Способ адаптивного оптико-электронного наблюдения

Изобретение относится к области систем оптико-электронного наблюдения вертолетного базирования. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является увеличение дальности наблюдения подстилающей поверхности и обнаружения различных объектов, расположенных на маршруте полета вертолета. Сущность изобретения заключается в адаптивном управлении траекторией полета предварительно забрасываемого носителя дополнительного средства оптико-электронного наблюдения относительно траектории полета вертолета. Управление полетом носителя дополнительного средства оптико-электронного наблюдения осуществляется с вертолета. При этом обеспечивается автоматическая привязка траектории полета носителя дополнительного средства оптико-электронного наблюдения к текущей траектории полета вертолета. Изображение, получаемое дополнительным средством оптико-электронного наблюдения, передается на борт вертолета. 2 ил.

 

Изобретение относится к области систем оптико-электронного наблюдения вертолетного базирования.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ наблюдения огневых средств (ОС) (см., например, Авиационное вооружение и авионика. Энциклопедия XXI века. Оружие и технологии России. - М.: Оружие и технологии. Том X, 1999. стр.360-405), основанный на оптико-электронном наблюдении подстилающей поверхности с борта вертолета.

Недостатком способа является ограниченная дальность оптико-электронного наблюдения бортовым средством оптико-электронного наблюдения на маршруте полета вертолета, определяемая преимущественно дальностью прямой видимости и разрешающей способностью средства оптико-электронного наблюдения. Ограниченная дальность оптико-электронного наблюдения может привести к уменьшению времени реакции экипажа или бортового комплекса обороны вертолета на принятие мер противодействия ОС.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является увеличение дальности наблюдения подстилающей поверхности и обнаружения различных объектов, расположенных на маршруте полета вертолета.

Технический результат достигается тем, что в известном способе адаптивного оптико-электронного наблюдения, основанном на наблюдении подстилающей поверхности бортовым средством оптико-электронного наблюдения (СОЭН) вертолета, осуществляют доставку на заданное удаление в направлении полета вертолета дополнительное СОЭН, установленное на дистанционно-пилотируемом летательном аппарате (ДПЛА), производят наблюдение удаленного участка подстилающей поверхности дополнительным СОЭН и передают полученное изображение на борт вертолета, где анализируют полученное изображение и при необходимости изменяют параметры наблюдения подстилающей поверхности дополнительным СОЭН, определяют координаты ДПЛА и передают их значения на борт вертолета, определяют координаты местоположения вертолета, по полученным значениям координат вертолета и ДПЛА оценивают параметры рассогласования их взаимного местоположения, в случае несоответствия параметров рассогласования взаимного местоположения вертолета и ДПЛА заданным, автоматически корректируют их значения изменением местоположения ДПЛА.

Сущность изобретения заключается в адаптивном управлении траекторией полета предварительно забрасываемого носителя дополнительного СОЭН относительно траектории полета вертолета. Управление полетом носителя дополнительного СОЭН осуществляется с вертолета. При этом обеспечивается автоматическая привязка траектории полета носителя дополнительного СОЭН к текущей траектории полета вертолета. Изображение, получаемое дополнительным СОЭН, передается на борт вертолета.

