Способ определения намагниченности насыщения магнитной жидкости


 


Владельцы патента RU 2541731:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" (RU)

Использование: для определения намагниченности насыщения магнитной жидкости. Сущность изобретения заключается в том, что помещают жидкость во внешнее магнитное поле, индукцию которого можно менять, измеряют напряженность H и индукцию B магнитного поля внутри жидкости и определяют намагниченность жидкости M=(B/µo)-H, при этом определяют намагниченность M=M1 при B=B1 на начальном участке кривой намагничивания, где выполняется закон Кюри, определяют намагниченность M=M2 при большей индукции B=B2 на участке кривой намагничивания, где закон Кюри не выполняется, из равенства (M2B1/M1B2)=3La(ξ2)/ξ2 находят функцию Ланжевена La(ξ2), затем определяют Mнас=M2/La(ξ2). Технический результат: обеспечение возможности определения намагниченности насыщения магнитной жидкости по двум значениям намагниченности в слабом поле. 1 ил.

 

Изобретение предназначается для определения магнитных свойств коллоидных растворов однодоменных ферромагнитных наночастиц (магнитных жидкостей), например для измерения магнитного момента и концентрации наночастиц. А так же для устранения погрешности измерения температуры, вызванной тепловым расширением образца при использовании магнитных жидкостей в качестве термометрических веществ.

Известен способ определения намагниченности насыщения магнитной жидкости путем одновременного получения спектров протонов в образце магнитной жидкости и в образце чистого растворителя, помещенных в поле спектрометра ЯМР с индукцией, большей 1 Тл. Максимумы линий ЯМР протонов чистого растворителя и протонов магнитной жидкости получаются при напряженностях магнитного поля развертки спектрометра, сдвинутых относительно друг друга на величину ΔH, которая численно равна намагниченности насыщения Mнас исследуемой магнитной жидкости:

Mнас=ΔH.

(А.И. Жерновой, В.Н. Наумов, Ю.Р. Рудаков. Научное приборостроение, 2009, том 19, №1, с.13-16).

Недостаток способа в том, что для его применения требуется спектрометр ЯМР с магнитным полем более 1 Тл и датчик, содержащий два изолированных образца.

Известен способ определения намагниченности насыщения магнитной жидкости путем получения ее кривой намагничивания на участке с сильным полем. В этом способе образец исследуемой магнитной жидкости помещают в магнитное поле, индукцию которого Bo меняют от 0,001 до 0,1 Тл, при каждом значении Bo измеряют напряженность H и индукцию B магнитного поля внутри жидкости, определяют намагниченность M=(B/µo-H) и строят зависимость M от µo/B. Точка пересечения полученной прямой с осью ординат определяет намагниченность насыщения Мнас. (А.И. Жерновой, В.Н. Наумов, Ю.Р. Рудаков. Научное приборостроение, 2009, том 19, №3, с.57-61). Недостаток способа в том, что для определения Mнас требуется многократно менять индукцию Bo, многократно измерять напряженность H и индукцию B, многократно определять намагниченность M и строить график ее зависимости от µo/B. Этот способ можно принять за прототип.

В предлагаемом способе исследуемую магнитную жидкость помещают во внешнее магнитное поле, индукцию которого Bo можно менять в пределах от 0,001 Тл до 0,025 Тл. Приблизительно устанавливают индукцию Вo1, при которой выполняется закон Кюри, имеющую значение порядка 0,001 Тл, при этой индукции измеряют напряженность H1 и индукцию магнитного поля B1 внутри жидкости, определяют намагниченность M1=(B1o-H1). Затем приблизительно устанавливают увеличенную до значения порядка 0,025 Тл индукцию внешнего магнитного поля Bo2, при которой закон Кюри не выполняется, измеряют напряженность H2 и индукцию B2 внутри жидкости, определяют намагниченность M2=(B2o-H2) и находят значение параметра α=M2B1/M1B2. При индукции Bo1, когда выполняется закон Кюри, M1=Мнасξ1/3 (ξ1 - аргумент функции Ланжевена при индукции B1), при индукции Bo2, когда закон Кюри не выполняется, M2=МнасLa(ξ2)(La(ξ2) - значение функции Ланжевена при аргументе функции Ланжевена ξ2, соответствующем индукции B2. Подставив эти значения M1 и M2 в выражение для параметра α, с учетом равенства (ξ1B2/B1)=ξ2, получаем α=3La(ξ2)/ξ2. Зависимость функции Ланжевена (кривая La) и параметра α (кривая A) от ξ приведена на графике (рис.1). Пользуясь этим графиком, по найденному значению параметра α можно найти ξ и La(ξ), а затем определить намагниченность насыщения: Mнас=M2/La(ξ). Достоинство предлагаемого способа перед прототипом в том, что для определения намагниченности насыщения вместо многократного измерения намагниченности жидкости в сильном магнитном поле, как предполагается в способе-прототипе, достаточно измерить два значения намагниченности в слабом поле.

