Гидролокационный способ обнаружения подвижных подводных объектов с движущейся подводной платформы

Изобретение относится к области использования систем технического зрения для обнаружения объектов и скорости их движения на гидролокационных изображениях. Техническим результатом изобретения является высокая точность определения координат объектов, окружающих подвижную подводную платформу, и скорости их движения за счет использования совместной обработки последовательности гидролокационных изображений и данных инерциальной системы самой движущейся платформы.

 

Изобретение относится к области использования систем технического зрения для обнаружения объектов и скорости их движения на гидролокационных изображениях.

Известны способы обнаружения объектов на изображениях (патенты России 2242021, 2250478, 2331084, 2390007, 2466456), которые обеспечивают обнаружение объектов на изображениях разного вида. Недостатком указанных способов обнаружения объектов является то, что обнаружение объектов возможно производить только с неподвижной платформы. В случае собственного движения платформы, оценка факта движения окружающих объектов становится невозможной. Кроме того, определение подвижности или неподвижности обнаруженного объекта определяется по результатам только обработки последовательности изображений при определенных условиях (неподвижности фона, малых смещениях объектов и пр.).

Целью изобретения является разработка способа обнаружения объектов на гидролокационных изображениях и оценки скорости их движения в процессе собственного движения подводной платформы с установленной гидролокационной станцией.

Техническим результатом изобретения является высокая точность определения координат объектов, окружающих подвижную подводную платформу, и скорости их движения.

Принцип действия гидролокационного способа обнаружения подвижных подводных объектов с движущейся подводной платформы заключается в том, что при движении подводного аппарата осуществляют обнаружение и распознавание объектов на каждом из кадров соответствующей последовательности гидролокационных изображений, отличающийся от известных способов тем, что по данным инерциальной системы производится оценка расположения этих объектов, и на основании разницы между фактическим расположением объекта и прогнозом его местоположения, сделанного по предыдущему кадру, производится оценка скорости его перемещения.

Рассмотрим реализацию способа по этапам.

Этап 1. На получаемых гидролокационных изображениях выделяют области, соответствующие различным топологически выделяющимся объектам. Для этого:

1. Считая, что эхолот установлен ровно в горизонтальной плоскости (нет крена влево/вправо, а если он есть, то его можно компенсировать по данным встроенных гироскопов), рассчитывают медиану каждой строчки изображения. Медиану рассчитывают следующим образом: массив данных составляющих каждую строчку сортируют, медианой считают элемент с номером n/2 (где n - число элементов в строке, т.е. число столбцов). Таким образом, получают m медиан (где m - число строк, обычно при этом m=n).

2. Определяют линию горизонта. Для этого выполняют анализ отдельных столбцов изображения. Как только значение яркости в паре соседних элементов, составляющих столбец изображения, станет достаточно большим, то данную точку считают входящей в линию горизонта.

3. Определяют зоны постоянного уровня яркости, соответствующие вертикальным поверхностям потенциальных обнаруживаемых объектов

4. Определяют вертикальные и горизонтальные границы объектов, анализируя разницу в значениях между соседними пикселями изображения с учетом ранее рассчитанной медианы строки

5. Выявляют области, для которых найдены горизонтальные и вертикальные границы и которые имеют зоны постоянного уровня яркости

6. Выполняют фильтрацию выявленных областей с точки зрения последующей идентификации.

7. Определяют центры оставшихся областей, которые и принимают за центры найденных объектов.

Этап 2. Используя данные инерциальной навигационной системы, определяют смещение собственной платформы и углы поворота/наклона относительно момента времени, соответствующего получению предыдущего гидролокационного изображения. На основании этих данных выполняют прогноз местонахождения ранее обнаруженного объекта на вновь получаемом гидролокационном изображении.

Этап 3. Выполняют фактическое обнаружение объекта по результатам обработки текущего гидролокационного изображения в соответствии с этапом 1.

