Сбоеустойчивая вычислительная система



Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система
Сбоеустойчивая вычислительная система

 


Владельцы патента RU 2541839:

Федеральное государственное унитарное предприятие "Научно-производственное объединение автоматики имени академика Н.А. Семихатова" (RU)

Изобретение относится к вычислительной технике и может быть использовано при создании вычислительных систем повышенной надежности. Техническим результатом является повышение надежности работы системы и сохранение работоспособности центрального модуля при возникновении отказов. Сбоеустойчивая вычислительная система содержит трехканальный системный модуль, к которому через переключатель каналов и системную магистраль подключены n вычислительных модулей (ВМ), m модулей связи (МС) и запоминающее устройство санкционированного доступа, блок контроля и управления (БКУ), источник вторичного электропитания (ИВЭП) и перестраиваемый формирователь синхроимпульсов (ФСИ). 16 з.п. ф-лы,21 ил.

 

Изобретение относится к вычислительной технике и может быть использовано для создания вычислительных систем, к которым предъявляются повышенные требования по надежности при длительной работе в неблагоприятных внешних условиях (широкий диапазон изменения температуры окружающей среды от -60 до +125 градусов по Цельсию, внешние механические воздействия (удары и широкополосная вибрация) и электромагнитные воздействия). Кроме того, система должна работать длительное время в полях непрерывного ионизирующего излучения и быть устойчивой к мощным импульсам ионизирующего излучения, вызванных вспышками на Солнце, авариями ядерных энергетических установок или направленным противодействием.

Известна трехканальная вычислительная система (См. АС №1156273), содержащая в каждом канале внешне устройство и вычислительное устройство, информационный выход которого подключен к первому входу первого мажоритарного элемента и к первому входу первого элемента сравнения всех каналов. Второй вход первого элемента сравнения соединен с выходом первого мажоритарного элемента и со входом внешнего устройства, выход которого подключен к первому информационному входу второго мажоритарного элемента всех каналов, второй и третий информационные входы которого соединены соответственно со вторым и третьим информационными входами вторых мажоритарных элементов других каналов и с выходами внешних устройств соответственно. Выход второго мажоритарного элемента подключен к первому входу второго элемента сравнения и к первому входу вычислительного устройства. Второй вход второго элемента сравнения соединен с первым входом второго мажоритарного элемента, а выход - с выводом связи.

В каждом канале содержатся также регистр номера канала, четыре блока анализа, группа элементов «И», контрольный регистр и элемент «ИЛИ», выход которого подключен к входу прерывания вычислительного устройства. Первый вход контрольного регистра соединен с выходом последовательной передачи информации вычислительного устройства.

Входы контрольного регистра соединены с выходами группы элементов «И». Вторые выходы соединены с входами элемента «ИЛИ». Кроме того, каждый канал содержит элемент «НЕ», а каждый блок анализа выполнен в виде дешифратора, связанного входами с выходами элементов сравнения.

Это известное устройство благодаря установке мажоритарных элементов в выходных информационных шинах вычислителей обеспечивает нейтрализацию неисправности, возникающей в одном из каналов при правильной работе двух других каналов. Кроме того, благодаря введению схем сравнения, подключенных к связям внешних устройств, обеспечивается обнаружение неправильной работы одного из них по отличию его информации от двух других, что позволяет диагностировать отказы внешних устройств путем анализа состояний контрольного регистра вычислительным устройством. Эти свойства являются положительными. Особенно важным является нейтрализация неисправности в одном из каналов вычислительного устройства.

В то же время после возникновения неисправности в одном из каналов надежность дальнейшей работы системы резко снижается, так как возникновение неисправности в любом из двух оставшихся исправными вычислительных устройств приводит к полной неработоспособности системы. Это происходит потому, что интенсивность отказа в двух каналах в два раза больше, чем у одноканального вычислителя. Целесообразно максимально полно использовать имеющуюся избыточность в виде двух дополнительно введенных каналов для сохранения работоспособности системы после возникновения второй неисправности.

Задача сохранения работоспособности системы при возникновении двух неисправностей в системе частично решена в Резервированном вычислительном устройстве (См. АС №1200292). В данном устройстве для повышения надежности между блоками памяти и процессора введен коммутатор, переключающий блоки по сигналам встроенных устройств оперативного контроля.

Общим недостатком известных вычислительных устройств является то, что как для работы схем мажоритации, так и для работы коммутатора, переключающего блоки в процессе работы, требуется синхронная и синфазная работа всех каналов устройства, что обеспечивается введением единого генератора синхроимпульсов. При такой реализации резервирования отказ этого генератора приводит к отказу устройства и системы в целом. Кроме того, наличие временного рассогласования одноименных сигналов разных каналов резервированного устройства требует снижения быстродействия с целью учета межканальных рассогласований, вызванных отличиями задержек элементов разных каналов. Более того, в процессе работы вычислительной системы под влиянием температуры и особенно из-за воздействия внешнего ионизирующего излучения, например космического пространства, происходит деградация параметров электрорадиоизделий, учесть которую при проектировании невозможно.

