Система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин



Система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин
Система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин
Система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин
Система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин

 


Владельцы патента RU 2541990:

Общество с ограниченной ответственностью Научно-производственная фирма "ГОРИЗОНТ" (ООО НПФ "ГОРИЗОНТ") (RU)

Изобретение относится к области бурения наклонно-направленных скважин, преимущественно кустовым способом с использованием телеметрической системы. Техническим результатом является повышение точности определения относительного положения забоя бурящейся скважины (БС) относительно неограниченного количества эксплуатационных колонн (ЭК) ранее пробуренных скважин (ПС) с идентификацией номеров этих скважин. Предложена система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин, содержащая глубинную часть, включающую источник питания, генератор электромагнитных колебаний, выполненный в виде установленного в БС над долотом диполя, обеспечивающего электромагнитную связь между колонной БС и по меньшей мере одной ЭК ПБ, и наземную часть, включающую преобразователь параметра, являющегося функцией электрической характеристики участка цепи, образованной колонной БС и горной породой около дипольной области, в напряжение, и m преобразователей параметра, являющегося функцией электрической характеристики участка цепи, образованной ЭК ПС и участком горной породы, заключенной между долотом БС и ЭК ПС, в напряжение, где m - число ПС. При этом указанные преобразователи выполнены в виде тороидальной катушки индуктивности, расположенной коаксиально на устье (БС), и m таких же катушек, расположенных на устье (ПС), где m≥1, в качестве электрической характеристики участков горной породы выбрана величина наводимого тока в колоннах труб, определяемая по приведенному математическому выражению. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области бурения наклонно-направленных скважин, преимущественно кустовым способом на суше и на море с использованием телеметрической системы, и предназначено для контроля относительного положения скважин с целью предотвращения встречи их стволов.

Известна система предупреждения встречи стволов при кустовом бурении нефтяных и газовых скважин, состоящая из датчика вибрации или датчиков вибрации, усилителя-преобразователя сигнала, технологического контроллера, записывающего устройства в виде ПЭВМ с программным обеспечением, устройства оповещения в виде средств (световой и/или звуковой) сигнализации.

Датчик вибрации или датчики вибрации установлены на устье эксплуатационной скважины и соединены с усилителем-преобразователем сигнала. Усилитель-преобразователь сигнала подключен к технологическому контроллеру, выходы которого соответственно соединены с ПЭВМ с программным обеспечением и с устройством оповещения.

Связь между устройствами системы предупреждения встречи стволов при кустовом бурении нефтяных и газовых скважин осуществляется по проводной (кабельной) или комбинированной (проводной и радиосвязью) линии (пат. РФ №2235844, приор. 25.02.2003, опубл. 10.09.2004).

При использовании упругих волн, распространяющихся от долота бурящейся скважины вдоль эксплуатационной скважины, возможно их полное затухание за счет гашения горной породой, находящейся между бурящейся скважиной и эксплуатационной колонной. Кроме того, применение известного решения ограничено возможностью определения сближения или удаления бурящейся скважины относительно только одной колонны ранее пробуренной скважины.

Наиболее близкой по технической сущности и достигаемому результату к предлагаемой является система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин, содержащая глубинную часть, включающую генератор электромагнитных колебаний, выполненный в виде установленного над долотом диполя, обеспечивающего электромагнитную связь между колонной бурящейся скважины и по меньшей мере одной эксплуатационной колонной ранее пробуренной скважины, и наземную часть, включающую преобразователь комплексного электрического сопротивления участка цепи, образованной бурильной колонной и горной породой около дипольной области, в напряжение и n преобразователей комплексного электрического сопротивления участка цепи, образованной эксплуатационной колонной и участком горной породы, заключенной между долотом бурящейся скважины и эксплуатационной колонной ранее пробуренной скважины, в напряжение, где n-число ранее пробуренных скважин, выходы указанных n преобразователей комплексного электрического сопротивления в напряжение подсоединены к информационным входам коммутатора, выход которого и выход преобразователя комплексного электрического сопротивления участка цепи, образованной бурильной колонной и горной породой около дипольной области, в напряжение подсоединены ко входу сумматора, подключенного к фильтру, подсоединенному через образцовый усилитель к схеме сравнения с опорным напряжением, выход которой подключен ко входу технологического контроллера, информационный выход которого подключен ко входу блока памяти, а управляющие выходы - к управляющему входу коммутатора и входам блоков сигнализации и управления буровым насосом (пат. РФ №2405106, приор. 18.06.2009, опубл. 27.11.2010).