На фигуре 1 представлена схема, поясняющая способ, где: 1 - вертолет с бортовым СОЭН; 2 - носитель дополнительного СОЭН; 3 - сектор просмотра бортового СОЭН вертолета; 4 - сектор просмотра дополнительного СОЭН; 5 - огневое средство; 6 - рубеж (точка) изменения направления полета вертолета; 7, 8 - направления полета вертолета и носителя дополнительного СОЭН. Вертолет, двигаясь в направлении 7, бортовым СОЭН 1 осуществляет наблюдение подстилающей поверхности, в секторе 3, ограниченном техническими характеристиками СОЭН, ландшафтом и метеоусловиями. При необходимости увеличения дальности наблюдения подстилающей поверхности (принятие такого решения может быть обусловлено дополнительной информацией о возможном нахождении ОС на маршруте полета, по изменению ландшафта подстилающей поверхности и т.д.) экипаж вертолета осуществляет запуск носителя дополнительного СОЭН 2 в предполагаемую точку наблюдения. В результате экипаж вертолета получает возможность осуществлять наблюдение подстилающей поверхности на удаленном участке маршрута полета по изображению сектора 4, полученному СОЭН 3, и наблюдение подстилающей поверхности с помощью бортового СОЭН 1. В случае необходимости экипаж изменяет сектор просмотра 4 подстилающей поверхности (параметры ведения съемки СОЭН 2) дополнительного СОЭН 2. При этом носитель дополнительного СОЭН 2 имеет увеличенные скоростные характеристики по маневру и полету по отношению к вертолету 1. После доставки в предполагаемую точку наблюдения полет носителя дополнительного СОЭН 2 осуществляется по траектории, «адаптивной» к траектории полета вертолета 1. Т.е. параметры изменения направления 7 полета вертолета 1 автоматически передаются на носитель дополнительного СОЭН 2, который корректирует свое направление 8 полета в соответствии с траекторией полета вертолета. Для этого осуществляется определение координат местоположения носителя 2, их передача на борт вертолета 1, обработка координат в интересах оценки взаимного расположения носителя 2 и вертолета 1, выработка и передача сигналов управления полетом на носитель 2. Так, в случае обнаружения ОС 5 (фигура 1) по изображению, полученному дополнительным СОЭН 2 и переданному на борт вертолета 1, экипаж на рубеже 6 корректирует направление 7 полета с целью безопасного обхода ОС 5. Одновременно соответствующие сигналы передаются на носитель дополнительного СОЭН 2, который также осуществляет корректировку направления 8 полета, адаптивную к направлению 7 полета вертолета 1. Таким образом, у заявляемого способа появляется возможность расширить область наблюдения подстилающей поверхности, а использование автоматического адаптивного управления траекторией полета носителя дополнительного СОЭН высвобождает экипажу время и ресурс для решения других задач, в том числе по противодействию угрозе поражения ОС 5.

На фигуре 2 представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок-схема устройства содержит: установленный на подвесном пусковом устройстве вертолета ДПЛА 9, на борту которого установлены СОЭН 10, радионавигационный приемник 11, блок приема/передачи данных 12, сопряженный радиоканалом с блоком передачи/приема данных вертолета, блок траекторного управления ДПЛА 13; на борту вертолета 14: блок приема/передачи данных 15, бортовое СОЭН 16 вертолета, сопряженное с СОЭН 10, радионавигационный приемник 17, бортовой блок управления траекторией полета ДПЛА 18. Все бортовые средства и блоки связаны линиями передачи данных между собой.

Устройство работает следующим образом. Бортовое СОЭН 16 вертолета 14 осуществляет наблюдение подстилающей поверхности. В случае расширения области наблюдения экипаж осуществляет запуск ДПЛА 9, на борту которого установлено дополнительное СОЭН 10. СОЭН 10 на определенном удалении от вертолета осуществляет наблюдение подстилающей поверхности и передает изображение с помощью сопряженных по радиоканалу блоков приема/передачи данных 12, 15 в бортовое СОЭН 16. Радионавигационный приемник 11 определяет координаты местоположения ДПЛА 9, значения которых с помощью сопряженных по радиоканалу блоков приема/передачи данных 12, 15 передает в бортовой блок управления траекторией полета ДПЛА 18. Радионавигационный приемник 17 определяет координаты местоположения вертолета 14, значения которых также передает в бортовой блок управления траекторией полета ДПЛА 18. Бортовой блок управления траекторией полета ДПЛА 18 по поступившим данным производит оценку взаимного расположения ДПЛА 9 и вертолета 14, формирует сигналы управления и с помощью сопряженных по радиоканалу блоков приема/передачи данных 12, 15 передает в блок траекторного управления ДПЛА 13. Блок траекторного управления ДПЛА 13 изменяет траекторию полета ДПЛА 13. В результате экипаж вертолета осуществляет наблюдение в требуемом направлении подстилающей поверхности на удаленном участке маршрута полета по изображению, полученному СОЭН 10, и наблюдение за подстилающей поверхностью с помощью бортового СОЭН 16.