Наиболее полно задача повышения надежности устройств, работающих при внешних неблагоприятных воздействиях, решена в прототипе - Модульной вычислительной системе (См. АС №747326), наиболее близкой к заявляемой системе. Известная система содержит несколько функциональных модулей, а именно вычислительные модули и модули связи с внешними подсистемами, работающие независимо друг от друга на собственной частоте синхронизации. Для обеспечения взаимодействия между модулями все они подключены к общесистемной магистрали. Для организации обменов по магистрали и управления работой функциональных модулей в систему введен центральный модуль управления (системный модуль), управляющий взаимодействием модулей по общесистемной магистрали.

Системный модуль периодически контролирует работоспособность функциональных модулей и может в случае снижения их быстродействия из-за деградации параметров послать команду в устройства синхронизации выбранного функционального модуля на изменение тактовой частоты, что обеспечивает адаптацию модулей системы к деградации параметров элементов и тем самым повышает надежность функционирования системы при работе в неблагоприятных условиях.

В то же время такая система, несмотря на ряд очевидных достоинств, имеет недостаток, который заключается в наличии центрального модуля, управляющего общесистемной магистралью. Такое построение системы приводит к отказу системы при возникновении отказа в центральном модуле.

С целью повышения надежности работы системы и сохранения работоспособности центрального модуля при возникновении отказов в его оборудовании предлагается

Сбоеустойчивая вычислительная система, содержащая несколько функциональных модулей, а именно N вычислительных модулей, и М модулей связи (МС) и центральный - системный модуль (СМ). Дополнительно в систему введены блок контроля и управления (БКУ) и переключатель каналов (ПК) системного модуля, установленный на выходах этого модуля в магистраль.

Кроме того, в систему введены таймер и модуль запоминающего устройства санкционированного доступа (ЗУСД).

БКУ содержит первый, второй и третий буферные регистры, первую, вторую и третью схемы совпадения, первый, второй, третий счетчики сбоев. Выход первого буферного регистра подключен к первым входам первой и второй схем совпадения. Выход второго буферного регистра подключен ко второму входу первой схемы и первым входам второй и третьей схемы совпадения, а вход третьего буферного регистра подключен ко вторым входам первой и третьей схем совпадения. Выход каждой схемы совпадения подключен к первому входу соответствующей каждой схеме элемента «И» и к входу счетчика сбоев, выход которого подключен к входу соответствующему каждому счетчику триггера сбоев, выход которого подключен ко второму входу, соответствующему каждому триггеру элемента «И», подключенного выходами к триггерам неисправностей, выходы которых подключены к группе контрольных логических элементов, выходы которой являются выходами блока.

ВМ содержит блок процессора с подключенным к нему через первую двунаправленную связь блоком запоминающего устройства и подключенным через вторую двунаправленную связь блоком связи по магистрали, два входа - выхода которого являются входами - выходами блока, подключенными к магистрали, а управляющий выход этого блока подключен к входу блока синхронизации, выходы которого подключены к синхровходам процессора.

МС содержит процессор с подключенными к нему через внутреннюю магистраль запоминающим устройством и устройством связи по магистрали, два входа - выхода которого являются входами - выходами модуля, подключенными к магистрали, а выход устройства связи подключен к входу устройства синхронизации, выходы которого подключены к синхровходам процессора, который по двунаправленной связи через кодирующее-декодирующее устройство подключен к приемопередатчику мультиплексной линии связи с периферийными устройствами.

Таймер содержит первый, второй и контрольный счетчики-формирователи, выходы которых подключены к схеме контроля. При этом первый, второй, контрольный счетчики и схема контроля подключены соответственно через первую, вторую, контрольную и схемную двунаправленные линии связи к таймерному устройству связи по магистрали, два входа - выхода которой являются входами - выходами таймера, подключенными к магистрали.

ИВЭП содержит модуль постоянного питания (МПП) и модуль импульсного питания (МИП), силовые входы, установочный вход МПП, три управляющих входа МИП являются одноименными входами ИВЭП, а выходы МПП и МИП, соответственно выходами постоянного и импульсного питания ИВЭП.

МПП содержит три конвертора, частотные выходы которых подключены к частотным входам блока управления и контроля (БУК), а выходы конверторов подключены к входам БУК и через блок отключения подключены к входам блока выравнивания, выход которого является выходом и контрольным выходом МПП. При этом выходы БУК подключены к управляющим входам блока отключения, а вход - выход БУК является входом - выходом модуля, подключенным к магистрали.

МИП содержит три ветви, в каждой из которых последовательно включены два полевых транзистора. Ветви объединены с каждой из сторон, одна из которых является силовым входом модуля, вторая - выходом, а три управляющих сигнала разведены таким образом, что каждый из них подключен к затворам двух транзисторов, установленных в разных ветвях, образуя выборку «2 из 3».