Этап 4. Сравнивают фактическое расположение объекта и прогноз его местоположения, полученного на этапе 2. Разницу между указанными положениями делят на промежуток времени, соответствующий интервалу получения гидролокационных изображений, результат деления и будет скоростью движения объекта.

Таким образом, в результате указанных процедур будет осуществляться обнаружение и оценка скорости движения окружающих автономную платформу объектов. При этом возможно выделение класса объектов потенциально опасных для автономной платформы по характеру своих траекторий и неподвижных объектов, которые можно использовать в качестве опорных точек при навигации.

Гидролокационный способ обнаружения подвижных подводных объектов с движущейся подводной платформы, заключающийся в том, что при движении подводного аппарата осуществляют обнаружение и распознавание объектов на каждом из кадров соответствующей последовательности гидролокационных изображений, отличающийся тем, что по данным инерциальной системы производят оценку расположения этих объектов, и на основании разницы между фактическим расположением объекта и прогнозом его местоположения, сделанного по предыдущему кадру, производят оценку скорости его перемещения.



 

Похожие патенты:

Система для освещения подводной обстановки относится к специальной технике и может быть использована для обнаружения и опознания подводных объектов, а также для сигнализации и оповещения о появлении на акваториях морских объектов хозяйственной деятельности (акватории портов, морские терминалы по добыче и транспортировке углеводородов, гидротехнические сооружения и т.д.) неизвестных малогабаритных подвижных аппаратов (МПА) или подводных пловцов (ПП), а также для обнаружения и сопровождения айсбергов.

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося заглубленного источника звука, измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными.

Изобретение относится к области использования навигационных и промерных эхолотов и может быть применено для их тарировки. Техническим результатом изобретения является повышение точности тарирования эхолотов и снижение трудозатрат на ее проведение.

Использование: гидроакустика и может быть использовано для построения навигационных гидроакустических станций освещения ближней обстановки. Сущность: способ содержит излучение зондирующего сигнала, прием отраженного эхосигнала, формирование статического веера характеристик направленности, формирование цифрового массива данных с выхода тракта когерентной обработки по каждому пространственному каналу, последовательный вывод цифровых отсчетов на индикатор, определение порога автоматического обнаружения по среднему значению амплитуд цифровых отсчетов первого и второго циклов обработки по всем пространственным каналам, вывод цифровых отсчетов на индикатор осуществляется по правилу А=Аотсч/ (Г-К), где А амплитуда отсчета, выводимая на индикатор, Аотсч - амплитуда исходного цифрового отсчета, Г - параметр, определяемый оператором как глубина регулировки усиления, К - номер цикла обработки, порог автоматического обнаружения выбирается из условия минимума пропуска эхосигнала от цели, формирование общего цифрового массива данных с выхода тракта когерентной обработки по всем пространственным каналам от момента излучения до момента достижения зондирующим сигналом установленной шкалы работы, определение отсчетов, превысивших порог, определение номера пространственного канала М, определение временного положения отсчета Т, проведение классификации по цифровым отсчетам обнаруженной цели из общего цифрового массива по М пространственным каналам, средний канал из которых равен измеренному каналу, и во временном окне, равном Н циклам набора временной реализации, автоматическое определение классификационных признаков и автоматическое принятие решения о классе цели, вывод результата обработки по обнаруженной цели на индикатор с указанием номера цели, измеренных координат М и Т, классификационных признаков и класса обнаруженной цели, при очередном обнаружении превышения порога процедура повторяется до окончания шкалы дистанции и по совокупности всех обнаруженных целей формируется банк классификации.