Недостатком известной системы является использование в качестве информативного параметра амплитуды напряжения, пропорционального величине комплексного сопротивления участка цепи (породы) между долотом бурящейся скважины и эксплуатационной колонной, величина которой в условиях анизотропии залегания разных пластов будет являться функцией не столько расстояния между ними (как было бы в изотропной среде), а зависеть от свойств пласта, проходимого в данный момент долотом в бурящейся скважине, и следовательно, иметь непрогнозируемый случайный характер. При использовании такого канала связи существует высокая вероятность как ложных срабатываний системы о критическом приближении стволов бурящейся скважины и эксплуатационной колонны ранее пробуренной скважины, так и наоборот, ошибочном определении достаточности удаления при его реальных критических значениях.

Кроме того, в условиях общего заземления эксплуатационной колонны и наземного оборудования пробуренной скважины через трубопроводную обвязку выделить индивидуальные комплексные сопротивления участков цепи «эксплуатационная колонна-долото бурящейся скважины» крайне затруднительно.

Задачей изобретения является повышение точности определения относительного положения забоя бурящейся скважин и обеспечение надежности срабатывания системы в процессе контроля сближения или удаления бурящейся скважины относительно неограниченного количества эксплуатационных колонн ранее пробуренных скважин с идентификацией номеров этих скважин.

Поставленная задача решается тем, что в системе контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин, содержащей глубинную часть, включающую источник питания и генератор электромагнитных колебаний, выполненный в виде установленного в бурящейся скважине над долотом диполя, обеспечивающего электромагнитную связь между колонной бурящейся скважины и по меньшей мере одной эксплуатационной колонной ранее пробуренной скважины, и наземную часть, включающую преобразователь параметра, являющегося функцией электрической характеристики участка цепи, образованной колонной бурящейся скважины и горной породой около дипольной области, в напряжение и m преобразователей параметра, являющегося функцией электрической характеристики участка цепи, образованной эксплуатационной колонной ранее пробуренной скважины и участком горной породы, заключенной между долотом бурящейся скважины и эксплуатационной колонной ранее пробуренной скважины, в напряжение, где m - число ранее пробуренных скважин, в отличие от известного технического решения (пат. 2405106) указанные преобразователи выполнены в виде тороидальной катушки индуктивности (катушка), расположенной коаксиально в верхней части колонны на устье бурящейся скважины, и m катушек, расположенных в верхней части эксплуатационных колонн на устье ранее пробуренных скважин, где m - число ранее пробуренных скважин (при m≥1). При этом в качестве электрической характеристики участков горной породы выбрана величина параметра тока, наводимого в колоннах труб генератором электромагнитных колебаний.

Кроме того, выходы указанных m катушек снабжены полосовыми усилителями сигнала, поступающего на регистратор напряжения, подсоединенный к информационным входам коммутатора, выход которого подсоединен к входу сумматора, подключенного к фильтру, подсоединенному через образцовый усилитель к схеме сравнения с опорным значением напряжения, которым служит выход тороидальной катушки бурящейся скважины. Последнее является гарантией корректного сравнения токов даже при сильных изменениях (скачках) тока, подаваемого в колонну источником переменного тока с блоком модуляции и подачи тока (источник питания).

Выход схемы сравнения подключен к входу технологического контроллера, информационный выход которого подключен к входу блока памяти, а управляющие выходы - к управляющему входу коммутатора и входам блоков сигнализации и управления буровым насосом.