Конвертор содержит последовательно включенные фильтр, защитный диод, трансформатор с включенным в первичную обмотку транзистором-прерывателем, выпрямляющий диод после вторичной обмотки и выходной фильтр, выход которого является выходом конвертора. Этот выход подключен к входу преобразователя напряжения в частоту, подключенного выходом к элементу развязки, выход которого является частотным выходом конвертора и подключен к входу частотно-импульсного модулятора (ЧИМ), выход которого подключен к базе транзистора прерывателя.

БУК содержит первый, второй, третий и четвертый частотные счетчики. Входы первых трех являются частотными входами блока, подключенными соответственно к частотным выходам первого, второго и третьего конверторов. Вход четвертого счетчика подключен к выходу схемы преобразования напряжения в частоту, вход которой является контрольным входом блока, подключенным к выходу МПП. Выход первого счетчика подключен к первым входам первого и второго сумматоров. Выход второго счетчика подключен ко второму входу первого сумматора и первым входам второго и третьего сумматоров, а выход третьего счетчика подключен ко вторым входам третьего и первого сумматоров. Выход четвертого счетчика подключен к первому входу четвертого сумматора, ко второму входу которого подключен выход регистра кода, выход которого подключен ко вторым входам всех схем сравнения, а вход этого регистра объединен с входом регистра допуска, выходы которого подключены к первым входам первой, второй, третьей и четвертой схем сравнения. К выходам этих схем подключены входы соответствующих им первого, второго, третьего и четвертого триггеров неисправностей, выходы которых подключены к управляющей группе логических схем, выходы которой являются выходами блока, подключенными к управляющим входам блока отключения.

Фильтр содержит включенный в плюсовую шину диод, анод которого является входом, а катод - выходом фильтра. При этом между плюсовой и минусовой шиной включен низкочастотный конденсатор, а каждая из шин и плюсовая, и минусовая через свои высокочастотные конденсаторы подключены к шине земли.

ФСИ содержит первый, второй и третий перестраиваемые генераторы импульсов, установочный вход которых является одноименным входом формирователя, а выход каждого из генераторов подключен к входу своего, соответственно первого, второго и третьего блоков фазирования, фазирующий выход каждого из которых подключен к фазирующим входам двух других блоков и фазирующим входам блока мажоритации, а синхронизирующие выходы блоков фазирования подключены к синхронизирующим входам блока мажоритации, выходы которого являются выходами формирователя.

Перестраиваемый генератор импульсов содержит группу последовательно включенных инверторов, выходы которых подключены к входам первого мультиплексора, выход которого подключен к входу первого инвертора и является выходом генератора. Выходы этого счетчика подключены к первым входам первой схемы сравнения, ко вторым входам которой подключены выходы первого регистра кода частоты, а инкрементный и декрементный выходы этой схемы подключены к одноименным входам первого счетчика кода частоты, выходы которого подключены к управляющим входам первого мультиплексора. При этом установочный вход первого регистра кода частоты и первого счетчика кода частоты являются установочным входом модулятора, конвертора, МПП и ИВЭП в целом.

Блок синхронизации ВМ и устройство синхронизации МС выполнены идентично и каждый из них содержит управляемый генератор импульсов, управляющий вход которого является одноименным входом блока (устройства), а выход подключен к входу сдвигающего регистра, выходы которого являются синхронизирующими выходами блока (устройства).

Перестраиваемый генератор импульсов и управляемый генератор импульсов реализованы аналогично друг другу.

ЧИМ содержит несколько последовательно включенных инверторов, выходы которых подключены к входам второго мультиплексора, выход которого подключен к входу первого инвертора и является выходом модулятора, вход которого является входом второго счетчика кода частоты. Выходы этого счетчика подключены к первым входам второй схемы сравнения, ко вторым входам которой подключены выходы второго регистра кода частоты, а инкрементный и декрементный выходы этой схемы подключены к одноименным входам второго счетчика кода частоты, выходы которого подключены к управляющим входам второго мультиплексора. При этом установочный вход второго регистра кода частоты и второго счетчика кода частоты являются установочным входом модулятора.

Блок фазирования содержит элемент «И», первый вход которого является входом блока, подключенным к генератору, а выход элемента подключен к входу сдвигового регистра и входу динамического счетчика, подключенного выходами через дешифратор к запускающему входу триггера останова, выход которого является фазирующим выходом блока и подключен ко второму входу элемента «И» и первому входу мажоритарного элемента, подключенного выходом к входу триггера пуска, выход которого подключен к сбрасывающему входу триггера останова. При этом ко второму и третьему входам мажоритарного элемента подключены выходы триггеров привязки, стробирующий вход которых объединен первым входом элемента «И», а входы являются фазирующими входами блока. Кроме того, выходы четных и нечетных разрядов сдвигового регистра подключены соответственно к запускающим и сбрасывающим входам f триггеров-формирователей, выходы которых являются синхронизирующими выходами блока.