Таким образом, предлагаемый способ позволяет за счет использования высокоскоростного ДПЛА и дополнительного СОЭН увеличить дальность наблюдения подстилающей поверхности на маршруте полета вертолета, а использование автоматического адаптивного управления траекторией полета носителя дополнительного СОЭН относительно траектории полета вертолета - сохранить динамические характеристики полета вертолета и эксплуатационный ресурс экипажа для решения других задач. Тем самым предлагаемый авторами способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ адаптивного оптико-электронного наблюдения, основанный на наблюдении подстилающей поверхности бортовым СОЭН вертолета, осуществлении доставки на заданное удаление в направлении полета вертолета дополнительного СОЭН, установленного на ДПЛА, произведении наблюдения удаленного участка подстилающей поверхности дополнительным СОЭН и передачи полученного изображения на борт вертолета, анализе на борту вертолета полученного изображения и изменении при необходимости параметров наблюдения подстилающей поверхности дополнительным СОЭН, определении координат местоположения ДПЛА и передачи их значений на борт вертолета, определении координат местоположения вертолета, оценке по полученным значениям координат вертолета и ДПЛА параметров рассогласования их взаимного местоположения, автоматической корректировке их значения изменением местоположения ДПЛА в случае несоответствия параметров рассогласования взаимного местоположения вертолета и ДПЛА заданным.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые оптико-электронные, радиоэлектронные узлы и устройства, а также современные высокоскоростные (в том числе реактивные) ДПЛА.

Способ адаптивного оптико-электронного наблюдения, основанный в наблюдении подстилающей поверхности бортовым средством оптико-электронного наблюдения вертолета, отличающийся тем, что осуществляют доставку на заданное удаление в направлении полета вертолета дополнительного средства оптико-электронного наблюдения, установленного на дистанционно-пилотируемом летательном аппарате, производят наблюдение удаленного участка подстилающей поверхности дополнительным средством оптико-электронного наблюдения и передают полученное изображение на борт вертолета, где анализируют полученное изображение и при необходимости изменяют параметры наблюдения подстилающей поверхности дополнительным средством оптико-электронного наблюдения, определяют координаты местоположения дистанционно-пилотируемого летательного аппарата и передают их значения на борт вертолета, определяют координаты местоположения вертолета, по полученным значениям координат вертолета и дистанционно-пилотируемого летательного аппарата оценивают параметры рассогласования их взаимного местоположения, в случае несоответствия параметров рассогласования взаимного местоположения вертолета и дистанционно-пилотируемого летательного аппарата заданным, автоматически корректируют их значения изменением местоположения дистанционно-пилотируемого летательного аппарата.



 

Похожие патенты:

Изобретение относится к области дистанционного спектрозонального зондирования геологической среды и может быть использовано для выявления подземных вод. .

Изобретение относится к геофизике, в частности к дистанционному зондированию Земли космическими средствами, и может быть использовано в национальных системах прогнозирования глобальных катастроф.

Изобретение относится к области систем оптико-электронного наблюдения вертолетного базирования. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности обнаружения и наблюдения подстилающей поверхности. Сущность изобретения заключается в быстрой доставке дополнительного средства оптико-электронного наблюдения. При этом обеспечивается минимальное время подготовки средства доставки к запуску, а скорость его полета к месту доставки в заданное число раз превышает максимальную скорость полета вертолета. Величина скоростного превышения носителя задается требованием по сохранению скоростных и маневренных возможностей вертолета для решения других задач. Изображение, снимаемое дополнительным средством оптико-электронного наблюдения, передается на борт вертолета. 2 ил.