Пример осуществления способа.

В статье (А.И. Жерновой, В.Н. Наумов, Ю.Р. Рудаков. Научное приборостроение, 2009, том 19, №3, с.57-61) приведена полученная экспериментально кривая намагничивания коллоидного раствора ферромагнитных наночастиц и при помощи описанного в этой статье известного способа, принятого за прототип, по 15 экспериментальным точкам найдена намагниченность насыщения коллоидного раствора Мнас=8100 А/м. Предлагаемый способ позволяет получить намагниченность насыщения по двум экспериментальным точкам кривой намагничивания, приведенной в этой статье. Для экспериментальной точки №4 находим намагниченность M1=1,125 кА/м и напряженность намагничивающего поля Hн1=(B1o)=2,8 кА/м. Для экспериментальной точки №15 находим M2=5,3 кА/м, Hн2=(B2o)=20 кА/м.

Определяем α=(M2B1/M1B2)=(5,3·2,8/1,125·20)=0,66. По таблице для α=0,66 находим ξ=3,1. При этом значении ξ функция Ланжевена La(ξ)=0.68, откуда Мнас=(M2/La(ξ))=(5,3/0,68)≈8000 А/м. В предлагаемом в заявке способе определения намагниченности насыщения используются известные методы измерения напряженности H и индукции магнитного поля B внутри жидкости, а так же метод определения намагниченности по формуле M=(B/µo)-H, которые не отличаются от методов, примененных в цитируемой статье для получения кривой намагничивания, поэтому возможность с их помощью получать достоверные значения B и M сомнений не вызывает.

Практическая значимость предлагаемого способа.

В патенте РФ №2452940,опубликованном 10.06.2012 в бюллетене №19, описан магнитный способ измерения термодинамической температуры с использованием в качестве термометрического вещества магнитной жидкости. В этом способе в образце жидкости, находящемся при температуре тройной точки воды T1, измеряют намагниченность M1 и индукцию внутреннего магнитного поля B1. Определяют константу Кюри

C=M1T1/B1.

В этом же образце при неизвестной температуре T2 определяют намагниченность M2 и индукцию внутреннего магнитного поля B2. Если бы константа Кюри не зависела от температуры, то температуру T2 можно находить по формуле:

T2=CB2/M2.

На самом деле константа Кюри пропорциональна Mнас:C=MнасP/3к, поэтому она уменьшается с ростом температуры из-за расширения жидкости, вызывающего уменьшение Mнас. Это приводит к ошибке измерения температуры T2. Если же вместо C использовать приведенную константу Кюри П=(С/Мнас)=P/3к, которая зависит только от магнитного момента наночастиц P и от постоянной Больцмана к, то этой ошибки не будет. В этом случае, измерив при известной температуре T1 намагниченность M1, индукцию B1 и намагниченность насыщения Мнас1, можно определить приведенную константу Кюри П=M1T1/Mнас1. Затем, измерив при неизвестной температуре T2 намагниченность M2, намагниченность насыщения Мнас2 и индукцию B2, можно определить температуру T2=ПМнас2B2/M2. Для использования при измерении температуры константы П вместо константы C нужно иметь быстрый способ определения Мнас., в качестве которого может быть использован предлагаемый способ определения Мнас.

Предлагаемый способ определения Mнас по двум точкам кривой намагничивания может быть применен для контроля свойств магнитных жидкостей при их производстве и применении. При этом кроме намагниченности насыщения можно находить магнитный момент P и концентрацию наночастиц n. Найти P и n можно по формулам P=ξкT/B, n=Mнас/P, определив ξ по значению функций a(ξ) или La(ξ).

Способ определения намагниченности насыщения магнитной жидкости путем помещения жидкости во внешнее магнитное поле, индукцию которого можно менять, измерения напряженности H и индукции B магнитного поля внутри жидкости и определения намагниченности жидкости M=(B/µo)-H, отличающийся тем, что определяют намагниченность M=M1 при B=B1 на начальном участке кривой намагничивания, где выполняется закон Кюри, определяют намагниченность M=M2 при большей индукции B=B2 на участке кривой намагничивания, где закон Кюри не выполняется, из равенства (M2B1/M1B2)=3La(ξ2)/ξ2 находят функцию Ланжевена La(ξ2), затем определяют Mнас=M2/La(ξ2).



 

Похожие патенты:

Изобретение относится к области измерений магнитных величин, затрагивает средства измерений механических свойств ферромагнитных материалов, имеющих корреляционную связь с их магнитными характеристиками, например коэрцитивной силой, и может быть использовано при неразрушающем контроле качества термической обработки ферромагнитных изделий.