Динамический триггер, используемый в динамическом счетчике, построен как транзисторный усилитель, к базе транзистора которого кроме резистивного делителя подключена LC цепь, индуктивность которой содержит рабочую обмотку и намотанную поверх нее, встречно-компенсационную, концы которой закорочены.

На чертежах (фигуры с 1 по 15) приведен состав сбоеустойчивой вычислительной системы, его блоков и узлов.

На фигуре 1 приведен состав сбоеустойчивой вычислительной системы, где цифрой 1 обозначен системный модуль, цифрой 2 - переключатель каналов, цифрой 3 обозначен блок контроля и управления, цифрами от 4-1 до 4-n обозначены n вычислительных модулей, цифрами от 5-1 до 5-m обозначены m модулей связи, цифрой 6 обозначен таймер, цифрой 7 - ИВЭП и цифрой 8 - перестраиваемый ФСИ, цифрой 9 обозначено ЗУСД, цифрой 10 - формирователь сигнала, цифрой 11 - датчик внешнего воздействия.

На фигуре 2 приведен переключатель каналов.

На фигуре 3 приведен БКУ, где цифрой от 31-1 до 31-3 обозначены соответственно первый, второй и третий буферные регистры, цифрами от 32-1 до 32-3 обозначены соответственно первая, вторая, третья схемы совпадения, цифрами от 33-1 до 33-3 обозначены соответственно первый, второй, третий триггеры неисправностей, цифрой 34 обозначена контрольная группа логических схем, цифрами от 35-1 до 35-3 обозначены соответственно первый, второй, третий счетчики сбоев, цифрами от 36-1 до 36-3 обозначены соответственно первый, второй, третий триггеры сбоев, и цифрами от 37-1 до 37-3 обозначены соответственно первый, второй, третий элемент «И».

На фигуре 4 приведен состав вычислительного модуля, где цифрой 40 обозначен блок процессора, цифрой 41 - блок запоминающего устройства, цифрой 42 обозначен блок синхронизатора, цифрой 43 - блок связи по магистрали.

На фигуре 5 приведен состав модуля связи, где цифрой 50 обозначен процессор, цифрой 51 - запоминающее устройство, цифрой 52 обозначено устройство синхронизации, цифрой 53 - устройство связи, цифрой 54 обозначено кодирующее-декодирующее устройство, цифрой 55 - приемопередатчик мультиплексной линии связи.

На фигуре 6 приведен состав таймера, где цифрой 61 обозначен первый формирователь, цифрой 62 - второй формирователь, цифрой 63 обозначен контрольный формирователь, цифрой 64 - схема контроля, цифрой 65 обозначена схема связи.

На фигуре 7 приведен состав ИВЭП, где цифрой 70 обозначен МПП, а цифрой 71 обозначен МИП.

На фигуре 7-1 приведен состав МПП, где цифрами от 71-1 до 71-3 обозначены соответственно первый, второй и третий конверторы, цифрой 72 обозначен БУК, цифрой 73 - блок отключения и цифрой 74 обозначен блок выравнивания.

На фигуре 7-1-1 приведен состав конвертора, где цифрой 7111 обозначен фильтр, цифрой 7112 - трансформатор, цифрой 7113 обозначен выходной фильтр, цифрой 7114 - преобразователь напряжения в частоту, цифрой 7115 обозначен элемент гальванической развязки, цифрой 7116 - ЧИМ, цифрой 7117 - транзистор-прерыватель.

На фигуре 7-1-2 приведен состав БУК, где цифрами от 712-1.1 до 712-1.4 обозначены соответственно первый, второй, третий и четвертый частотные счетчики, цифрами от 712-2.1 до 712-2.4 обозначены соответственно первый, второй, третий, четвертый сумматоры, цифрами от 712-3.1 до 712-3.4 обозначены соответственно первая, вторая, третья, четвертая контрольные схемы сравнения, цифрами от 712-4.1 до 712-4.4 обозначены соответственно первый, второй, третий, четвертый триггеры неисправностей, цифрой 712-5 обозначена группа логических элементов, цифрой 712-6 - регистр допуска, цифрой 712-7 обозначен регистр контрольного кода, цифрой 712-8 - контрольный преобразователь напряжения в частоту.

На фигуре 7-1-3 приведен состав фильтра.

На фигуре 7-2 приведен модуль импульсного питания.

На фигуре 8 приведен перестраиваемый ФСИ, где цифрами от 81-1 до 81-3 обозначены соответственно первый, второй, третий перестраиваемые генераторы импульсов, цифрами от 82-1 до 82-3 обозначены соответственно первый, второй и третий блоки фазирования, цифрой 83 обозначен блок мажоритации.

