Способ получения стекла

Изобретение относится к оптическому стеклу и может быть использовано для создания оптических усилителей в диапазоне длин волн второго окна прозрачности (1260-1360 нм) волоконных световодов на основе магнийалюмокварцевого стекла. Способ заключается в плавлении на воздухе смеси стеклообразующих оксидов, содержащей оксид кремния, оксид магния, оксид алюминия и оксид висмута. Дополнительно в смесь вводят активированный уголь в качестве основного восстановителя и картофельный крахмал в качестве демпфирующего восстановителя в количествах соответственно 1,5 и 33 масс.% от массы стеклообразующих оксидов с последующим плавлением смеси при температуре 1600°С. Изобретение позволяет уменьшить коэффициент поглощения стекла с люминесценцией с максимумом полосы в спектральном интервале 1260-1360 нм (во втором окне прозрачности), что приводит к уменьшению энергетических потерь в стекле. 4 ил., 1 табл.

 

Изобретение относится к оптическому стеклу и может быть использовано для создания оптических усилителей в диапазоне длин волн второго окна прозрачности (1260-1360 нм) волоконных световодов на основе магнийалюмокварцевого стекла.

Известно, что реальное оптическое усиление, т.е. превышение усиления над потерями, получено только в диапазоне 1150-1215 нм на алюмосиликатных волоконных световодах, легированных висмутом (ASB-световоды), спектр люминесценции которых охватывает диапазон длин волн 1100-1300 нм. При оптической накачке на длине волны λP=808 нм максимум люминесценции наблюдается на λmax=1100 нм, при накачке λP=1058 нм - λmax=1150 нм. С целью смещения полосы усиления легированных висмутом стекол и волоконных световодов на их основе дальше в ИК-область в полосу длин волн 1260-1700 нм [Е.М. Дианов, С.В. Фирстов, В.Ф. Хепин и др. Висмутовые волоконные лазеры и усилители, работающие в области 1,3 мкм // Квантовая электроника. - 2008. - т.38, №7. - С.615-617] [1] в качестве сердцевины волоконного световода были выбраны фосфорогерманосиликатные стекла, легированные висмутом и не содержащие Al2O3 (PGSB-стекла и световоды). Массовая концентрация висмута в стеклах была ниже 0,1%. Заготовки для PGSB-световодов изготавливались по MCVD технологии. В PGSB-стеклах и вытянутых из них световодах спектр люминесценции сдвинут в ИК-область существенно дальше, чем спектр ASB-световодов: при оптической накачке λP=1058 нм максимум люминесценции наблюдается на λmax=1250 нм.

Известно [RU 2463264, МПК С03С 4/12, С03С 3/12, опубл. 10.10.2012] [2] получение стекла из оксидов при 900-1200°С, содержащих Р2О5 и/или Ba2O3 в качестве стеклообразующих компонентов и висмут в субвалентном состоянии в качестве источника люминесценции. В данном случае стекла люминесцируют в области 1000-1700 нм с максимумом полосы люминесценции на ~1200-1300 нм при возбуждении излучением 500-900 нм и обеспечивают усиление оптического сигнала в диапазоне 1050-1500 нм и 1050-1300 нм. В зависимости от состава, технологических параметров и концентрации висмута спектр люминесценции таких стекол характеризуется двумя полосами с максимумами на 1200 и 1300 нм или одной широкой полосой с максимумом на 1250-1300 нм. Использовались очень высокие концентрации висмута (3-50 мол.% в пересчете на Bi2O3). При концентрации Bi2O3 в стекле, равной 0,001 мол.%, люминесценции в нем не наблюдалось. Данные о значениях коэффициента поглощения синтезированных стекол не приводятся.

Стекла, синтезированные в вышеприведенных источниках, содержащие в своем составе Р2О5 и Ва2О3, характеризуются низкой устойчивостью к воздействию высоких температур, влаги и химических реагентов, что значительно сужает область их применения.

Известен способ получения стекла путем синтезирования из оксидов люминесцентное стекло состава: 57 SiO2, 30 MgO и 13 Al2O3, характеризующееся высокой температурой плавления, стойкостью к воздействию реагентов и влаги. В качестве активатора использовался Bi2O3 с концентрациями 0,025-0,25 мол.% сверх 100 мол.% стеклообразующих оксидов. Синтез и выливание стекла проводили в атмосфере азота в иридиевом тигле при температуре 1850°С, т.е. в восстановительных условиях, близких к условиям производства силикатных световодов [Denker B.I., Galagan B.I., Shulman I.L., Sverchkov S.E., Dianov E.M. Bismuth valence states and emission centers in Mg-Al-Silicate Glass. Applied Physics B: Lasers and Optics, 2011, vol.103, no.3, pp.681-685] [3].

Однако таким способом невозможно синтезировать стекло, обладающее необходимым сочетанием свойств: низким коэффициентом поглощения света (что является обязательным условием для получения усиления в световоде) и люминесценцией с максимумом полосы на ~1300 нм. При большой концентрации Bi2O3 (0,25 мол.% сверх 100 мол.%) стекло имело очень высокий коэффициент поглощения (непрозрачное), а при малой концентрации Bi2O3 (0,025 мол.% сверх 100 мол.% стеклообразующих оксидов) оно не люминесцировало.