Решение поставленной задачи в предлагаемом изобретении достигается благодаря использованию в качестве контролируемого параметра величины наводимого тока в колоннах труб и использованию электромагнитного канала связи, что приводит к повышению надежности определения относительного положения стволов скважин.

Сущность изобретения поясняется фигурой 1, где представлена общая схема системы контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин, фигурой 2, где дана блочная электронная схема системы, и фигурой 3, где представлена схема устройства для преобразования наводимого тока в колоннах в напряжение (преобразователь).

Система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин (фиг.1) содержит установленный в колонне бурящейся скважины 1 (глубинная часть) источник переменного тока 2 с блоком модуляции и подачи тока в колонну (источник питания), генератор электромагнитных колебаний 3, выполненный в виде установленного над долотом 4 диполя 5 с диэлектрической вставкой 6, разделяющей колонну на верхнюю часть 7 и нижнюю часть 8, и обеспечивающего электромагнитную связь между колонной бурящейся скважины 1 и по меньшей мере с одной эксплуатационной колонной ранее пробуренной скважины 9, и наземную часть, включающую один преобразователь 10 параметра, являющегося функцией электрической характеристики участка цепи, образованной колонной бурящейся скважины 1 и горной породой около дипольной области, в напряжение и m преобразователей 11 параметра, являющегося функцией электрической характеристики участка цепи, образованной эксплуатационной колонной ранее пробуренной скважины 9 и участком горной породы, заключенной между долотом 4 бурящейся скважины 1 и эксплуатационной колонной ранее пробуренной скважины 9, в напряжение, где m - число ранее пробуренных скважин (при m≥1).

Указанные преобразователи 10 и 11 выполнены в виде тороидальной катушки индуктивности (катушка) 12, расположенной коаксиально в верхней части колонны на устье 13 бурящейся скважины 1, и m таких же катушек 121, 122,…, 12m, расположенных в верхней части эксплуатационных колонн на устье ранее пробуренных скважин 9, где m - число ранее пробуренных скважин (при m≥1) (фиг.3).

При этом в качестве электрической характеристики участков горной породы выбрана величина параметра тока, наводимого в колоннах труб источником переменного тока 2 (фиг.3).

В электронной схеме системы (фиг.2) выходы указанных m катушек (121, 122, …, 12m) подсоединены к информационным входам коммутатора 14, выход которого подсоединен к входу сумматора 15, подключенного к фильтру 16, подсоединенному через образцовый усилитель 17 к схеме сравнения 18 с опорным значением напряжения, которым служит выход катушки 12 бурящейся скважины 1. Последнее является гарантией корректного сравнения токов даже при сильных изменениях (скачках) тока генератора электромагнитных колебаний.

Выход схемы сравнения 18 подключен к входу технологического контроллера 19, информационный выход которого подключен к входу блока памяти 20, а управляющие выходы - к управляющему входу коммутатора 14 и входам блоков 21 сигнализации и управления буровым насосом.

В верхней части колонны ранее пробуренной скважины 9 могут быть расположены одна или несколько установленных друг над другом наземных катушек 12 (на фиг.3 указаны три катушки) с полосовыми усилителями сигнала 22, поступающего на регистратор напряжения 23, соединенный с коммутатором 14. Магнитопровод 24 катушек выполнен в виде цилиндра, высота которого H значительно превышает его толщину d, и установлен коаксиально колонне на устье 13 скважины. Катушка 12 с магнитопроводом 24, преобразователь сигнала 22 и регистратор напряжения 23 образуют преобразователь 10 (11).

Технологический контроллер 19 управляет работой коммутатора 14 в соответствии с заранее запрограммированным алгоритмом опроса эксплуатационных скважин 9. Кроме того, технологический контроллер позволяет идентифицировать номер эксплуатационной скважины, к которой приближается бурящаяся скважина, за счет того, что соответствующий сигнал, поступающий от коммутатора 14, идентифицируется с номером скважины, к обсадной колонне которой приближается долото 4 на минимально близкое расстояние.