На фигуре 9 приведен частотно-импульсный модулятор, где цифрой 91 обозначены последовательно включенные инверторы, цифрой 92 - второй мультиплексор, цифрой 93 - второй счетчик кода частоты, цифрой 94 обозначен второй счетчик частоты, цифрой 95 - вторая схема сравнения, цифрой 96 обозначен второй регистр кода частоты.

На фигуре 10 приведен состав перестраиваемого генератора импульсов, где цифрой 101 обозначена группа последовательно включенных инверторов, цифрой 102 - второй счетчик кода частоты, цифрой 103 обозначена первая схема сравнения, цифрой 104 - первый счетчик частоты, цифрой 105 обозначен первый регистр кода частоты, цифрой 106 - первый мультиплексор.

На фигуре 10-1 приведен блок синхронизации, где цифрой 1011 обозначен генератор, цифрой 1012 - сдвигающий регистр.

На фигуре 11 приведен блок фазирования, где цифрой 110 обозначен элемент «И», цифрой 111 - динамический счетчик, цифрой 112 обозначен сдвиговый регистр, цифрой 113 - дешифратор, цифрой 114 обозначен триггер останова, цифрой 115 - триггер пуска, цифрой 116 обозначен мажоритарный элемент, цифрой 117 - триггер привязки, цифрами от 118-1 до 118-f обозначены формирователи синхроимпульсов.

На фигуре 12 приведен динамический триггер.

На фигуре 13 приведен состав ЗУСД, где цифрой 131 обозначен первый накопитель, цифрой 132 - второй накопитель, цифрой 133-1 и цифрой 133-2 обозначены соответственно первый и второй сумматоры метки времени, цифрой 134-1 и цифрой 134-2 обозначены соответственно первый и второй сумматоры массивов.

На фигуре 14 приведен формирователь сигнала, где цифрой 140 обозначен задающий генератор, цифрой 141 - интервальный счетчик, цифрой 142 обозначен интервальный дешифратор, цифрой 143 - триггер, цифрой 144 обозначен логический элемент, цифрой 145 - регистр санкционированного кода и цифрой 146 обозначен дешифратор кода.

На фигуре 15 приведен датчик внешнего воздействия.

Система может быть реализована следующим образом: каждый канал СМ выполнен как малоразрядная (16-разрядная) вычислительная машина, содержащая процессор на основе БИС 1867ВМ2 и память на БИО 1620РЕ и 1620 РУ.

Блок процессора ВМ реализуется на БИС микропроцессора 1867ВМ6, блок запоминающих устройств, аналогично памяти СМ на БИС серии 1620, блок связи реализуется на специализированных БИС на основе БМК серии 1556 и 1557, а блок синхронизации на основе БИС 1825ВБ2, дополненной БИС на БМК серии 1556 и 1557.

МС реализуется на базе микропроцессора 1867ВМ2 с запоминающим устройством на БИС серии 1620, устройством синхронизации, заимствованном из ВМ, устройством связи выполняется на специализированных БИС на БМК серии 1556 и 1557, кодек использует БИС 1825ВВ, а приемопередатчик реализуется на специализированных БИС на основе БМК серии 1537ХМ2.

Таймер, ФСИ, БУК реализуется на БИС 1825ВБ, дополненной специализированными БИС на основе БМК серии 1556 и 1557.

ИВЭП реализуется на дискретных компонентах с использованием микросхемы преобразования напряжения в частоту ADFC32 фирмы Analog Devices или ее аналога.

БКУ и БУК реализуются на специализированных БИС на базе БМК серии 1555 и 1556, причем в БУК дополнительно используется преобразователь напряжения в частоту ADFC32 фирмы Analog Devices или ее аналога.

Динамический триггер реализуется на транзисторе типа П16 или аналогичном и дискретных элементах (резисторах, конденсаторах и индуктивности с обмотками на ферритовом кольце).

Система работает следующим образом.

Каждый цикл работы, задаваемый таймером, процессоры системного модуля запускают модули на выполнение тестов, по результатам выполнения которых задают в соответствующие регистры ИВЭП, ФСИ и синхронизаторов управляющие коды. В конце каждого цикла происходит сравнение заданных значений с контрольными известными кодами, значение которых устанавливается при включении системы путем занесения фиксированных кодов в соответствующие регистры и счетчики, значение которых корректируется по результатам тестов модулей. При несовпадении выданных каналами системного модуля кодов включается триггер неисправности соответствующего канала. В соответствии с сигналами неисправности процессоров переключатель каналов подключает к общесистемной магистрали исправный канал СМ, который берет на себя управление на очередной цикл работы, а в МПП ИВЭП к блоку выравнивания подключается исправный конвертор. Кроме того, СМ, сравнивания результаты вычислений ВМ и МС, решающих одну и ту же задачу, и проводя периодическое тестирование модулей, использует в дальнейшей работе результаты правильно работающего модуля. ИВЭП, ФСИ и таймер имеют внутреннее резервирование с самоконтролем и управлением внутренним резервом, обеспечивающими достоверную информацию на их выходах.

