Способ раскисления стали при электрошлаковом переплаве

Изобретение относится к электрометаллургии и может быть использовано при электрошлаковом переплаве сталей с низким содержанием кислорода. Способ включает расплавление расходуемого электрода, замер активности кислорода и последующее раскисление шлаковой ванны смесью для раскисления, содержащей, мас.%: алюминий 8-12, кальций 19-23 и железо 74-69, которую принудительно подают на границу раздела шлаковой и металлической ванн в потоке нейтрального газа, причем количество оксида железа в расплавленном шлаке поддерживают не более 0,55 мас.%, а скорость подачи упомянутой смеси для раскисления составляет 0,9-1,1 скорости заполнения объема металлической ванны жидким металлом расходуемого электрода. Изобретение позволяет снизить содержание кислорода в металле выплавляемого слитка, а также уменьшить число необходимых замеров активности кислорода и угар раскислителя.

 

Изобретение относится к электрометаллургии и может быть использовано при электрошлаковом переплаве сталей с низким содержанием кислорода.

Как известно, при всех металлургических процессах металл, доведенный до заданного содержания углерода, необходимо раскислить, чтобы привести в пассивное состояние растворенный кислород и предотвратить дальнейшее окисление углерода.

Основным элементом-раскислителем стали является алюминий. Однако легкий алюминий всплывает в шлаковой ванне и выгорает при взаимодействии стали с оксидами шлака и кислородом воздуха, при этом его угар составляет 75-80%, вследствие чего использование только алюминия для раскисления нежелательно, особенно при выплавке высоколегированных, в т.ч. высокохромистых сталей с регламентированным содержанием легкоокисляющихся элементов, таких как алюминий, титан, кремний.

(«Теория и технология производства ферросплавов. Учебник для вузов», Гасик М.И. и др., М., Металлургия, 1988 г, 784 с.)

Наиболее близким по технической сущности и достигаемому результату является способ раскисления стали при электрошлаковом переплаве, включающий расплавление расходуемого электрода, замеры активности кислорода и последующее раскисление шлаковой ванны смесью марганца, кремния и алюминия.

(RU 2371491, С22В 9/18, опубликовано 10.06.2009).

Однако использование известного способа на исключает угар раскислителей, недостаточна эффективность снижения кислорода в металле выплавляемого слитка, что приводит к необходимости проводить достаточно большое количество замеров активности кислорода в стали и введение в расплав раскислителя.

Целью изобретения и его техническим результатом является снижение содержания кислорода в металле выплавляемого слитка, а также уменьшение числа необходимых замеров активности кислорода и уменьшение угара раскислителя.

Технический результат достигается тем, что способ раскисления стали при электрошлаковом переплаве включает расплавление расходуемого электрода, замер активности кислорода и последующее раскисление шлаковой ванны смесью раскислителей, при этом в качестве смеси раскислителей используют смесь, содержащую алюминий, кальций и железо при следующем соотношении компонентов, мас.%: алюминий 8-12, кальций 19-23, железо 74-69, которую принудительно подают на границу раздела шлаковой и металлической ванн в потоке нейтрального газа, причем количество оксида железа в расплавленном шлаке поддерживают не более 0,55 мас.%, а скорость подачи смеси раскислителей составляет 0,9-1,1 скорости заполнения объема металлической ванны жидким металлом расходуемого электрода.

Кальций хорошо известен как эффективный раскислитель и десульфуратор, однако его использование ограничено в связи с тем, что повышенное содержание кальция влияет на морфологию неметаллических включений и низким усвоением кальция расплавленной сталью.

Присутствие в смеси алюминия увеличивает растворимость кальция в расплавленной стали и позволяет добиться увеличения усвоения вводимых в шлак раскислителей. Заявляемое соотношение раскислительной смеси делает возможным осуществить процессы раскисления и десульфурации стали одновременно, а их подача в потоке нейтрального газа на границу раздела шлаковой и металлической ванн обеспечивает их равномерное рассредоточение в шлаковой ванне с последующим быстрым и качественным усвоением алюминия жидкой сталью и растворением кальция, что приводит к более эффективной модификации неметаллических включений, и раскисление шлаковой ванны.

Так как скорость диффузии алюминия в металлическую ванну выше, чем у кальция, то его присутствие увеличивает продолжительность процесса раскисления, что приводит к более сильному раскислению шлаковой ванны и способствует снижению содержания кислорода и серы, растворенных в металлической ванне, уменьшает число необходимых замеров активности кислорода при раскислении.