Технический результат заключается в уменьшении коэффициента поглощения стекла с люминесценцией с максимумом полосы в спектральном интервале 1260-1360 нм (во втором окне прозрачности), что приводит к уменьшению энергетических потерь в стекле.

Сущность изобретения заключается в том, что в способе получения стекла, заключающемся в плавлении на воздухе смеси стеклообразующих оксидов, содержащей оксид кремния, оксид магния, оксид алюминия и оксид висмута, дополнительно в смесь вводят активированный уголь в качестве основного восстановителя и картофельный крахмал в качестве демпфирующего восстановителя в количествах соответственно 1,5 и 33 масс.% от массы стеклообразующих оксидов с последующим плавлением смеси при температуре 1600°С.

Способ осуществляют следующим образом. Была синтезирована серия образцов стекол состава: 55-57 SiO2, 30-28 MgO, 13-16 Al2O3. В шихту стеклообразующих оксидов добавляли Bi2O3 в небольших количествах: от 0,03 до 0,12 мол.% сверх 100 мол.% стеклообразующих оксидов и два восстановителя: в качестве основного - активированный уголь и в качестве демпфирующего - картофельный крахмал соответственно 1,5 и 3,3 масс.% от массы стеклообразующих оксидов.

Синтез осуществляют следующим образом. К смеси стеклообразующих оксидов и Bi2O3, взятых в определенных соотношениях добавляли оба восстановителя. Полученная шихта отсушивалась при 180°С примерно 2 часа, перемешивалась и активировалась в шаровой мельнице в течение 15-30 минут при 160-200 об/мин соответственно, помещалась в тигель и в печи сопротивления в течение 3-х часов нагревалась до 1600°С. При этой температуре выдерживалась 3 часа без перемешивания мешалкой. Синтезированное стекло сразу же выливают на массивную металлическую пластину, предварительно разогретую до 600°С. Остывшее стекло дополнительному отжигу для снятия в нем напряжений (500-600°С, 1 ч) не подвергалось.

Восстановители добавляли в шихту стеклообразующих оксидов, исходя из следующих соображений. В [1-3] считают, что источниками люминесценции с максимумом полосы в области 1260-1360 нм при фотовозбуждении люминесцирующих центров светом с длиной волны, равной 808 нм, являются ионы Bin+, где 0<n<3, т.е. восстановленные по сравнению с Bi3+. Но согласно проведенным термодинамическим расчетам с использованием данных [4-5], подтвержденным экспериментально, при концентрации Bi2O3<1 мол.% (сверх 100 мол.% стеклообразующих оксидов) реакция образования Bin+ (0<n<1) при 1450°С на воздухе становится термодинамически невозможной.

Однако экспериментально было установлено, что центры люминесценции с максимумом полосы в области 1260-1360 нм в стекле с малым содержанием Bi2O3, можно получить за счет реакции дефектообразования в Bi2O3, протекающей по уравнению

с образованием двухзарядной кислородной вакансии ( V 0 ) , двух электронов в решетке (расплаве) и выделением газообразного кислорода (О2) из узла решетки (Ох).

Согласно литературным данным [6, 7] образовавшиеся кислородные вакансии захватывают 2 электрона, превращаясь в электрически нейтральные F-центры, которые при достаточно большой концентрации образуют ассоциаты, поглощающие на λ=500, 700, 800, ~1030 нм и окрашивающие стекло в красный цвет. Если концентрация F-центров недостаточна для образования ассоциатов, то стекло бесцветно. В случае образования F-центров с энергией ~2 эВ (λP=600 нм) стекло окрашено в голубой цвет. Центры люминесценции, поглощающие на 500, 700 нм, дают полосу люминесценции с максимумом на λ=1100-1150 нм, а поглощающие на 800 и 1000 нм дают полосу люминесценции с максимумом на λ=1260-1300 нм.

Равновесие реакции (1) вправо можно сдвинуть, добавив в реакционную смесь восстановитель, связывающий выделившийся кислород, например активированный уголь. Однако экспериментально установлено, что он является слишком жестким восстановителем, вызывающим образование нелюминесцирующих коллоидных частиц металлического висмута по реакции

При больших концентрациях Bi2O3 в шихте металлический Bi0 выделяется в виде отдельной фазы.

Чтобы не допустить образования Bi0? в качестве демпфирующего вещества вместе с активированным углем в шихту добавляется картофельный крахмал, при сгорании которого наряду с СО выделяется газообразная H2O, препятствующая образованию коллоидного висмута, окисляя его.

Оптические и люминесцентные характеристики синтезированных стекол представлены в таблице 1, исходя из рис 1-2.