Таким образом, в предлагаемой системе устранены отсеченные недостатки известных решений в части нейтрализации одиночных катастрофических отказов в ее компонентах. Более того, система сохраняет работоспособность при деградации параметров комплектующих элементов из-за старения, изменения температуры окружающей среды и дозовых факторов от действия ионизирующего излучения и система обладает повышенной устойчивостью к внешним электромагнитным излучениям, благодаря применению динамических триггеров в ответственных и наиболее чувствительных к помехам узлах.

Предлагаемая система успешно может использоваться в системах автоматического управления объектами ракетно-космической техники и робототехническими комплексами, работающими в неблагоприятных внешних условиях и полях электромагнитного и ионизирующего излучения.

1. Сбоеустойчивая вычислительная система, содержащая трехканальный системный модуль, к которому через системную магистраль подключены n вычислительных модулей, m модулей связи и запоминающее устройство санкционированного доступа, отличающаяся тем, что в ее состав введены установленный между выходами каналов системного модуля в магистраль переключатель каналов, к управляющим входам которого подключены выходы блока контроля и управления, подключенного входами к выходам каналов системного модуля, кроме того, к системной магистрали подключен таймер, а к ее управляющим шинам подключены установочными входами перестраиваемый формирователь синхроимпульсов и управляемый источник вторичного электропитания, входы и выходы которых являются соответственно синхронизирующими входами и выходами постоянного и импульсного питания, подключенными к соответствующим входам модулей системы.

2. Система по п.1, отличающаяся тем, что переключатель каналов содержит три полевых транзистора, истоки которых являются входами, стоки - выходами, а управляющие входы подключены к затворам транзисторов.

3. Система по п.1, отличающаяся тем, что блок контроля и управления содержит первый, второй и третий буферные регистры, входы которых являются входами блока, причем выход первого регистра подключен к первым входам первой и второй схем совпадения, выход второго регистра подключен ко второму входу первой и первым входам второй и третьей схем совпадения, а выход третьего регистра подключен ко вторым входам третьей и первой схем совпадения, при этом выход каждой из схем совпадения подключен к первому входу своего, соответственно, первого, второго и третьего элемента «И» и к входам соответственно первого, второго и третьего счетчика сбоев, выходы которых подключены к входу своего, соответственно, первого, второго и третьего триггера сбоев, выход каждого из которых подключен ко вторым входам соответственно первого, второго и третьего элемента «И», выходы которых подключены к входу своего, соответственно, первого, второго, третьего триггера неисправностей, выходы которых подключены к контрольной группе логических схем, выходы которой являются выходами блока.

4. Система по п.1, отличающаяся тем, что вычислительный модуль содержит блок процессора с подключенными к нему через первую и вторую магистраль соответственно блоком запоминающих устройств и блоком связи по магистрали, два входа-выхода которого являются входами-выходами модуля, а выход этого блока подключен к управляющему входу блока синхронизации, выходы которого подключены к синхровходам блока процессора.

5. Система по п.1, отличающаяся тем, что модуль связи содержит процессор с подключенными к нему через магистраль запоминающим устройством и устройством связи по магистрали, два входа-выхода которого являются входами-выходами модуля, а выход этого устройства подключен к управляющему входу устройства синхронизации, синхровыходы которого подключены к синхровходам процессора, вход-выход которого через кодирующе-декодирующее устройство подключен к приемо-передатчику мультиплексной линии связи, вход-выход которого является входом-выходом модуля и системы.

6. Система по п.1, отличающаяся тем, что таймер содержит первый, второй и контрольный счетчики, выходы которых подключены к входам схемы контроля, подключенной через контрольную связь к схеме связи по магистрали, к которой через первую и вторую формировательные связи подключены соответственно первый и второй счетчики-формирователи, а два входа-выхода этой схемы являются входами-выходами таймера.

7. Система по п.1, отличающаяся тем, что источник вторичного электропитания содержит модуль постоянного питания и модуль импульсного питания, силовой, установочный и три управляющих входа которых являются одноименными входами источника, а выходы постоянного и импульсного питания модулей - одноименными выходами источника.

8. Система по п.1, отличающаяся тем, что перестраиваемый формирователь синхроимпульсов содержит первый, второй и третий перестраиваемые генераторы импульсов, выход каждого из которых подключен к входу своего, соответственно первого, второго и третьего блоков фазирования, фазирующий выход каждого из которых подключен к фазирующим входам двух других блоков и фазирующим входам блока мажоритации, к синхронизирующим выходам которого подключены синхронизирующие выходы блоков фазирования, а выходы блока мажоритации являются выходами формирователя.