Кроме того, присутствие в составе смеси железа обеспечивает ее необходимое утяжеление, что снижает величину угара алюминия, предупреждает всплывание его в шлак и способствует лучшему усвоению в металлической ванне, а также более стабильное раскисление стали, при этом не происходит существенных изменений химического состава переплавляемой стали.

Использование нейтрального газа для введения смеси в шлаковую ванну защищает последнюю от воздействия кислорода воздуха, что дополнительно стабилизирует процесс раскисления.

Способ максимально эффективен при содержании оксида железа FeO в расплавленном шлаке не более 0,55 мас.% и скорости подачи смеси раскислителей, равной 0,9-1,1 скорости заполнения объема металлической ванны жидким металлом расходуемого электрода.

Таким образом, сочетание новых технических свойств предлагаемого решения позволяет выполнить поставленную задачу.

Визуально оценивалось состояние шлака при вводе смеси плотностью 4000-5200 кг/м3 при плотности шлака 2400-2900 кг/м3 - выбросов не наблюдалось.

В качестве примера реализации способа по изобретению можно привести раскисление расплава при электрошлаковом переплаве расходуемых электродов из стали марки 12Х10М1В1ФБРА в слитки массой 250 кг и диаметром 275 мм.

После замера активности кислорода в стали и расчета необходимого количества раскислителя принудительно подавали на границу раздела шлаковой и металлической ванн в потоке нейтрального газа аргона 4 кг смеси при соотношении компонентов, мас.%: алюминий 21%, кальций 5%, железо 74%, при этом получены следующие результаты по металлу слитка, мас.%: алюминий 0,015%, сера 0,005%, кремний 0,11%, содержание кислорода 0,005%.

Исходя из вышеупомянутых данных можно сделать вывод о значительном снижении окисленности шлака, при этом содержание оксида железа FeO изменилось от 0,5% до 0,24%, содержание Cr2O3 снизилось от 0,34% до 0,16%.

При введении суммарного количества смеси 10 кг при соотношении, мас.%: алюминий 10%, кальций 21%, железо 69%, были получены следующие результаты по металлу слитка, мас.%: алюминий 0,010%, сера 0,003%, кремний 0,09%, содержание кислорода 0,002%.

Исходя из вышеприведенных данных происходит снижение окисленности шлака, при этом он по отношению к металлической ванне изменился на восстановительный и кислород стал дополнительно удаляться из металла в шлак, обеспечивая содержание в нем FeO - 0,17%, Cr2O3 - 0,11%, что соответствует практически максимальному удалению кислорода из металла слитка.

При значительных отклонениях в скорости подачи смеси от заявляемых пределов, так же как и при неправильно выбранном количестве раскислителя и его соотношения в смеси не обеспечивается равномерное раскисление в процессе выплавления слитка, что является причиной отклонений в его химическом составе и возможной отбраковки.

Способ по изобретению стали может быть использован при выплавке полых и сплошных заготовок методом ЭШП высоколегированных сталях ответственного назначениях, в т.ч. высокохромистых для производства роторов высокого и среднего давления для турбин ССКП, комплектов трубопроводов острого пара ТЭС и АЭС, стеллажей хранения тепловыделяющих сборок из стали с повышенным содержанием бора и др.

Способ раскисления стали при электрошлаковом переплаве, включающий расплавление расходуемого электрода, замер активности кислорода и последующее раскисление шлаковой и металлической ванн, отличающийся тем, что для раскисления используют смесь, содержащую, мас.%: алюминий 8-12, кальций 19-23 и железо 74-69, которую принудительно подают на границу раздела шлаковой и металлической ванн в потоке нейтрального газа, причем количество оксида железа в расплавленном шлаке поддерживают не более 0,55 мас.%, а скорость подачи упомянутой смеси для раскисления составляет 0,9-1,1 скорости заполнения объема металлической ванны жидким металлом расходуемого электрода.



