Способ повышения целостности выходных сигналов бортовых спутниковых навигационных приемников

Изобретение относится к измерительной технике и может найти применение в системах контроля целостности выходных сигналов бортовых спутниковых навигационных приемников. Технический результат - расширение функциональных возможностей. Для этого на борту оцениваемого в полете воздушного судна (ВС) и на ВС, находящихся в полете вблизи оцениваемого спутникового навигационного приемника, получают информацию о барометрической и геометрической высоте от n окружающих ВС по каналу штатного оборудования автоматического зависимого наблюдения (АЗН). На оцениваемом ВС вычисляют разницу между барометрической и геометрической высотами для каждого из n окружающих ВС и осредняют полученные значения, получают для оцениваемого ВС разницу между его барометрической и геометрической высотами, сопоставляют осредненную разницу высоте разницей высот данного ВС. Вводят поправки на давление и температуру воздуха в соответствии с дифференциальным уравнением статики атмосферы. При получении данных АЗН от наблюдаемых ВС в наземном оборудовании АЗН контролируют целостность навигационной аппаратуры потребителей (НАП) на всех наблюдаемых ВС. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к областям глобальных навигационных спутниковых систем, радиотехники, вычислительной техники, связи и может быть использовано для повышения безопасности полетов воздушных судов (ВС).

Известен способ одновременного использования геометрической и барометрической высоты группы находящихся вблизи друг от друга и оцениваемого ВС с целью мониторинга его средств вертикального эшелонирования, описанный в статье [Б.В. Лебедев «Мониторинг средств вертикального эшелонирования на основе использования автоматического зависимого наблюдения вещательного типа», журнал «Авиакосмическое приборостроение», №1, 2003 г, стр.56-60], использующий сопоставление барометрической высоты, получаемой на данном ВС с помощью бортового барометрического высотомера, и геометрической высоты, получаемой с помощью навигационного приемника (НП) нескольких находящихся в рассматриваемом пространстве ВС путем осереднения их значений.

В известном способе не решалась задача оценки выходных сигналов бортовых НП, представляющих собой сегодня важную навигационную аппаратуру потребителей (НАП).

Наиболее близким по технической сущности к заявляемому способу является способ по изобретению «Способ периодического контроля (мониторинга) средств измерения барометрической высоты самолетов при их эксплуатации [патент РФ №2221221 по МПК G01C 23/00 от 25.04.2002 г.], характеризующийся использованием на борту оцениваемого в полете воздушного судна (ВС), как и на ВС, находящихся в полете вблизи оцениваемого, спутникового навигационного приемника, представляющего собой навигационную аппаратуру потребителей (НАП), вычисляющую геометрическую высоту, штатного барометрического высотомера и штатного оборудования автоматического зависимого наблюдения (АЗН), на оцениваемом ВС получают информацию о барометрической и геометрической высоте от n окружающих ВС по каналу АЗН в ограниченном диапазоне высот.

Прототип, так же как и аналог, посвященный контролю средств измерения барометрической высоты конкретного ВС, не осуществляет контроля выходных сигналов бортовой НАП этого ВС, и в целом при периодических проверках с учетом данных окружающих ВС не позволяет повысить целостность выходных сигналов НАП конкретного ВС.

Уместно подчеркнуть важность качественной работы бортовой НАП, вычисляющей не только геометрическую высоту конкретного ВС (дополнительно к барометрической), но и вообще все координаты этого ВС - его положение в пространстве.

Техническим результатом и целью заявляемого изобретения является расширение функциональных возможностей прототипа за счет обеспечения возможности контроля работоспособности бортовых НАП и повышения целостности их выходных сигналов путем одновременного использования возможностей на конкретном ВС бортовых НАП, барометрического высотомера и средств автоматического зависимого наблюдения (АЗН) за счет совместного анализа данных геометрической и барометрической высот, получаемых на конкретном ВС, и подобных данных, получаемых по каналу АЗН, от n ВС, окружающих конкретный ВС.