Устройство работает следующим образом.

Колонна бурящейся скважины 1 разделена диэлектрической вставкой 6, генератор электромагнитных колебаний выполнен в виде установленного над долотом 4 диполя 5, обеспечивающего электромагнитную связь между колонной бурящейся скважины 1 и по меньшей мере одной эксплуатационной колонной ранее пробуренной скважины 9 (фиг.1).

На забое бурящейся скважины 1 с помощью источника переменного тока 2 с блоком модуляции и подачи тока в колонну труб 1, разделенных диэлектрической вставкой 6, в скважину по трубе 1 подают модулированный информативным (полезным) сигналом ток, который, проходя по колонне 1, генерирует коаксиальное колонне 1 электромагнитное поле, которое создает переменный магнитный поток электромагнитной индукции, пронизывающий витки катушек 121, 122, …, 12m на устье ранее пробуренной скважины 9 и, соответственно, переменную ЭДС на зажимах этой катушки (фиг.3).

Форма снимаемой с катушки ЭДС определяется модулем шифрования скважинного блока измерений (не показано ввиду общеизвестности). Таким образом, полезным сигналом служит изменение напряжения на зажимах катушки, являющегося функцией переменного тока, текущего в колонне бурильных труб, определяемой переменной ЭДС источника переменного тока.

Далее сигнал обрабатывается электронной схемой (фиг.2) и поступает в схему сравнения 18, где сравнивается с опорным значением напряжения, которым служит выход катушки 12 бурящейся скважины 1.

Выход схемы сравнения 18 подключен к входу технологического контроллера 19, информационный выход которого подключен к входу блока памяти 20, а управляющие выходы - к управляющему входу коммутатора 14 и входам блоков 21 сигнализации и управления буровым насосом.

Таким образом, в процессе бурения скважины 1 в пространстве между долотом 3 бурящейся скважины 1 (нижней частью 7 диполя 5) и колонной ранее пробуренной скважины 9 изменяется объем горной породы и, как следствие, изменяются наводимые в эксплуатационной колонне ранее пробуренной скважины 9 токи. Отслеживая изменение эффективных значений токов Irms:

где

Irms - эффективное значение токов, A;

I(t) - величина наводимого тока, A;

(T2-T1) - временной период интегрирования, не меньший, чем 100 периодов электромагнитных колебаний генератора электромагнитных колебаний, с;

t - время, с;

и сравнивая их с током в колонне труб бурящейся скважины 1, появляется возможность получать информацию о расстоянии между долотом бурящейся скважины 1 и колонной ранее пробуренной скважины 9. Расстояние между скважинами обратно пропорционально току, который измеряется при помощи ЭДС (напряжения) на зажимах катушки.

Исходя из полученной информации, в режиме реального времени производят сравнение значения контролируемого расстояния с априори установленным максимальным значением расстояния и при его достижении производят отключение бурового насоса и/или оперативное оповещение путем звуковой и световой сигнализации.

1. Система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин, содержащая глубинную часть, включающую источник питания, генератор электромагнитных колебаний, выполненный в виде установленного в бурящейся скважине над долотом диполя, обеспечивающего электромагнитную связь между колонной бурящейся скважины и по меньшей мере одной эксплуатационной колонной ранее пробуренной скважины, и наземную часть, включающую преобразователь параметра, являющегося функцией электрической характеристики участка цепи, образованной колонной бурящейся скважины и горной породой около дипольной области, в напряжение, и m преобразователей параметра, являющегося функцией электрической характеристики участка цепи, образованной эксплуатационной колонной ранее пробуренной скважины и участком горной породы, заключенной между долотом бурящейся скважины и эксплуатационной колонной ранее пробуренной скважины, в напряжение, где m - число ранее пробуренных скважин, отличающаяся тем, что указанные преобразователи выполнены в виде тороидальной катушки индуктивности (катушка), расположенной коаксиально на устье бурящейся скважины, и m таких же катушек, расположенных на устье ранее пробуренных скважин, где m - число ранее пробуренных скважин, (при m≥1), при этом в качестве электрической характеристики участков горной породы выбрана величина наводимого тока в колоннах труб, определяемая по формуле:
I r m s = 1 T 2 T 1 T 1 T 2 ( I ( t ) ) 2 d t                        (1) ,
где
Irms - эффективное значение токов, A;
I(t) - величина наводимого тока, A;
(T2-T1) - временной период интегрирования, не меньший, чем 100 периодов электромагнитных колебаний генератора электромагнитных колебаний, с;
t - время, с.