9. Система по п.7, отличающаяся тем, что модуль постоянного питания содержит три конвертора, частотные выходы которых являются одноименными выходами блока, а выходы подключены к входам блока управления и контроля и через блок отключения подключены к входам блока выравнивания, выход которого является контрольным выходом и выходом модуля, подключенным к контрольному входу блока управления и контроля, выходы которого подключены к управляющим входам блока отключения.

10. Система по п.7, отличающаяся тем, что модуль импульсного питания содержит три идентичных ветви, объединенные с каждой из сторон, в каждой из которых последовательно включены два полевых транзистора, причем одна из объединенных сторон является силовым входом, вторая - выходом, а три управляющих сигнала разведены таким образом, что каждый из них подключен к затворам двух транзисторов, установленных в разных ветвях, образуя выборку «2 из 3».

11. Система по п.9, отличающаяся тем, что конвертор содержит последовательно включенные фильтр, защитный диод, трансформатор с включенным в первичную обмотку транзистором-прерывателем и выходной фильтр, выход которого является выходом конвертора и подключен к преобразователю напряжения в частоту, подключенного выходом к элементу развязки, выход которого является частотным выходом конвертора и подключен к входу частотно-импульсного модулятора, установочный вход которого является одноименным входом конвертора, а выход подключен к базе транзистора-прерывателя.

12. Система по п.8, отличающаяся тем, что блок фазирования содержит элемент «И», первый вход которого является входом блока, выход подключен к входу сдвигового регистра и входу динамического счетчика, выполненного на базе динамического триггера, подключенного выходами через дешифратор к запускающему входу триггера останова, выход которого является фазирующим выходом блока и подключен к первому входу элемента «И» и к первому входу мажоритарного элемента, выход которого подключен к входу триггера пуска, подключенного выходом к сбрасывающему входу триггера останова, а ко второму и третьему входам мажоритарного элемента подключены выходы триггеров привязки, входы которых являются фазирующими входами блока, при этом выходы четных и нечетных разрядов сдвигового регистра подключены соответственно к запускающим и сбрасывающим входам f формирователей синхроимпульсов, выходы которых являются синхронизирующими выходами блока.

13. Система по п.8, отличающаяся тем, что перестраиваемый генератор импульсов содержит группу последовательно включенных инверторов, выходы которых подключены к входам первого мультиплексора, выход которого является фазирующим выходом блока и подключен к входу первого инвертора группы и входу первого счетчика частоты, подключенного выходом к первым входам первой схемы сравнения, ко вторым входам которой подключены выходы первого регистра кода частоты, а инкрементный и декрементный выходы этой схемы подключены к одноименным входам первого счетчика кода частоты, подключенного выходами к управляющим входам первого мультиплексора, причем входы второго регистра кода частоты и второго счетчика кода частоты являются установочным входом генератора.

14. Система по п.11, отличающаяся тем, что частотно-импульсный модулятор содержит n последовательно включенных инверторов, подключенных выходами к входам второго мультиплексора, выход которого подключен к входу первого инвертора и является выходом модулятора, вход которого является входом второго счетчика частоты, подключенного выходами к первым входам второй схемы сравнения, ко вторым входам которой подключены выходы второго регистра кода частоты, а инкрементный и декрементный выходы этой схемы подключены к одноименным входам второго счетчика кода частоты, подключенного выходами к управляющим входам второго мультиплексора, причем входы второго регистра кода частоты и второго счетчика кода частоты являются установочным входом модулятора.

15. Система по п.9, отличающаяся тем, что блок управления и контроля содержит первый, второй, третий и четвертый частотные счетчики, у которых входы первых трех являются частотными входами блока, а вход четвертого счетчика подключен к выходу контрольного преобразователя напряжения в частоту, вход которого является контрольным входом блока, причем выход первого частотного счетчика подключен к первым входам первого и второго сумматоров, выход второго частотного счетчика подключен к первым входам второго и третьего сумматора, второй вход которого объединен со вторым входом первого сумматора и подключен к выходу третьего частотного счетчика, а выход четвертого счетчика подключен к первому входу четвертого сумматора, ко второму входу которого подключен выход регистра контрольного кода, вход которого является установочным входом блока и объединен с входом регистра допуска, подключенного выходом к первым входам первой, второй, третьей и четвертой контрольных схем сравнения, ко вторым входам которых подключены выходы соответственно первого, второго, третьего и четвертого сумматоров, а выходы всех четырех контрольных схем сравнения подключены к входам, соответствующих им, соответственно первого, второго, третьего и четвертого триггеров неисправности, выходы которых подключены к входам управляющей группы логических элементов, выходы которой являются выходами блока.

16. Система по п.4, отличающаяся тем, что блок синхронизации содержит управляемый генератор импульсов, подключенный к входу сдвигающего регистра, к запускающему входу которого подключен выход последнего разряда регистра, при этом управляющий вход генератора является входом блока, а выходы сдвигающего регистра - выходами блока.