Указанные технический результат и цель достигаются тем, что способ повышения целостности выходных сигналов бортовых спутниковых навигационных приемников, характеризующийся использованием на борту оцениваемого в полете воздушного судна (ВС), как и на ВС, находящихся в полете вблизи оцениваемого, спутникового навигационного приемника, представляющего собой навигационную аппаратуру потребителей (НАП), вычисляющую геометрическую высоту, штатного барометрического высотомера и штатного оборудования автоматического зависимого наблюдения (АЗН), на оцениваемом ВС получают информацию о барометрической и геометрической высоте от n окружающих ВС по каналу АЗН в ограниченном диапазоне высот, на оцениваемом ВС вычисляют разницу между барометрической и геометрической высотами для каждого из n окружающих ВС и осредняют полученные значения, получают для оцениваемого ВС разницу между его барометрической и геометрической высотами, а далее сопоставляют осредненную разницу высоте разницей высот данного ВС, если при этом сопоставлении разница указанных значений превышает допуск, то формируют сигнал о неисправности оцениваемой НАП, при этом при расширении используемого диапазона высот, в котором могут находиться участвующие ВС, в разности между геометрической и барометрической высотами вводят поправки на давление и температуру воздуха в соответствии с дифференциальным уравнением статики атмосферы.

На фиг.1 представлен эскиз взаимодействия оборудования, используемого в способе.

Изображены данное ВС 1 (оцениваемое ВС, в котором проверяют его НАП), группа 2 ВС, окружающих оцениваемое ВС, группа 3 навигационных спутников (НС), наземная станция 4, НАП 5, приемник 6 и передатчик 7 АЗН, барометрический высотомер 8, лучи 9 распространения радиопосылок НС, лучи 10 распространения информации АЗН от передатчиков к приемникам.

Способ характеризуется использованием на борту оцениваемого в полете воздушного судна (ВС) 1, как и на ВС 2, находящихся в полете вблизи оцениваемого, спутникового навигационного приемника, представляющего собой навигационную аппаратуру потребителей (НАП) 5, вычисляющую геометрическую высоту, штатного барометрического высотомера 8 и штатного оборудования автоматического зависимого наблюдения (АЗН) 6 и 7, на оцениваемом ВС 1 получают информацию о барометрической и геометрической высоте от n окружающих ВС 2 по каналу АЗН 10 в ограниченном диапазоне высот, на оцениваемом ВС 1 вычисляют разницу между барометрической и геометрической высотами для каждого из n окружающих ВС 2 и осредняют полученные значения, получают для оцениваемого ВС 1 разницу между его барометрической и геометрической высотами, а далее сопоставляют осредненную разницу высоте разницей высот данного ВС 1, если при этом сопоставлении разница указанных значений превышает допуск, то формируют сигнал о неисправности оцениваемой НАП 5, при этом при расширении используемого диапазона высот, в котором могут находиться участвующие ВС 2, в разности между геометрической и барометрической высотами вводят поправки на давление и температуру воздуха в соответствии с дифференциальным уравнением статики атмосферы.

Способ осуществляется следующим образом.

Пусть в некотором воздушном пространстве летят по своим трассам данное ВС 1 и группа 2 ближайщих или окружающих его ВС (фиг.1) и пусть все эти ВС принимают на свои спутниковые НАП 5 периодические радиопосылки 9 от ближайших к ним радиовидимых НС глобальной спутниковой навигационной системы 3 (ГЛОНАСС или GPS или GALILEO, или от нескольких систем в любом сочетании в зависимости от типа применяемого НАП 5). Также радиопосылки 9 от радиовидимых НС системы 3 принимает на свою НАП 5 ближайшая к рассматриваемой области воздушного пространства наземная станция, например локальная контрольно-корректирующая станция (ЛККС) 4, дислоцирующаяся, как правило, вблизи аэропортов (в РФ, на сегодня общее число ЛККС более 50).

Следует отметить, что НАП 5 выбирает радиовидимые НС 3 автоматически (перебором по устойчивости радиопосылок 9), причем для определения географических координат наземной ЛККС 4 достаточно принять радиопосылки 9 от трех любых НС 3, а для определения географических координат местоположения ВС 1 в пространстве (также любого ВС из группы 2) - четырех любых НС системы 3.

Пусть кроме того на всех ВС 1 и 2 и ЛККС 4 установлены НАП 5 (на ЛККС 4 всех трех навигационных систем с дублированием), приемники 6 и передатчики 7 АЗН, а на всех ВС 1 и 2 - еще и барометрические высотомеры 8 (фиг.1)

При этом каждое ВС 1 и 2 при исправности оборудования группы 3 НС и НАП 5 в каждый момент времени полета знает свое местоположение в пространстве с высокой точностью (десятки метров) и, как следствие, из этого высоту над землей - геометрическую высоту. Кроме того, каждое ВС 1 и 2 определяет с помощью своих барометрических высотомеров 8 барометрическую высоту, которая в идеале может совпадать с геометрической высотой. Через свой передатчик 7 АЗН каждое ВС 1 и 2 периодически передает всем другим ВС и ЛККС 4 данные своего местоположения и высоты, а через свой приемник 6 АЗН принимает данные от всех других ВС об их местоположении и их высоте. Через передатчик 7 ЛККС 4 передает, а все ВС 1 и 2 с помощью своих приемников 6 АЗН принимают высокоточные поправки к параметрам их движения и полетные рекомендации на основе полученных в ЛККС 4 данных о «спутниковой погоде» (в связи с обнаруженными аномалиями НС в навигационных системах 3 и даже целых навигационных систем - соответствующие запреты на использование).