2. Система контроля процесса взаимного ориентирования стволов при кустовом бурении нефтяных и газовых скважин по п.1, отличающаяся тем, что выходы указанных m катушек снабжены полосовыми усилителями сигнала, поступающего на регистратор напряжения, подсоединенный к информационным входам коммутатора, выход которого подсоединен к входу сумматора, подключенного к фильтру, подсоединенному через образцовый усилитель к схеме сравнения с опорным значением напряжения, которым служит выход катушки, расположенной на устье бурящейся скважины, при этом выход схемы сравнения подключен к входу технологического контроллера, информационный выход которого подключен к входу блока памяти, а управляющие выходы - к управляющему входу коммутатора и входам блоков сигнализации и управления буровым насосом.



 

Похожие патенты:

Изобретение относится к устройствам для выверки и, в частности, к устройствам, которые могут быть использованы для выверки буровых установок с обеспечением правильного азимута бурения.

Изобретение относится к области геофизики и может быть использовано при проведении акустического каротажа при бурении подземных формаций. Способ проведения измерений акустического каротажа включает группирование полученных форм акустических сигналов в одну из множества групп.

Изобретение относится внутрискважинной калибровке инструментов. Техническим результатом является устранение ограничений при калибровке скважинной аппаратуры температурного дрейфа и других ошибок датчика.

Предложенное изобретение относится к области бурения направленных скважин, в частности к методам управления направлением бурения скважин. Техническим результатом является повышение точности управления траекторией бурения и выравнивания одной скважины относительно другой скважины.

Изобретение относится к исследованию нефтяных и газовых скважин, в частности к определению углов наклона и траектории ствола скважины. Техническим результатом является повышение точности определения траектории протяженных наклонных и горизонтальных скважин.

Изобретение относится к измерительной навигационной аппаратуре, предназначенной для контроля пространственного положения траектории ствола скважин. Техническим результатом расширение функциональных возможностей способа за счет проведения измерений в обсаженной и не обсаженной скважинах, повышение точности реализующего его устройства за счет совместного применения феррозондов и гироскопов, а также компенсации дрейфа последних.

Изобретение относится к способу и системе коррекции траектории ствола скважины. Техническим результатом является использование данных, полученных в режиме реального времени, для уточнения модели напряжений для данного региона, так что траекторию можно непрерывно корректировать для достижения оптимального соотношения с измеренными характеристиками напряжений данного региона.

Изобретение относится к буровой технике и предназначено для контроля положения ствола горизонтальной скважины между кровлей и подошвой пласта - коллектора, а также для литологического расчленения разреза в процессе бурения.

Изобретение относится к буровой технике, а именно к устройствам для определения расхода бурового раствора на забое скважины непосредственно в процессе бурения. .

Изобретение относится к бурению скважин и предназначено для их геофизического исследования, а именно для измерения азимутального угла скважины непосредственно в процессе бурения.

