виде слитков или пластин, которые могут быть использованы при производстве светодиодов.

Изобретение относится к области автоматического выращивания высокотемпературных монокристаллов и может быть использовано для управления процессом выращивания в ростовых установках с весовым методом контроля.

Изобретение относится к технологии и оборудованию для выращивания монокристаллов сапфира. .

Изобретение относится к технологии высокотемпературной кристаллизации диэлектрических материалов из расплава, например лейкосапфира. .

Изобретение относится к изготовлению сапфировых подложек и к технологии их чистовой обработки. .

Изобретение относится к технологии выращивания тугоплавких монокристаллов из расплава с использованием затравочного кристалла, в частности кристаллов лейкосапфира, рубина.

Изобретение относится к устройствам для выращивания объемных монокристаллов из расплавов, например, сапфира методом Чохральского, Киропулоса, и может быть использовано в электронной и полупроводниковой промышленности.
Изобретение относится к области производства оптических материалов, прозрачных в инфракрасной (ИК) области спектра с высоким коэффициентом пропускания и повышенной механической прочностью.

Изобретение относится к электрохимическому способу получения порошка гексаборида кальция, включающему электролиз солевого расплава, содержащего кальций- и борсодержащие компоненты.
Изобретение относится к способу получения высокочистого оксида алюминия электролизом, включающему анодное растворение алюминия высокой чистоты в водном растворе хлорида аммония, отделение гидроксильного осадка, его промывку дистиллированной водой и прокаливание.

Изобретение относится к способу и устройству для обработки отходящих газов. Сущность изобретения: способ и устройство для производства аммиака, подходящего для использования в качестве восстановителя в системах селективного каталитического восстановления (scr), селективного некаталитического восстановления (sncr) или обработки топочных газов.

Изобретение относится к способу получения диарилкарбоната, включающему следующие стадии: а) получение фосгена при взаимодействии хлора с монооксидом углерода, б) взаимодействие полученного на стадии а) фосгена с не менее чем одним монофенолом в присутствии содержащего щелочь водного основания, протекающее с образованием диарилкарбоната и содержащего хлорид щелочного металла отработанного водного раствора, в) отделение и переработка образовавшегося на стадии б) диарилкарбоната, г) отделение остатков растворителя от оставшегося на стадии в) раствора, содержащего хлорид щелочного металла, до того как раствор, содержащий хлорид щелочного металла, направляют на осмотическую мембранную дистилляцию на стадии д), д) концентрирование по крайней мере части оставшегося на стадии г) раствора, содержащего хлорид щелочного металла, с помощью осмотической мембранной дистилляции, причем в качестве акцептора воды применяют раствор гидроксида щелочного металла, е) электрохимическое окисление по крайней мере части содержащего хлорид щелочного металла раствора со стадии д) с образованием хлора, раствора гидроксида щелочного металла и при необходимости водорода.

Изобретение относится к способу получения водорода из воды, включающему разложение воды на водород и кислород под действием высокочастотного электромагнитного поля.

Изобретение относится к способу изготовления электродов с пористым никелевым покрытием для щелочных электролизеров воды путем нанесения никелевого порошка из гальванической ванны с добавками низкомолекулярных спиртов на поверхность никелевой просечно-вытяжной сетки.

Изобретение относится к способу изготовления коррозионностойкого электрода, включающему изготовление биметаллической основы электрода, содержащей титановый корпус с медным сердечником внутри.

Изобретение относится к способу электролиза для отделения электролизных газов от жидкого электролита посредством по меньшей мере одного электролизного электрода, находящегося под электрическим напряжением, при этом вызывают искусственную вибрацию указанного электролизного электрода с резонансной частотой колебаний, а упомянутое электрическое напряжение подают на электролизный электрод в режиме колебаний с более низкой частотой гармоники, чем указанная резонансная частота колебаний.

Изобретение относится к способу получения поликарбоната на границе раздела фаз и последующего электролиза содержащей хлорид натрия технологической отработанной воды, который включает следующие стадии: a) получение фосгена взаимодействием хлора с монооксидом углерода, b) взаимодействие полученного на стадии а) фосгена, по меньшей мере, с одним бисфенолом в присутствии, по меньшей мере, одного основания, по меньшей мере, одного катализатора с основным характером и, по меньшей мере, одного органического растворителя с образованием поликарбоната и раствора, содержащего хлорид щелочного металла, c) выделение и переработку полученного на стадии b) поликарбоната, d) отделение остающегося на стадии с) раствора, содержащего хлорид щелочного металла, от остатков растворителя и остатков катализатора прежде всего путем отгонки с водяным паром и обработки адсорбентами, прежде всего активированным углем, e) электрохимическое окисление, по меньшей мере, части содержащего хлорид щелочного металла раствора стадии d) с образованием хлора, щелочи и при необходимости водорода, отличающемуся тем, что при отделении раствора, реализуемом на стадии d) перед его обработкой адсорбентами, показатель рН раствора устанавливают на уровне 8 или ниже и f) по меньшей мере, часть полученного на стадии е) хлора возвращают на стадию а) и/или, g) по меньшей мере, часть полученной на стадии е) щелочи возвращают на стадию b) синтеза поликарбоната.

Группа изобретений относится к биохимии. Предложен способ изготовления электрода с иммобилизованным белком путем иммобилизации цитохрома с552, его производного или варианта на золотом электроде таким образом, что гидрофобная часть цитохрома, его производного или варианта расположена напротив золотого электрода.
Изобретение относится к способу получения высокочистого оксида алюминия электролизом, включающему анодное растворение алюминия высокой чистоты в водном растворе хлорида аммония, отделение гидроксильного осадка, его промывку дистиллированной водой и прокаливание.
Наверх