Использование: гидроакустика. Сущность: способ содержит излучение зондирующего сигнала, прием эхосигнала веером статических характеристик, набор временной реализации последовательно по всем пространственным каналам, обработку последовательно по всем пространственным каналам, определение уровня помехи, как результат суммирования всех отсчетов по первому циклу приема по всем пространственным каналам, вычисляют порог обнаружения по среднему значению всех отсчетов Аср, производят выбор минимального значения в каждом наборе временных отсчетов огибающей последовательно по всем пространственным каналам по правилу 0≤Амин<Аср, запоминают номера пространственных каналов, в которых обнаружены минимальные значения огибающих, производят выбор максимального отсчета Амакс в каждом наборе отсчетов огибающей по всем пространственным каналам, проводят прореживания с оставлением минимального отсчета по правилу п последовательных отсчетов выбирают наименьший, и максимального отсчета по правилу из n последовательных отсчетов выбирают максимальный, в каждом наборе временных отсчетов огибающей по всем пространственным каналам, производят автоматическое обнаружения превышения эхосигналами выбранного порога обнаружения Амакс>Апорог=кАср последовательно по всем пространственным каналам статического веера характеристик направленности, измеряют и запоминают амплитуды и номера отсчетов сигналов, превысивших порог обнаружения, измеряют и запоминают номера пространственных каналов, в которых произошло обнаружение сигнала, измеряют угловую протяженность УПмак объекта по количеству пространственных каналов, превысивших порог обнаружения, определяют номера отсчетов и пространственных каналов, в которых не произошло превышение выбранного порога и уровень сигнала в которых близок к 0, определяют угловую протяженность УПмин области минимальных отсчетов по числу пространственных каналов, в которых 0≤Амин<Аср, и при совпадении угловых протяженностей принимают решения о наличии тени объекта.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов.

Использование: гидроакустическая техника, а именно область активной гидролокации, включая активные гидролокаторы, предназначенные для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов.

Изобретение относится к области гидролокации и предназначено для обнаружения газовой пелены и определения глубины местоположения начала утечек газа трубопроводов гидроакустическими средствами.

Изобретение относится к области авиации, в частности к системам бортового оборудования вертолетов. Система обнаружения помех для посадки и взлета вертолета включает ультразвуковые устройства сканирования (1), каждое из которых состоит, по меньшей мере, из средств для передачи ультразвукового сигнала в направлении вниз и получения отраженного ультразвукового сигнала.

Использование: гидроакустика, а именно в гидроакустических системах определения глубины, и может быть применен для автоматического адаптивного обнаружения эхо-сигналов от дна и автоматического измерения глубины в условиях, когда требуется механическая защита излучающей поверхности электроакустического преобразователя.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится с использованием многоканального запоминающего устройства на выходе системы доплеровской фильтрации, на основе измерения времени задержки отклика на выходе согласованного фильтра для специально сформированного сложного сигнала, причем длительность этого отклика существенно (например, в десятки-сотни раз) меньше длительности сигнального отклика тонального сигнала. Сложный сигнал формируется с использованием сигнального отклика тонального эхо-сигнала на выходе того доплеровского канала, в котором этот эхо-сигнал был обнаружен, и модулирующей функции сложного сигнала. 2 ил.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является то, что обеспечивается повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится на основе измерения времени задержки отклика на выходе второго согласованного фильтра для специально сформированного (на основе отклика эхо-сигнала на выходе первого согласованного фильтра) вспомогательного сложного сигнала, причем длительность отклика на выходе второго согласованного фильтра существенно меньше длительности отклика эхо-сигнала на выходе первого согласованного фильтра. 2 ил.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является то, что обеспечивается повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится на основе измерения времени задержки отклика на выходе согласованного фильтра для специально сформированного (на основе отклика тонального сигнала) сложного сигнала, причем длительность этого отклика существенно меньше длительности сигнального отклика тонального сигнала. 2 ил.