17. Система по п.12, отличающаяся тем, что динамический триггер выполнен как транзисторный усилитель, к базе транзистора которого кроме резисторного делителя подключена LC цепь, индуктивность которой имеет рабочую обмотку и намотанную поверх нее встречно компенсационную, концы которой закорочены.



 

Похожие патенты:

Изобретение относится к системам и способам обработки соединения с использованием временного порта. Техническим результатом является обеспечение установки либо закрытия соединения между приложением и удаленным сервером.

Изобретение относится к компьютерной технике, а именно к загрузке пакетов данных из сети. Техническим результатом является снижение объема данных, хранимых на клиентском компьютере.

Изобретение относится к совместному использованию множества дисплеев и/или пользовательских интерфейсов для улучшения взаимодействия мобильных устройств. Технический результат - улучшение пользовательского интерфейса в мобильном устройстве за счет объединения дисплеев множества устройств для их совместного функционирования.

Изобретение относится к системе оценки безопасности и эффективности проектных решений по обеспечению безопасности опасного производственного объекта. Технический результат заключается в повышении безопасности и надежности проектных решений, получаемых в процессе проектирования опасных производственных объектов.

Группа изобретений относится к компьютерной технике и может быть использована для представления пользователя в виде модели в компьютерных приложениях. Техническим результатом является обеспечение возможности изменения аватара в процессе многопользовательского взаимодействия.

Изобретение относится к области мобильных устройств. Техническим результатом является сбережение вычислительной мощности и сокращение времени на обработку для мобильных устройств за счет адаптации информационных услуг, программного обеспечения или кодов к параметрам конкретных устройств для обеспечения возможности их корректного просмотра и выполнения на данном мобильном устройстве.

Изобретение относится к вычислительной технике и может быть использовано при построении многомашинных, многопроцессорных вычислительных систем (ВС) высокой производительности и надежности.

Заявляемая группа изобретений относится к вычислительной технике и может быть использована при построении высокопроизводительных и энергоэффективных параллельных вычислительных систем.

Изобретение относится к компьютерным системам адаптации контента. Техническим результатом является обеспечение возможности переноса вставки сообщения с веб-сервера или сервера-посредника на клиентское устройство для получения данных о возможностях клиентского устройства и учета их при вставке сообщения таким образом, чтобы отображаемая информация не теряла изначальную структуру, внешний вид и читабельность.

Изобретение относится к системе предоставления инфокоммуникационных услуг и может быть использовано для оказания услуг, обычно предоставляемых при помощи компьютера с выходом в сеть Интернет, через телевизор.

Изобретение относится к способу и системе определения нежелательных электронных сообщений. Технический результат заключается в повышении защищенности от нежелательных сообщений.

Изобретение относится к области распределения задач сервером вычислительной системы. Техническим результатом является повышение эффективности динамического распределения заданий сервером по обработчикам вычислительной системы.

Изобретение относится к системе и способу слежения за положением головы. Техническим результатом является повышение эффективности формирования звуковых образов.

Изобретение относится к средствам автоматизированного моделирования объектов для решения задач по классификации деталей по группам обрабатываемости и предварительного подбора режущего инструмента для их обработки.

Изобретение относится к способу распространения рекламных и информационных сообщений в сети Интернет. Технический результат заключается в повышении надежности определения факта реакции посетителя веб-сайта на рекламное сообщение.

Изобретение относится к вычислительной технике и может быть использовано при формировании эталонной информации (изображений) для корреляционно-экстремальных навигационных систем летательных аппаратов (ЛА).

Изобретение относится к способу интеграции одного сайта в другой сайт. Технический результат заключается в расширении функциональных возможностей и оптимизации одновременной работы на двух сайтах за счет исключения перезагрузок и обновления страниц сайтов.

Изобретение относится к вычислительной технике, а именно к комплексу отработки аппаратуры и программ управляющих вычислительных машин. Технический результат - повышение эффективности отладки управляющих вычислительных машин.

Изобретение относится к области вычислительной техники. Технический результат заключается в обеспечении высокой производительности для задач, требующих больших информационных обменов между компонентами системы.

Изобретение относится к средствам автоконтроля технологических процессов. Технический результат заключается в повышении надежности выполнения технологического процесса.

Изобретение относится к средствам создания градуировочных моделей измерительных приборов. Техническим результатом является повышение точности определения анализируемых свойств образца. В способе перед построением градуировочной модели проводят нормировку предобработанных первичных свойств на максимальное значение первичных свойств образцов градуировочного набора с последующим уменьшением размерности матрицы первичных свойств при помощи Фурье-преобразования, построение градуировочной модели осуществляют методами математического программирования с ограничением, после построения градуировочной модели проводят обратное Фурье-преобразование над оптимальной матрицей коэффициентов регрессии. 7 з.п. ф-лы, 8 ил., 5 табл.
Наверх