 

Похожие патенты:

Изобретение относится к области металлургии, а конкретнее, к печам электрошлаковой выплавки стали для получения полых слитков. Печь выполнена с возможностью непрерывного измерения по ходу переплава расходуемых металлических электродов температуры шлака и металла в кристаллизаторе, концентрации кислорода и углерода в металле и контроля положения уровня границы раздела шлак-металл, и снабжена системой контроля уровня заглубления торцов упомянутых электродов в шлакометаллический расплав в кристаллизаторе, связанной с компьютерной системой с интерфейсом, обеспечивающей управление процессом переплава электродов в печи с учетом упомянутых измеренных данных, при этом расходуемые металлические электроды выполнены с возможностью вращения вокруг своей оси и с осевыми отверстиями по всей длине, посредством которых соединены с патрубками устройства для подачи раскислителей и шлакообразующих сыпучих материалов в зону переплава торцов упомянутых электродов.

Изобретение относится к области металлургии и может быть использовано при электрошлаковой выплавке стали для получения литых полых слитков. Осуществляют переплав в кристаллизаторе с охлаждаемым дорном расходуемых металлических электродов на основном и добавочном флюсах.
Изобретение относится к электрометаллургии и может быть использовано для выплавления фасонных заготовок, в частности корпусов фонтанной арматуры, с фланцами и патрубками.

Изобретение относится к литью крутоизогнутых отводов с использованием электрошлаковой технологии. Трубный отвод формируют электрошлаковым переплавом полого расходуемого электрода, диаметр которого соответствует диаметру трубного отвода.

Изобретение относится к электрометаллургии и может быть использовано при электрошлаковом переплаве расходуемого электрода для выплавления слитка. Датчики уровня шлаковой ванны размещают в стенке кристаллизатора, а переплав осуществляют с использованием дополнительного источника питания и двух затравок для обогрева периферийной зоны шлаковой ванны, размещенных горизонтально напротив друг друга в стенке кристаллизатора вблизи торцов расходуемых электродов, при этом дополнительный источник питания включают параллельно относительно упомянутого источника питания с образованием двух независимых электрических контуров, каждый из которых включает один из расходуемых электродов, шлаковую ванну, размещенные в поддоне затравки и затравки для обогрева периферийной зоны шлаковой ванны, причем в период приплавления размещенных в поддоне затравок к нижней части выплавляемого слитка отключают электрический контур между шлаковой ванной и затравками для обогрева периферийной зоны шлаковой ванны, а при получении сигнала от датчиков уровня шлаковой ванны о наличии разбаланса в скоростях плавления расходуемых электродов увеличивают скорость плавления электрода с меньшим заглублением в шлаковую ванну при одновременном уменьшении скорости плавления электрода с большим заглублением до устранения разбаланса.

Изобретение относится к электрометаллургии и может быть использовано при электрошлаковом переплаве расходуемого электрода для выплавления слитка. Датчики уровня шлаковой ванны размещают в стенке кристаллизатора, а переплав осуществляют с использованием дополнительного источника питания и двух затравок для обогрева периферийной зоны шлаковой ванны, размещенных горизонтально напротив друг друга в стенке кристаллизатора вблизи торцов расходуемых электродов, при этом дополнительный источник питания включают параллельно относительно упомянутого источника питания с образованием двух независимых электрических контуров, каждый из которых включает один из расходуемых электродов, шлаковую ванну, размещенные в поддоне затравки и затравки для обогрева периферийной зоны шлаковой ванны, причем в период приплавления размещенных в поддоне затравок к нижней части выплавляемого слитка отключают электрический контур между шлаковой ванной и затравками для обогрева периферийной зоны шлаковой ванны, а при получении сигнала от датчиков уровня шлаковой ванны о наличии разбаланса в скоростях плавления расходуемых электродов увеличивают скорость плавления электрода с меньшим заглублением в шлаковую ванну при одновременном уменьшении скорости плавления электрода с большим заглублением до устранения разбаланса.

Изобретение относится к области спецэлектрометаллургии и может быть использовано при конструировании электрошлаковой печи для выплавки слитков. .

Изобретение относится к электрометаллургии и может быть использовано при выплавке слитков электрошлаковым переплавом расходуемых электродов. .

Изобретение относится к области черной металлургии, в частности к электрошлаковому переплаву металлосодержащих отходов. .

Изобретение относится к специальной электрометаллургии, а именно к электрошлаковому переплаву стали. .

Изобретение относится к области металлургии и предназначено для получения методом электрошлакового переплава (ЭШП) слитков из трещиночувствительной стали. Расходуемый электрод содержит инвентарную головку и сплавляемую часть, состоящую из верхней и нижней стальных частей разного состава. Верхняя часть выполнена из инструментальной трещиночувствительной стали. Нижняя часть выполнена из низкоуглеродистой нелегированной стали и ее масса составляет 35-50% массы технологической обрези низа слитка. При ЭШП расходуемого электрода получают слиток из инструментальной трещиночувствительной стали требуемого химического состава без трещин и с меньшим расходом дорогостоящей инструментальной стали. 1 ил., 3 табл.