Изобретение относится к области оптических геологических поисков и может быть использовано при поиске углеводородов на лицензионных участках. Сущность: проводят самолетную съемку территории исследуемого участка в период отсутствия снежного покрова. Причем съемку проводят первый раз днем в спектральных диапазонах 0,43-0,49 мкм, 0,5-0,59 мкм, 0,6-0,69 мкм, 0,7-0,9 мкм, 1,5-2,5 мкм, а второй раз - ночью в диапазоне 8,0-14,0 мкм. Облет территории организуют так, чтобы хотя бы одним из маршрутов была отснята опорная область, на которой имеются залежи углеводородного сырья. Зарегистрированные цифровые изображения каждого спектрального диапазона с помощью специальной компьютерной программы подвергают геометрической коррекции и геопривязке, выравнивают по яркости и объединяют в единый мозаичный кадр, представленный в картографической проекции. Определяют малоконтрастные яркостные аномалии, для чего с помощью упомянутой компьютерной программы каждое спектрозональное мозаичное изображение подвергают яркостной нормализации и низкочастотной фильтрации, а затем бинаризации на основе порога. Причем порог определяют для каждой спектральной зоны по опорной области мозаичного снимка. Бинарные изображения спектральных зон алгебраически складывают с получением полутонового изображения, на котором участки с максимальным значением сигнала соответствуют предполагаемым углеводородным аномалиям с определяемыми программой геодезическими координатами. Технический результат: повышение достоверности определения контуров углеводородных аномалий на лицензионных участках. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области геофизики и может быть использовано для поиска месторождений углеводородов на акватории моря. Способ включает в себя выполнение дистанционных сейсмических исследований места исследований для идентификации целевого места. Затем подводный аппарат (ПА) развертывают в водной массе и направляют к целевому месту. В водной массе на целевом месте с использованием подводного аппарата собирают данные измерений, которые затем анализируют, чтобы определить, присутствуют ли углеводороды на целевом месте. Технический результат - повышение точности и достоверности результатов разведки. 11 з.п. ф-лы, 5 ил.

Способ дистанционного зондирования Земли включает в себя получение потока светового излучения Солнца, отраженного от зондируемого участка земной поверхности. Далее поток разделяют на два пучка равной интенсивности, по одному из которых осуществляют преддетекторную адаптивную компенсацию случайных наклонов волнового фронта, обусловленных турбулентной атмосферой, а по другому - накопление адаптивно стабилизированных коротко-экспозиционных изображений. Накапливают их при квадратичном детектировании за время регистрации, большее интервала временной корреляции атмосферных флуктуаций, и регистрируют среднее коротко-экспозиционное изображение, которое передают на Землю, где его пространственно фильтруют и восстанавливают изображение зондируемого участка земной поверхности, обладающее высоким разрешением. Технический результат заключается в ускорении процесса получения изображений Земли высокого качества. 3 ил.

Изобретение относится к области геологии и может быть использовано при поиске скоплений углеводородов. Предложен способ обнаружения углеводородов с использованием подводного аппарата, снабженного одним или несколькими измерительными компонентами. Способ включает в себя навигацию подводного аппарата в акватории; мониторинг водной массы измерительными компонентами, связанными с подводным аппаратом, для сбора данных измерений. При этом измерительные компоненты содержат масс-спектрометр и флуорометр для определения концентраций химических компонентов масс-спектрометром и флуорометром. Собранные данные из подводного аппарата используют для определения, присутствуют ли углеводороды, и определения местоположения их. Технический результат – повышение точности получаемых данных. 3 н. и 27 з.п. ф-лы, 5 ил.

Изобретение относится к области оптических методов геофизики и может быть использовано для поиска индикаторных веществ проявлений нефтегазовых углеводородов. Сущность: сканируют исследуемую поверхность посредством установленного на борту носителя твердотельного лазера (1), излучающего в одном луче синхронно или с перестройкой на трех дискретных длинах волн генерации в инфракрасной, видимой и ультрафиолетовой областях спектра. Принимают и обрабатывают сигналы на антистоксовых частотах комбинационного рассеяния. По полученным измерениям селектируют и определяют количественный и качественный состав заданных индикаторных веществ углеводородных газов, фиксируемых по их спектрам, заложенным в базу данных компьютерной программы обработки. Проводят дифференцирование спектрального изображения по заданным индикаторным веществам. Полученные и обработанные данные отображают в виде карт распространения ореолов индикаторных веществ с выделением пространственных аномальных зон. Технический результат: расширение функциональных возможностей, повышение достоверности поиска. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области систем оптико-электронного наблюдения вертолетного базирования. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является увеличение дальности наблюдения подстилающей поверхности и обнаружения различных объектов, расположенных на маршруте полета вертолета. Сущность изобретения заключается в адаптивном управлении траекторией полета предварительно забрасываемого носителя дополнительного средства оптико-электронного наблюдения относительно траектории полета вертолета. Управление полетом носителя дополнительного средства оптико-электронного наблюдения осуществляется с вертолета. При этом обеспечивается автоматическая привязка траектории полета носителя дополнительного средства оптико-электронного наблюдения к текущей траектории полета вертолета. Изображение, получаемое дополнительным средством оптико-электронного наблюдения, передается на борт вертолета. 2 ил.

Наверх