Изобретение относится к картированию и бурению скважин. Техническим результатом является повышение точности определения траектории скважины между пунктами инклинометрии и расчета положения скважины. Предложен способ определения траектории скважины, формируемой бурильной колонной. Указанный способ содержит: прием данных, характеризующих один или более параметров бурения между, по меньшей мере, двумя точками инклинометрии; усреднение полученных данных за заданные шаги приращения между указанными, по меньшей мере, двумя точками инклинометрии; расчет исходя из, по меньшей мере, указанных усредненных данных прогнозируемой реакции бурильной колонны для каждого из заданных шагов приращения; определение исходя из, по меньшей мере, указанной прогнозируемой реакции бурильной колонны изменения угла наклона и азимута для каждого из заданных шагов приращения; формирование прогнозируемой траектории скважины исходя из указанного изменения угла наклона и азимута; сравнение указанной прогнозируемой траектории скважины с измеренной траекторией скважины; и если результаты указанного сравнения приемлемы, определение вероятного положения скважины исходя из указанного изменения угла наклона и азимута для каждого из заданных шагов приращения. Раскрыты также машиночитаемый носитель и система для реализации указанного способа. 3 н. и 17 з.п. ф-лы, 3 ил.
Изобретение относится к области геофизических исследований скважин, в частности к инклинометрическим измерениям в процессе бурения. Техническим результатом является повышение точности определения параметров скважины при значительном уровне вибраций и наличии постороннего влияния магнитных масс. Предложен способ определения угловой ориентации скважины, включающий измерение с помощью трех взаимоперпендикулярных феррозондов компонентов полного вектора геомагнитного поля, определение по показателям трех взаимоперпендикулярных акселерометров компонентов полного вектора силы тяжести и вычисление по полученным данным промежуточных значений азимутального и зенитного углов, определение поправок и вычисление окончательных значений азимутального и зенитного углов скважины для каждой точки измерения. При этом перед началом измерений в скважине определяют систематические погрешности феррозондов и акселерометров, определяют ожидаемую скорость изменения азимутального и зенитного углов в процессе бурения и определяют компоненты геомагнитного поля и величину силы тяжести в районе проведения буровых работ. Кроме того в процессе измерения в скважине дополнительно измеряют уровень вибраций с помощью акселерометров. При низком уровне вибраций накапливают данные для расчета поправки на постороннее магнитное влияние и рассчитывают азимутальный, зенитный углы и угол установки отклонителя с учетом определенных ранее систематических погрешностей, ожидаемых показаний геомагнитного поля в районе бурения и ожидаемой скорости изменения углов скважины в процессе бурения. При высоком уровне вибраций преимущественно рассчитывают уточненное значение угла установки отклонителя, ориентируясь на текущие показания феррозондов. Причем измерение вибраций ведут с помощью второго трехосевого акселерометра с повышенной, по сравнению с первым, чувствительностью к вибрациям. 1 з.п. ф-лы.

Изобретение относится к средствам для геонавигации в процессе бурения наклонно-направленных или горизонтальных скважин для разведки нефти и газа. Техническим результатом является повышение точности определения направления скважин в процессе бурения по заданной траектории наклонно-направленных или горизонтальных скважин. Предложен способ геонавигации буровой скважины, содержащий: управление активированием передающего датчика на структуре инструмента, расположенной относительно бурового долота в скважине; прием сигнала в принимающем датчике структуры инструмента в ответ на активирование передающего датчика; обработку сигнала в реальном времени, включающую в себя формирование данных, соответствующих свойствам пласта впереди бурового долота. При этом принимающий датчик установлен отдельно от передающего датчика на расстоянии разделения, достаточно большом для обеспечения обработки сигнала в режиме реального времени, до достижения граничной поверхности целевой зоны. Кроме того обработка данных включает проведение операции инвертирования в отношении принятого сигнала и проверку точности результатов операции инвертирования перед использованием результатов операции инвертирования для геонавигации скважины. Причем геонавигация скважины основана на мониторинге формируемых данных так, что скважина подходит к цели в целевой зоне с минимальным выходом или без выхода за установленные пределы целевой зоны. При этом расстояние разделения является достаточно большим для обнаружения впереди бурового долота на расстоянии более чем от 10 до 200 футов (3-61 м) перед буровым долотом. Кроме того предложены также машиночитаемое запоминающее устройство, система и устройство для осуществления указанного способа, с использованием упомянутого машиночитаемого устройства. 5 н. и 21 з.п. ф-лы, 13 ил.