Тогда собственно сущность способа состоит в следующем.

Данное ВС 1 передает с помощью передатчика 7 АЗН всем окружающим его ВС 2 свои географические координаты и барометрическую и геометрическую высоты и принимает значения с помощью приемника 6 АЗН от всех окружающих ВС 2 их географические координаты и значения барометрической и геометрической высоты, далее для данного ВС 1 в нем вычисляют разницу между барометрической и геометрической высотами для себя и для каждого из n окружающих ВС 2 и осредняют полученные для всех окружающих ВС 2 разницы между барометрической и геометрической высотой, после чего сопоставляют осредненную разницу высоте разницей высот данного ВС 1, если при этом сопоставлении разница указанных значений превышает допуск, формируют сигнал неисправности оцениваемого НАП 5 данного ВС 1 и по высоте и по географическим координатам в целом. При этом неисправный НАП 5 оцениваемого ВС 1 был обнаружен без наземной ЛККС 4, что сегодня является актуальным, т.к. число используемых в настоящее время ЛККС 4 с установленными средствами 6 и 7 АЗН крайне недостаточно.

При относительно близких значениях высоты между собой у ВС 1 и 2 (для чего при больших n делают благоприятную выборку из ВС 2) влиянием температуры и барометрического давления окружающего воздуха пренебрегают, но при расширении используемого диапазона высот (например, при малом n) в разности между геометрической и барометрической высот вводят поправки на давление и температуру воздуха в соответствии с дифференциальным уравнением атмосферы.

В случае наличия наземной ЛККС 4 со средствами 6 и 7 АЗН в зоне приема сигналов АЗН от оцениваемого ВС 1 и окружающих его ВС 2 получают данные от этих ВС в наземном оборудовании АЗН и контролируют целостность НАП на всех наблюдаемых ВС (п.2 формулы изобретения), причем с более высоким качеством и с учетом «спутниковой погоды», отслеживаемой в высокоточной ЛККС 4.

Для любого другого ВС из группы 2 имеется полная аналогия сказанному выше для ВС 1.

1. Способ повышения целостности выходных сигналов бортовых спутниковых навигационных приемников, характеризующийся использованием на борту оцениваемого в полете воздушного судна (ВС), как и на ВС, находящихся в полете вблизи оцениваемого, спутникового навигационного приемника, представляющего собой навигационную аппаратуру потребителей (НАП), вычисляющую геометрическую высоту, штатного барометрического высотомера и штатного оборудования автоматического зависимого наблюдения (АЗН), на оцениваемом ВС получают информацию о барометрической и геометрической высоте от n окружающих ВС по каналу АЗН в ограниченном диапазоне высот, отличающийся тем, что на оцениваемом ВС вычисляют разницу между барометрической и геометрической высотами для каждого из n окружающих ВС и осредняют полученные значения, получают для оцениваемого ВС разницу между его барометрической и геометрической высотами, а далее сопоставляют осредненную разницу высоте разницей высот данного ВС, если при этом сопоставлении разница указанных значений превышает допуск, то формируют сигнал о неисправности оцениваемой НАП, при этом при расширении используемого диапазона высот, в котором могут находиться участвующие ВС, в разности между геометрической и барометрической высотами вводят поправки на давление и температуру воздуха в соответствии с дифференциальным уравнением статики атмосферы.

2. Способ по п.1, отличающийся тем, что при получении данных АЗН от наблюдаемых ВС в наземном оборудовании АЗН контролируют целостность НАП на всех наблюдаемых ВС.



 

Похожие патенты:

Изобретение относится к области приборостроения и может быть использовано в бортовых телевизионных или радиотехнических системах летательных аппаратов. Технический результат - повышение точности автономной работы инерциальной навигационной системы при прерывании радиосвязи с внешней неавтономной радионавигационной системой.