Изобретение относится к автоматизированной регистрации в реальном времени морских млекопитающих. Техническим результатом является повышение точности регистрации в режиме реального времени морских млекопитающих. В способе на этапе предварительной обработки (FPP) изображений осуществляется коррекция изображения и невзвешенная полная сегментация (SEG) изображения на фрагменты, на этапе обнаружении (DET) используется алгоритм предельного значения на основе обнаруженного локального изменения контраста, на этапе классификации (CLA) выполняется контролируемое обучение с использованием метода опорных векторов (SVM) с гиперплоскостью (НЕ) для разделения на два класса, на этапе локализации (LOC) выполняется автоматическое вычисление расстояния до обнаруженной тепловой сигнатуры морского млекопитающего (TSMM) и его временных и пространственных изменений относительно судна (RV), на этапе верификации (VER) обеспечивается возможность мгновенной проверки решения оператором, и на этапе документировании (DOC) пользовательские данные (IRV) изображения обнаруженных тепловых сигнатур морских млекопитающих (TSMM) автоматически предоставляются в распоряжение. Для формирования данных используется система инфракрасной камеры (IRC) с регистрацией в пределах полного круга или части круга и с активной гироскопической стабилизацией относительно горизонта (HZ). 20 з.п. ф-лы, 9 ил.

Изобретение относится к освоению подводных месторождений полезных ископаемых, преимущественно жидких и газообразных, а именно к сооружению технологических комплексов, предназначенных для обустройства морских глубоководных нефтегазовых месторождений и работающих в экстремальных условиях. Способ обустройства морских глубоководных нефтегазовых месторождений заключается в сооружении ряда морских стационарных платформ, подводных донных комплексов, подводных внутрипромысловых и магистральных трубопроводов, емкостей хранения продукции скважин и отгрузочных установок, при этом, по крайней мере, одну из платформ выполняют в подводном исполнении с закрепленным ко дну опорным блоком, верхний габарит которого располагают ниже уровня воды на величину наибольшего габарита прохождения подводной части айсберга. Кроме этого все платформы в подводном исполнении конструктивно и технологически соединены между собой электрическими кабелями и трубопроводами для конденсата и газа. Выполняют регулярное глубинное сейсмическое зондирование в районе терминалов по добыче подводных залежей углеводородов, путем пассивного зондирования морского дна и последующего анализа микросейсмических колебаний земной коры, блок-модуль энергетической платформы выполняют с газовой турбинной установкой, выполняют прогноз состояния моря вблизи морских буровых платформ путем размещения на акватории волномерных буев и запуска беспилотных летательных аппаратов, оснащенных измерительной аппаратурой, величину наибольшего габарита прохождения подводной части айсберга определяют путем зондирования подводной части айсберга гидроакустическими сигналами с подвижного подводного аппарата, оснащенного параметрическим гидролокатором и управляемым по гидроакустическому каналу связи посредством автоматизированной системы управления и контроля, блок-модули опорных блоков платформы в подводном исполнении, служащие для размещения персонала в подводных воздушных камерах, выполнены со стыковочными устройствами, обеспечивающими стыковку со спасательными подводными аппаратами, размещенными в специальном подводном ангаре. Техническим результатом является повышение надежности строительства и эксплуатации, снижение стоимости капитальных и эксплуатационных затрат при обустройстве морских глубоководных нефтегазовых месторождений. 2 ил.

Изобретение относится к техническим средствам охраны объектов со стороны водной среды с прямой передачей информации в пункт приема об обнаруженных подводных целях через границу вода-воздух на основе эффекта параметрического взаимодействия электромагнитных и акустических колебаний, организованных на границе вода-воздух. Система охраны предназначена для использования в морских областях, озерах, в речных руслах и каналах. Использование в системе прямой передачи информации через границу вода-воздух позволяет оперативно развертывать систему охраны в зоне наблюдений, не прокладывать по дну кабели и не использовать радиобуи на водной поверхности, тем самым исключить возможность несанкционированных внешних воздействий на систему. Техническим результатом настоящего изобретения является увеличение надежности и эффективности системы охраны, упрощение и удешевление передачи в пункт приема информации о подводной обстановке в сложных условиях проведения подводных наблюдений и охранных мероприятий в реальных акваториях. 2 ил.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является обеспечение возможности обнаружения с высокой вероятностью объектов на фоне реверберационной помехи, при неизвестной радиальной скорости отражающего объекта, определения с повышенной точностью координат и параметров движения обнаруженных объектов при излучении только одной посылки. 1 ил.