Изобретение относится к области металлургии и может быть использовано при производстве нержавеющей мартенситной стали. Перед этапом электрошлакового переплава слиток подвергают дегазации в вакууме в состоянии жидкого металла в течение времени, достаточного для получения содержания водорода в упомянутом слитке после упомянутого этапа электрошлакового переплава менее чем 3 ppm. Изобретение позволяет уменьшить разброс усталостного поведения нержавеющих мартенситных сталей и улучшить их среднее усталостное состояние. 3 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к электрометаллургии, в частности к способам получения многослойных стальных слитков импульсно-электрошлаковым переплавом. Осуществляют импульсно-электрошлаковый переплав с изменением частоты импульсов комбинированного расходуемого электрода, выполненного с участками, имеющими различный химический состав в зависимости от требуемого химического состава стали на заданном участке слитка, при этом импульсно-электрошлаковую выплавку нижнего и верхнего слоев слитка осуществляют с модуляцией теплового потока шлаковой и металлической ванн, направленного из шлаковой ванны через фронт кристаллизации в тело слитка, с периодом времени, равным постоянной времени теплового процесса шлаковой ванны, и скважностью, равной двум, при этом осуществляют выплавку среднего слоя слитка на частоте резонансных колебаний поверхности жидкой металлической ванны. Изобретение позволяет повысить качество металла многослойного слитка за счет сокращения протяженности приграничных областей с повышенным градиентом концентраций элементов смежных слоев вдоль оси слитка и снижения в них градиента концентраций элементов по сечению слитка без уменьшения производительности ЭШП, а также улучшить усвоения легирующего элемента и равномерное его распределение по объему среднего слоя и приграничных областей слоев слитка. 2 пр., 6 ил.
Изобретение относится к специальной электрометаллургии, а именно к производству слитков бор- и титансодержащей коррозионно-стойкой стали электрошлаковым переплавом для изготовления деталей атомного оборудования с высокой нейтронной поглощаемостью. Расходуемый электрод содержит, мас.%: углерод 0,02-0,06, марганец не более 0,5, кремний не более 0,5, никель не более 0,5, хром 13,0-16,0, медь не более 0,30, молибден не более 0,3, вольфрам не более 0,2, ванадий 0,15-0,30, титан 3,6-4,0, алюминий не более 0,5 и бор 1,3-1,8, при этом соотношение содержания титана и бора в исходном металле электрода не менее 2,2. Изобретение позволяет получить металл, отвечающий требованиям выплавляемой марки стали ЧС82 с гарантированным содержанием титана и равномерными свойствами по объему выплавляемого слитка. 3 табл.

Изобретение относится к области металлургии и может быть использовано для производства титансодержащих коррозионно-стойких марок стали методом электрошлакового переплава. В способе осуществляют электрошлаковый переплав расходуемого электрода в кристаллизаторе с соотношением содержания титана к алюминию в электроде в пределах 6,0-9,0, при этом содержание титана в электроде превышает требуемое содержание титана в готовой стали на величину его угара при переплаве, который определяют по зависимости: ΔTi=37Tiг+35·Tiг D2/(63+35D2), где ΔTi - средний угар титана, полученный при проведении плавок в кристаллизаторы различного профилеразмера с одинаковым коэффициентом заполнения, %; Tiг - содержание титана в готовом металле, %; D - диаметр кристаллизатора, м. Изобретение позволяет получить качественный металл с гарантированным содержанием титана и с равномерным его распределением по объёму выплавляемого слитка. 5 табл.
Изобретение относится к металлургии и может быть использовано при электрошлаковой выплавке сплошных и полых слитков из конструкционных борсодержащих сталей. Флюс содержит, мас.%: оксид алюминия 7-10, оксид магния 3-8, фторид кальция 48-57, фторид магния 28-35. Изобретение позволяет создать флюс с температурой плавления не выше 1250°C, который стабилен до температуры 1600°C и обеспечивает повышение качества поверхности и плотности выплавляемого слитка, а также уменьшает интенсивность расплавления расходуемого электрода. 2 з.п. ф-лы.
Наверх