Изобретение относится к области авиации, в частности к устройствам отображения информации. Командно-пилотажный индикатор вертолета содержит экран, на котором индицируются неподвижный относительно центра отсчетный индекс «Самолет», обозначающий текущее положение вертолета в пространстве, и подвижный индекс "Лидер", имеющий возможность поворота вокруг своего центра симметрии, а также перемещения по вертикали и горизонтали относительно индекса "Самолет" и обозначающий требуемое положение в пространстве, генератор символов, соединенный с экраном, средства управления подвижным индексом "Лидер", выполненные в виде блока вычисления характеристик "Лидера".

Изобретение относится к области приборостроения и может найти применение в малогабаритных бесплатформенных инерциальных навигационных системах (БИНС), интегрированных с различными внешними системами беспилотных летательных аппаратов (БПЛА).

Изобретение относится к области приборостроения и может найти применение в малогабаритных бесплатформенных инерциальных навигационных системах (БИНС), интегрированных как со спутниковой навигационной системой (СНС), так и с одометрической системой для использования в мобильных наземных аппаратах различного типа.

Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации, функционально объединяющего инерциальный способ навигации и спутниковый способ навигации, и может быть использовано при осуществлении навигации ЛА, в том числе навигации высокодинамичных ЛА в сложных навигационных условиях, характеризующихся повышенным уровнем изменчивости состава рабочего созвездия навигационных спутников.

Изобретение относится к области приборостроения, а именно к бортовым информационно-вычислительным системам (ИВС) и устройствам, обеспечивающим решение задач управления движением дистанционно-управляемых подвижных объектов, реализацию задач навигации и топопривязки, представление индикационно-управляющих параметров в реальном текущем времени.

Изобретения относится к устройству для отображения критической и второстепенной информации, установленному в кабине экипажа летательного аппарата. Техническим результатом является повышение скорости обработки и отображения полетной информации в реальном времени.

Изобретение относится к области авиационного приборостроения и может найти применение в составе комплексов навигационно-пилотажного оборудования летательных аппаратов (ЛА).

Изобретение относится к авиационной технике и предназначено для использования в управлении летательными аппаратами, в том числе пассажирскими самолетами. Система управления общесамолетным оборудованием содержит панели управления, систему связи, компьютеры, блоки защиты и коммутации постоянного и переменного электрического тока, блоки преобразования сигналов.

Изобретение относится к авиационному приборостроению. Предложенная комплексная корреляционно-экстремальная навигационная система (КЭНС) предназначена для обеспечения автономной высокоточной коррекции на основе использования информации о нескольких поверхностных физических полях Земли, полученной датчиками технического зрения.

Изобретение относится к информационно-вычислительным системам и устройствам, обеспечивающим решение задач дистанционного управления движением подвижных объектов по заданному алгоритму в автоматическом и ручном режимах. Технический результат заключается в обеспечении движения платформы по заданному алгоритму в ручном и автоматическом режимах, топопривязки и навигации, управления приводами шасси, телекодового обмена видеоинформацией платформы с пунктом дистанционного управления. Технический результат достигается за счет боевой роботизированной платформы, которая содержит управляющую ЭВМ, пункт управления, функциональные подсистемы, аппаратные средства, навигационное оборудование, датчики, устройства связи, систему электропитания, согласующие устройства. Система управления в части информационно-управляющего обеспечения имеет структуру типа «звезда», центральным элементом системы управления является управляющая ЭВМ, обеспечивающая контроль и управление всеми подсистемами платформы и имеющая интерфейс Ethernet. 2 ил.

Изобретение относится к области техники навигации наземных транспортных средств и представляет собой объединение аппаратуры счисления координат (АСК) и спутниковой навигационной аппаратуры (СНА). Технический результат - повышение точности комплексной аппаратуры счисления координат (КАСК) в паузах работы СНА за счет введения периодической калибровки АСК по пути. Это достигается путем автоматического использования во время работы на маршруте двух режимов: режима СНА и режима "Память". В первом режиме выходные координаты СНА являются выходными координатами КАСК. При контакте с малым числом спутников (меньше четырех) КАСК автоматически переходит на работу от аппаратуры счисления координат с начальными координатами, равными последним координатам, полученным СНА, и приращениями координат по откалиброванным в первом режиме путевой и курсовой системам. 2 ил.