Изобретение относится к области гидроакустики, а именно к конструированию многоэлементных антенн гидроакустических комплексов надводных кораблей и подводных лодок. Предложена многоэлементная гидроакустическая антенна, содержащая основание, на котором закреплены секции, в которых размещены стержневые пьезокерамические преобразователи, каждая секция заключена в герметичный корпус и содержит на лицевой стороне пластину, в отверстиях которой установлены передние накладки стержневых пьезокерамических преобразователей, герметично соединенные со стенками отверстий резиновыми развязками-уплотнениями, и каждая секция имеет электрический вывод. В антенне каждая пластина представляет собой сегмент цилиндрической поверхности высотой h с центральным углом β, многоэлементная гидроакустическая антенна выполнена в виде сегмента толстостенного цилиндра толщиной b, где b - радиальный размер секции, высотой nh, где n - количество секций по высоте многоэлементной гидроакустической антенны, и центральным углом α=kβ, где k - количество секций по направляющей цилиндрической поверхности, причем основание многоэлементной гидроакустической антенны выполнено в виде круглого металлического фланца, снабженного стойками, перпендикулярными фланцу и имеющими форму сегмента цилиндрической поверхности конгруэнтной внутренней поверхности секции, стойки смещены от края основания на расстояние b, причем корпус каждой секции с ее тыльной поверхности скреплен разъемными соединениями с двумя стойками, ширина стойки b1 выполнена достаточной для размещения разъемного соединения, которое может быть выполнено резьбовым, а электрические выводы от секций выполнены с их тыльной стороны в промежутках между стойками и выведены из антенны через центральное отверстие во фланце. Это позволяет упростить транспортировку антенны на объект и ее сборку, что повышает ее технологичность, снижает стоимость и массогабаритные характеристики, а возможность замены секции непосредственно на корабле повышает ресурс и долговечность без снижения тактико-технических характеристик. 1 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к области гидроакустики и может быть использовано для разработки гидроакустической аппаратуры различного назначения. Способ позволяет автоматически обнаруживать гидроакустические сигналы шумоизлучения объектов. Способ обработки гидроакустического сигнала шумоизлучения объекта, содержащий прием сигнала шумоизлучения, определение спектра шумового сигнала и помехи, накопление, сравнение результата, прием сигнала шумоизлучения производят с выхода единой антенны, производят выделение реальной части спектра, выделение мнимой части спектра, повторение процедуры выделения реальной части спектра и повторение процедуры выделения мнимой части спектра для N последовательных наборов, суммирование реальных частей по N наборам, суммирование мнимых частей по N наборам, возведение в квадрат суммы реальных частей, возведение в квадрат суммы мнимых частей, определение энергетического спектра сигнала суммы, одновременно с определением энергетического спектра суммы по тем же исходным данным определяется энергетический спектр разности, определяют энергетический спектр разности как сумму квадратов N наборов разности реальных частей и сумму квадратов N наборов разности мнимых частей, а решение о наличии сигнала шумоизлучения объекта принимается в том случае, если энергетический спектр суммы будет больше энергетического спектра разности. 1 ил.

Изобретение относится к области подводной навигации и, в частности, может быть использовано для определения собственных координат АНПА при его перемещении подо льдом в высоких арктических широтах. Технический результат заключается в повышении точности позиционирования АНПА при проведении подледных работ в высоких арктических широтах за счет исключения из системы датчика курса АНПА, т.е. исключения влияния ошибок его измерений на общую оценку горизонтальных координат аппарата. Предложенное техническое решение позволяет также исключить ограничивающие условия оценки координат аппарата из-за неблагоприятного геометрического (пространственного) расположения ГМ и АНПА. Использование радионавигационных приемников GPS/ГЛОНАСС, ГАНС-УКБ при определении местоположения ГМ, в качестве которого используется ТНПА, а также исключение измерения курса АНПА и ОС прямым путем, что является источником некорректных данных в высоких арктических широтах, а также повышение маневренности ГМ позволили решить задачу оценки собственных координат АНПА в условиях подледного плавания. 3 ил.
Наверх