Устройство для исследования магнитных свойств магнетиков, основанное на принципе регистрации нелинейных эффектов в параллельных гармоническом и постоянном магнитных полях, относится к области научного приборостроения, к технике исследования магнетиков на основе спин-эффектов.

Изобретение относится к физике магнетизма ферромагнетиков, предварительно намагниченных в магнитном поле до состояния, соответствующего максимальной магнитной восприимчивости ферромагнетика, а затем квазискачкообразно вводимого в сверхсильное насыщающее магнитное поле за промежуток времени, существенно меньший (например, на порядок) постоянной релаксации магнитной вязкости ферромагнетика.

Изобретение относится к физике магнетизма и может быть использовано для изучения магнитных свойств ферромагнетиков - их магнитной вязкости и зависимости магнитной восприимчивости от напряженности внешнего магнитного поля.

Изобретение относится к физике магнетизма и может быть использовано при снятии зависимости магнитной восприимчивости ферромагнетика от величины приложенного к нему магнитного поля (кривой намагничивания Столетова).

Изобретение относится к области теплотехнических измерений и может быть использовано для оценки температурного режима работы пароперегревательных котельных труб из аустенитных сталей.

Изобретение относится к физике магнетизма и может быть использовано для изучения магнитных свойств ферромагнетиков - их магнитной вязкости и зависимости магнитной восприимчивости от напряженности внешнего магнитного поля.

Изобретение относится к области измерений свойств и тестирования материалов, в частности, к способам определения магнитокалорического эффекта (МКЭ). .

Изобретение относится к магнитным измерениям и предназначено для измерения динамической петли гистерезиса и основной кривой намагничивания изделий из листовой электротехнической стали (ИЛЭТС) на частотах от 1 до 10000 Гц.

Изобретение относится к измерительной технике, представляет собой способ измерения магнитных свойств и толщины наноразмерных магнитных пленок и может быть использовано в магнитной наноэлектронике для характеризации гетерогенных магнитных элементов в устройствах памяти, в сенсорных устройствах и т.п. При реализации способа пленку с помощью индуктивной системы открытого типа намагничивают в переменном поле в присутствии постоянного поля, измеряют четные высшие гармоники, возникающие в результате нарушения симметрии постоянным полем, и для анализа используют отношение их амплитуд. Техническим результатом является повышение функциональной гибкости способа, в том числе применимость его для in situ характеризации магнитных пленок, и расширение диапазона его применения, в частности для характеристики наноразмерных пленочных структур. 4 ил.

Изобретение относится к измерительной технике, а именно к способу и системе для определения магнитной массы железнодорожных вагонов. Способ заключается в том, что для определения магнитной массы железнодорожных вагонов сначала производят калибровку с учетом окружающей температуры, а также насыпной плотности груза в вагонах. Определяют последовательность подачи вагонов и их количество, начальный момент подачи в область измерений и выход из зоны измерений. Затем определяют изменения параметров тока катушки, мгновенные значения напряжения и тока в катушке, скорость движения вагонов, высоту вагона, уровень загрузки, температуру и вычисляют мгновенные величины добротности и индуктивности катушки. Затем по этим данным определяют интегральные индуктивность и добротность вагона и магнитную массу вагона. Для осуществления способа предложена система, включающая средства определения добротности и индуктивности 1, средства для измерения температуры 2, ультразвуковой датчик уровня вагона 4, фотоэлектрические датчики положения вагона 5, оптические датчики скорости 6, видеокамеру 7, датчики объемной плотности 8, а также блок обработки и управления 9. Технический результат заключается в повышении точности определения магнитной массы железнодорожных вагонов и других контейнеров. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области магнитных и магнитооптических измерений. Способ заключается в том, что исследуемый образец освещают линейно поляризованным световым пучком и измеряют изменение поляризации при отражении, используя разделение отраженного луча на p- и s-компоненты с разложением по амплитуде и фазе, получая на выходе четыре световых пучка. При этом к исследуемому образцу во время проведения измерений прикладывают переменное магнитное поле, при измерении меридионального эффекта Керра поляризатор фиксируют в положении P=0, а анализаторы в амплитудном и фазовом каналах A1,2=45°. Перемагничивание образца осуществляют с помощью вращающегося постоянного магнита и величину поворота плоскости поляризации α, пропорциональную проекции намагниченности на плоскость падения света, определяют по формуле. Изобретение обеспечивает повышение точности измерения и информативности. 3 ил.