Изобретения относятся к области приборостроения, являются средствами навигации, у которых система ориентации интегрирована с гидростатическим блоком наклона (ГБН) и трехосевым компасом, и могут быть использованы.для морских объектов. Единый технический результат группы изобретений - повышение точности определения выходных навигационных параметров бесплатформенной инерциальной системы ориентации (углов ориентации, линейных скоростей и координат местоположения) за счет определения углов наклона между связанной и навигационной системами координат и определения угла азимута. Сущность изобретения-устройства: бесплатформенный навигационный комплекс содержит инерциальную систему ориентации (ИСО) на "грубых" чувствительных элементах, которая подключена к вычислительной платформе и включает расположенные по трем ортогональным осям ИСО три акселерометра и три датчика угловых скоростей. Комплекс также содержит подключенные к вычислительной платформе трехосевой магнитный компас и гидростатический блок наклона (ГБН), содержащий три дифференциальных датчика гидростатического давления, расположенных по трем ортогональным осям ГБН на концах равных по длине баз. Сущность изобретения-способа: по сигналам трех акселерометров и трех датчиков угловых скоростей, расположенных по трем ортогональным осям ИСО, вычисляют углы ориентации путем расчета матрицы направляющих косинусов между связанной и навигационной системами координат. Производят компенсацию погрешностей сигналов ускорений акселерометров, производят пересчет ускорений из связанной системы координат в навигационную систему и определяют текущие скорости и приращения координат. Производят измерения трехосевым магнитным компасом и тремя дифференциальными датчиками давления, расположенными по трем ортогональным осям на концах равных по длине баз. По показаниям компаса и датчиков давления вычисляют углы наклона между связанной и навигационной системами координат, по показаниям компаса, вычисляют угол азимута. С учетом полученных значений углов наклона и азимута корректируют показания акселерометров и датчиков угловых скоростей. 2 н. п-та ф-лы.

Группа изобретений относится к автономным цифровым интегрированным комплексам бортового электронного оборудования многодвигательных воздушных судов. Бортовая система информационной поддержки содержит модуль динамики взлета, модуль высотно-скоростных и метеорологических параметров, модуль летно-технических характеристик, модуль аэродинамики, модуль тяги силовых установок, модуль базы данных аэродромов и мировую базу данных рельефа подстилающей поверхности EGPWS повышенной точности в 3D формате и минимальных безопасных высот, модуль анализа и принятия решений и другие модули. В предлагаемом когнитивном формате представления информации на взлетном пилотажном индикаторе выполнены синтезированное отображение взлетно-посадочной полосы с осевой линией, номером порога взлетно-посадочной полосы, отображение границ максимально допустимого бокового отклонения судна на разбеге, другие важные отображения. На пилотажном индикаторе на фоне лобового стекла дополнительно отображены команды на подъем передней стойки, отрыв, доразгона судна до безопасных скоростей набора высоты и команды на выдерживание оптимального угла тангажа на воздушном участке взлетной дистанции, а также команды на отворот и экстренный набор высоты для предотвращения столкновения с рельефом подстилающей поверхности и искусственными препятствиями. Форматы указанных параметров отображены с использованием принципов активации визуального восприятия информации в информационной поддержке экипажа в его когнитивной деятельности с использованием принципов искусственного интеллекта, полноты представления информации, актуальности и интерактивности. В результате упрощается управление летательным аппаратом, повышается безопасность полетов. 2 н. и 18 з.п. ф-лы, 10 ил., 3 табл.

Изобретение относится к области определения высоты парашютной системы над поверхностью земли. Способ определения высоты парашютной системы заключается в определении высоты полета самолета и высоты снижения до раскрытия парашюта. Дополнительно до прыжка определяют среднюю скорость снижения парашютной системы с раскрытым основным парашютом, время снижения парашютной системы. Высоту снижения парашютной системы после раскрытия парашюта определяют по времени снижения и средней скорости снижения парашютной системы и полученное значение вычитают из высоты парашютной системы, имевшейся в момент раскрытия парашютной системы. Значение высоты над землей озвучивают звуковым сигналом. Изобретение направлено на повышение точности определения высоты и быстродействием. 1 ил.

Изобретение относится к авиационному приборостроению. Предложенный навигационный комплекс предназначен для обеспечения высокоточной навигации на основе комплексной обработки информации (КОИ) систем навигации по искусственным полям Земли (СНИПЗ) и нескольких физических полей Земли (ФПЗ). Навигационный комплекс построен по интегрально-модульной архитектуре (ИМА), для чего входящие в его состав инерциальная система (ИС), баровысотомер, датчики полей (ДП), бортовая цифровая вычислительная машина (БЦВМ) и СНИПЗ выполняются в виде отдельных модулей с соответствующими чувствительными элементами и устанавливаются в едином корпусе. Данный навигационный комплекс позволяет за счет КОИ СНИПЗ и нескольких ФПЗ повысить точностные характеристики навигационного комплекса, а также надежность его работы в условиях постановки радиопомех или выведения из строя спутниковой группировки; за счет перехода с федеративной структуры комплекса на ИМА устранить асинхронность и задержку потоков данных от ИС, ДП и баровысотомера в БЦВМ и тем самым повысить его точностные характеристики, а также снизить массу, габариты, стоимость и упростить кабельную систему на борту летательного аппарата. 1 ил.