Изобретение относится к направленному бурению скважин. Техническим результатом является повышение точности проводки ствола скважины в пределах продуктивного пласта. Предложен способ управления направлением движения буровой компоновки внутри продуктивного пласта, включающий размещение буровой компоновки внутри продуктивного пласта между верхним электропроводящим пластом, обладающим магнитным полем постоянного тока, и нижним электропроводящим пластом, обладающим магнитным полем постоянного тока; использование датчика для измерения магнитного поля в продуктивном пласте, складывающегося из магнитного поля постоянного тока верхнего электропроводящего пласта и магнитного поля постоянного тока нижнего электропроводящего пласта; и управление направлением движения буровой компоновки внутри продуктивного пласта с использованием результатов измерения магнитного поля. Предложены также устройство и буровая компоновка для реализации указанного способа. 3 н. и 17 з.п. ф-лы, 3 ил.

Изобретение относится к ориентирующей системе, предназначенной для направления движения бурового наконечника так, чтобы избежать столкновения с обсадной трубой в первом стволе скважины или ввести его в столкновение с ней. Техническим результатом является повышение точности определения местоположения других скважин или боковых стволов. Предложена система, содержащая буровой наконечник, выполняющий бурение второго ствола скважины; бурильную колонну, выполненную из группы трубчатых элементов, смонтированных в одну трубчатую колонну посредством соединительных средств; и группу каротажных устройств, расположенных по одному в каждом соединительном средстве или относительно него. При этом каждое каротажное устройство содержит устройство передачи данных и устройство приема данных, предназначенные для передачи и приема данных между каротажными устройствами; детектор и излучатель. Причем излучатель одного каротажного устройства подает сигнал, который отражается от обсадной трубы и выявляется детектором по меньшей мере двух каротажных устройств так, что положение и/или направление прохождения обсадной трубы можно определить путем тригонометрических вычислений. Кроме того, предложен способ направления движения бурового наконечника с использованием указанной ориентирующей системы. 2 н. и 13 з.п. ф-лы, 6 ил.

Изобретение относится к средствам для выполнения скважинного каротажа. Техническим результатом является повышение чувствительности и точности информации в процессе измерений в скважине. Предложен способ проведения измерений в скважине, содержащий этапы, на которых: управляют активацией прибора, расположенного в скважине и имеющего компоновку излучающих антенн и приемных антенн, разнесенных на расстояния, способных работать выбираемыми парами излучатель-приемник. При этом регистрируют глубинный сигнал из глубинного измерения, используя пару излучатель-приемник, и один или несколько малоглубинных сигналов из одного или нескольких малоглубинных измерений, используя одну или несколько других пар излучатель-приемник; обрабатывают один или несколько малоглубинных сигналов, образуют модельный сигнал относительно областей, прилегающих к боковым сторонам и задней стороне прибора; и формируют сигнал опережающего просмотра по существу без вкладов из областей, прилегающих к прибору, путем обработки глубинного сигнала в зависимости от модельного сигнала. Предложены также устройство для проведения измерений в скважине и машиночитаемое запоминающее устройство, имеющее инструкции выполнения действий указанного способа. 6 н. и 25 з.п. ф-лы, 41 ил.

Изобретение относится к направленному бурению скважин, в частности к средствам каротажа удельного сопротивления пород в реальном времени. Техническим результатом является повышение точности и информативности о наборе слоев перед буровым долотом по мере перемещения компоновки низа бурильной колонны, что обеспечивает более точное управление направленным бурением. Предложены способ и система для получения опережающих измерений профиля, при этом способ включает в себя расположение излучателя энергии, такого как излучающая антенна, вблизи инструмента компоновки низа бурильной колонны. При этом один или несколько приемников энергии, таких как приемные антенны, располагают по длине компоновки низа бурильной колонны. Затем излучают энергию для выполнения опережающих сканирований относительно инструмента компоновки низа бурильной колонны. Образуют данные графика опережающего просмотра с осью x, являющейся функцией времени относительно положения инструмента компоновки низа бурильной колонны. Строят график опережающего просмотра и отображают его на дисплейном устройстве. На основании моделей геологической среды по графику опережающего просмотра можно прослеживать оцененные пластовые значения. Оцененные пластовые значения отображают ниже линии изменения во времени положения инструмента, которая является частью графика опережающего просмотра. Причем оцененные пластовые значения на графике опережающего просмотра могут быть основаны на инверсиях данных об удельном сопротивлении из опережающих сканирований. 3 н. и 17 з.п. ф-лы, 12 ил.