Изобретение относится к магнитоизмерительной технике и может быть использовано при исследовании магнитных свойств веществ и материалов в следующих областях: физика магнитных явлений, геофизика. Система катушек для вибрационного магнитометра содержит многовитковые измерительные катушки, а также содержит по меньшей мере одну зафиксированную неподвижно относительно источника намагничивающего поля дополнительную катушку, плоскость витков которой перпендикулярна силовым линиям намагничивающего поля, причем дополнительная катушка включена последовательно с измерительными катушками, параллельно дополнительной катушке подключен потенциометр, а напряжение с системы катушек снимается между подвижным отводным контактом потенциометра и свободным концом измерительной катушки. Технический результат - повышение чувствительности вибрационного магнитометра. 3 ил.

Изобретение относится к области экспериментальной физики и предназначено для определения компонент вектора спина, преобладающего в пучке частиц. Предложенное устройство детектирования спина состоит из вращателя (1) спина с переключаемой катушкой (5), отклоняющего устройства (7), детектора (9) спина и коммутационного блока (15), обеспечивающего возможность переключения состояний возбуждения катушки (5). Исследуемый пучок частиц проходит через вращатель спина (1) с переключаемой катушкой(5). Далее пучок отклоняется на угол отклонения отклоняющим устройством (7), после чего попадает на детектор (9), измеряющий две компоненты вектора спина, перпендикулярные к направлению движения пучка. Меняя силу и/или знак тока в катушке (5) и осуществляя тем самым поворот спина частиц на разные углы, измеряют все три компоненты вектора спина. Техническим результатом изобретения является возможность определения трех компонент вектора спина. 2 н. и 10 з.п. ф-лы, 3 ил.

Изобретение относится к магнитным измерениям и предназначено для измерения вебер-амперной характеристики электротехнического изделия. Техническим результатом заявляемого способа является повышение точности измерения за счет учета температурной погрешности. Технический результат достигается способом измерения вебер-амперной характеристики электротехнического изделия, заключающимся в том, что обмотку электротехнического изделия подключают к источнику синусоидального напряжения, измеряют значения напряжения на обмотке и тока в ней, и вычисляют координаты вебер-амперной характеристики, также измеряют нечетные гармоники тока и вычисляют вебер-амперную характеристику по формуле в виде степенного полинома нечетной степени: где - амплитуда (2m+1)-й гармоники тока, ω - угловая частота, ψ - значение магнитного потокосцепления через электротехническое изделие, k(2m+1) - коэффициенты аппроксимирующего ВАХ выражения. Устройство для реализации способа измерения вебер-амперной характеристики электротехнического изделия содержит усилитель мощности, вход которого подключен к выходу цифроаналогового преобразователя. Выход усилителя мощности подключен к соединенным последовательно обмотке электротехнического изделия и шунту тока. С выхода усилителя мощности напряжение поступает на вход первого измерительного усилителя, а с выхода шунта тока на вход второго измерительного усилителя. Выход первого измерительного усилителя соединен с первым входом коммутатора. Выход коммутатора подключен к входу аналого-цифрового преобразователя, выход которого подключен к входу персонального компьютера. Выход персонального компьютера соединен с входом цифроаналогового преобразователя. Кроме того, имеется многоканальный избирательный фильтр гармоник тока, подключенный входом к выходу второго измерительного усилителя, а выходом ко второму входу коммутатора. 2 н.п. ф-лы, 1 ил.

Изобретение относится к измерительной технике и представляет собой устройство для измерения магнитных характеристик образцов из листовой электротехнической стали произвольной формы. Устройство содержит дифференциальный преобразователь магнитной индукции, представляющий собой Ж-образный сердечник, два сенсора напряженности магнитного поля, блок питания, блок микроконтроллера, усилитель переменного напряжения. На центральные полюса сердечника нанесены две одинаковые намагничивающие катушки, соединенные последовательно и встречно и подключенные к выходу усилителя. В каждом из центральных полюсов сердечника выполнены по два пропила, внутрь которых нанесены первая и вторая одинаковые измерительные катушки. Сенсоры размещены на одной оси, совпадающей с центром по толщине сердечника, на одинаковом расстоянии до ближайшего к испытуемому образцу края сердечника. Техническим результатом является расширение функциональных возможностей устройства-прототипа путем обеспечения возможности измерения петли гистерезиса и основной кривой намагничивания образцов из листовой электротехнической стали произвольной формы. 2 ил.

Использование: для неразрушающего определения относительной магнитной проницаемости деталей, выполненных из ферромагнитного материала. Сущность изобретения заключается в том, что при индуцировании магнитного поля индуктором 2 измеряют его магнитодвижущую силу с помощью датчика 6 и амплитуды магнитной индукции на противоположных концах магнитных полюсов индуктора Винд и в промежутке между ними Впов и определяют значение относительной магнитной проницаемости ферромагнитной детали с помощью соотношения: технический результат: повышение точности и быстродействия определения относительной магнитной проницаемости. 2 ил.
Наверх