Изобретение относится к области приборостроения и может найти применение в системах навигации и ориентации, в частности для коррекции погрешностей, численных критериев степени наблюдаемости навигационных комплексов (НК) с инерциальной навигационной системой (ИНС). Технический результат - повышение точности и надежности. Для этого селективный навигационный комплекс (СНК) включает ИНС с одним выходом, приемник спутниковой навигационной системы (ПСНС) с одним выходом, радиолокационную станцию (РЛС) с одним выходом, блок определения степеней наблюдаемости и формирования измерений, имеющий три входа и один выход, фильтр Калмана и сумматор, имеющий два входа и один выход. Выход ИНС соединен с первым входом блока определения степеней наблюдаемости и формирования измерений, второй вход которого соединен с выходом ПСНС, а третий вход соединен с выходом РЛС. Выход ИНС также соединен со вторым входом сумматора, а выход фильтра Калмана соединен с первым входом сумматора. СНК снабжен квадратором и накопительным устройством, а блок определения степеней наблюдаемости и формирования измерений выполнен с четвертым входом. В блоке определения степеней наблюдаемости и формирования измерений в критерии степени наблюдаемости вычисляются дисперсии компонент вектора состояния в процессе полета. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области навигации и может найти применение в системах навигации автономных необитаемых подводных аппаратов (АНПА). Технический результат - снижение трудозатрат при производстве подводных работ с использованием АНПА. Для этого осуществляют определение координат места по подводным ориентирам путем измерения рельефа дна бортовой акустической аппаратурой, формирование регулярной сетки точек измеренных глубин и сравнение полученных значений глубин с эталонными глубинами, в котором при определении координат места по подводным ориентирам определяют скорость погружения автономного необитаемого подводного аппарата посредством лага для измерения скорости автономного необитаемого подводного аппарата относительно водной поверхности. При этом выполняют измерения гидрологических параметров посредством гидролокатора бокового обзора, профилографа, измерителей температуры и электропроводности, и скорости звука в морской среде, по измеренным глубинам восстанавливают рельеф местности путем построения деревьев Кронрода-Риба при сравнении измеренных значений глубин с эталонными значениями. При совпадении координат критических глубин вводят их для корректировки инерциальной навигационной системы автономного необитаемого подводного аппарата. 3 ил.

Изобретение относится к навигационной технике и может быть использовано при проектировании инерциальных и интегрированных навигационных систем. Технический результат - повышение надежности. Для этого вычислитель начальных данных частью входов подключен к выходам измерителя проекций абсолютной угловой скорости и измерителя проекций вектора кажущегося ускорения, а его выходы соединены с входами вычислителя навигационных параметров и блока комплексирования информации. Остальные входы блока комплексирования информации соединены с одноименными входами вычислителя навигационных параметров и подключены непосредственно к выходам измерителя проекций кажущегося ускорения и к выходам блока обнаружения, локализации и компенсации отказа, две группы входов которого соединены соответственно с выходами измерителя проекций абсолютной угловой скорости и с выходами вспомогательного измерителя проекций абсолютной угловой скорости. Выходы системы непосредственно связаны с выходами блока комплексирования информации и вычислителя навигационных параметров. 1 ил., 3 табл.

Изобретение относится к области навигационного приборостроения и может найти применение в системах мультимодальной навигации. Технический результат - расширение функциональных возможностей. Для этого информацию о маршруте получают с использованием первого и второго навигационных устройств. На первом устройстве получают информацию о пункте назначения, определяют навигационный маршрут передвижения до этого пункта назначения. При этом на разных участках маршрута предусмотрено использование разных видов передвижения и вывод маршрута, соответствующего одному виду передвижения. Устанавливают соединение первого устройства со вторым устройством. Получают информацию о событии, определяющем смену вида передвижения. Передают информацию о маршруте на второе устройство и выводят навигационный маршрут, соответствующий другому виду передвижения на втором устройстве. 10 з.п. ф-лы, 5 ил.
Наверх