Изобретение относится к области инклинометрии и может быть использовано в нефте- и газопромысловой геофизике. Достигаемый технический результат - расширение функциональных возможностей инклинометра за счет более высокой точности выработки азимута и обеспечения работоспособности инклинометра в условиях произвольного характера распределения поля в зоне считывания. Способ основан на использовании показаний проекций HX3, HY3, hZ3 классической триады феррозондов и двух дополнительных датчиков поля, пространственно разнесенных вдоль продольной оси Z инклинометра. В качестве дополнительных феррозондов используют одноосные с направленными вдоль оси Z осями чувствительности датчики поля, вырабатывающие соответственно текущие значения проекций суммарного поля hZ1=HZ3+HP1 и hZ2=HZ3+HP2, где HZ3 - проекция поля Земли на ось Z инклинометра, a HP1, HP2 - напряженности поля помехи, фиксируемые дополнительными датчиками 1 и 2, и затем производят вычисление величин HZ(1), HZ(2), HZ(3), представляющих собой три независимые реализации одного и того же значения проекции HZ3, очищенной от влияния магнитных помех, в соответствии с выражениями: HZ(1)=hZ1-(hZ1-hZ3)/1-K31, HZ(2)=hZ2-(hZ2-hZ3)/1-K32, HZ(3)=hZ1-(hZ1-hZ2)/1-K21, где (hzi-hzj) характеризует разность показаний первичных измерителей, ответственных за локальный градиент поля между датчиками i и j, а величины - масштабные коэффициенты, являющиеся постоянными величинами на всем протяжении времени проводки скважины и которые экспериментально определяют на начальном этапе проведения буровых работ, для чего колонну в собранном виде устанавливают в вертикальное положение со значением зенитного угла в диапазоне (0÷15)° и опускают на такую глубину, при которой приращение разности показаний δ(hZ1-hZ3) в процессе движения колонны вниз не превышает одной-двух отсчетных единиц. 1 з.п. ф-лы, 1 табл.

Изобретение относится к средствам передачи информации из скважины на поверхность. Техническим результатом является повышение эффективности использования поплавкового клапана и снижение затрат энергии на передачу информации по давлению на поверхность. Предложена система для передачи скважинной информации по стволу скважины на поверхность, включающая: переводник на конце бурильной колонны; детектор, расположенный на упомянутом месте на поверхности и взаимодействующий с жидкостью, проходящей через переводник, для предоставления на упомянутое место на поверхности величины измерения, коррелированной со временем между изменениями давления жидкости в бурильной колонне; и скважинный электронный модуль, расположенный в переводнике. При этом скважинный электронный модуль содержит поплавковый клапан для создания ограничения потока для жидкости, проходящей через переводник. Причем поплавковый клапан управляет падением давления бурового раствора в переводнике и включает корпус, керамическую оболочку седла, размещенную в отверстии корпуса, тарелку, выполненную с возможностью аксиального сдвига в корпусе и наружу от керамического седла, шток поршня, соединенный с тарелкой и выходящий наружу из корпуса, и верхнюю и нижнюю втулки для аксиального направления штока поршня в корпусе. Кроме того, система содержит датчик, расположенный в переводнике, для отслеживания состояния в стволе скважины и тормоз, взаимодействующий со штоком поршня, для фиксации тарелки по меньшей мере в двух статических положениях во время начала потока бурового раствора через переводник и во время открывания поплавкового клапана. 3 н. и 15 з.п. ф-лы, 10 ил.
Наверх