Из таблицы 1 следует, что для получения стекла с максимумом люминесценции в области 1260-1360 нм и низким коэффициентом светопоглощения в смесь оксидов SiO2, MgO, Al2O3 следует добавить Bi2O3 в количестве 0,05-0,06 мол.% сверх 100 мол.% стеклообразующих оксидов, и смесь восстановителей: активированного угля и картофельного крахмала в количестве 1 масс.% и 33 масс.% соответственно.

Ниже приводятся примеры получения люминесцентных стекол.

Пример 1. Стекло, содержащее 0,12 мол.% Bi2O3.

К смеси 8,55 г SiO2, 3,00 г MgO, 3,60 г Al2O3 добавляли 0,15 г Bi2O3, 0,25 г активированного угля и 4,75 г картофельного крахмала. Шихту перемешивали и активировали в планетарной мельнице, отсушивали при ~180°С в течение 2 ч, помещали в тигель, в печь сопротивления, нагревали до 1600°С 3 ч, выдерживали при этой температуре. Расплав выливали на массивную металлическую подложку. Дополнительному отжигу при 600°С для снятия механических напряжений синтезированное стекло не подвергалось.

Пример 2. Стекло, содержащее 0,06 мол.% Bi2O3.

К смеси 8,55 г SiO2, 3,00 г MgO, 3,60 г Al2O3 добавляли 0,075 г Bi2O3, 0,25 г активированного угля и 4,75 г картофельного крахмала. Шихту перемешивали и активировали в планетарной мельнице, отсушивали при ~180°С в течение 2 ч, помещали в тигель, в печь сопротивления, нагревали до 1600°С 3 ч, выдерживали при этой температуре. Расплав выливали на массивную металлическую подложку. Дополнительному отжигу при 600°С для снятия механических напряжений синтезированное стекло не подвергалось.

Пример 3. Стекло, содержащее 0,05 мол.% Bi2O3.

К смеси 8,55 г SiO2, 3,00 г MgO, 3,60 г Al2O3 добавляли 0,070 г Bi2O3, 0,25 г активированного угля и 4,75 г покупного картофельного крахмала. Шихту перемешивали и активировали в планетарной мельнице, отсушивали при ~180°С в течение 2 ч, помещали в тигель, в печь сопротивления, нагревали до 1600°С 3 ч, выдерживали при этой температуре. Расплав выливали на массивную металлическую подложку. Дополнительному отжигу при 600°С для снятия механических напряжений синтезированное стекло не подвергалось.

Пример 4. Стекло, содержащее 0,03 мол.% Bi2O3.

К смеси 8,55 г SiO2, 3,00 г MgO, 3,60 г Al2O3 добавляли 0,034 г Bi2O3, 0,25 г активированного угля и 4,75 г покупного картофельного крахмала. Шихту перемешивали и активировали в планетарной мельнице, отсушивали при ~180°С в течение 2 ч, помещали в тигель, в печь сопротивления, нагревали до 1600°С 3 ч, выдерживали при этой температуре. Расплав выливали на массивную металлическую подложку. Дополнительному отжигу при 600°С для снятия механических напряжений синтезированное стекло не подвергалось. Люминесценции с максимумом полосы на 1300 нм в синтезированном стекле не наблюдалось.

По сравнению с известными решениями предлагаемое позволяет получить стекло, обладающее одновременно малым коэффициентом поглощения и люминесценцией с максимумом полосы в спектральном интервале 1260-1360 нм (во втором окне прозрачности).

Таблица 1
№ п/п Концентрация Bi2O3, в шихте (сверх 100 мол.% стеклообразующих оксидов) Природа и количество восстановителя / Цвет синтезированного стекла Наличие максимумов полос поглощения в спектре на Коэффициент поглощения стекла k, см-1 Наличие максимумов полос люминесценции на
λ=500 нм λ=700 нм λ=800 нм λ=900 нм λ=1000 нм λ=1100-1150 нм λ=1260-1300 нм
1 0,12 Активированный уголь 1 масс.% + Крахмал 33 масс.% / Оранжевое + + + + + 0,7 + +
2 0,06 Активированный уголь 1 масс.% + Крахмал 33 масс.% / Светло-оранжевое + + + + + 0,1 + +
3 0,05 Активированный уголь 1 масс.% + Крахмал 33 масс.% / Бледно-оранжевое + + + + + 0,07 + -
4 0,03 Активированный уголь 1 масс.% + Крахмал 33 масс.% / Бесцветное - - - - - + -
Примечание. Величина k стекол, представленных в таблице 1, определялась на длине волны максимума кривой поглощения стекла (λmax=500 нм). Люминесценция возбуждалась светом с λP=500 нм (максимум полосы на λ=1100 нм) и λP=800 нм (максимум полосы на λ=1260-1300 нм).

Литература

1. Е.М. Дианов, С.В. Фирстов, В.Ф. Хепин и др. Висмутовые волоконные лазеры и усилители, работающие в области 1,3 мкм // Квантовая электроника. - 2008. - Т.38, №7. - С.615-617.

2. Сулимов В.Б., Романов А.Н., Фаттахова З.Т. и др. Оптическое стекло, обладающее способностью к люминесценции в диапазоне 1000 - 1700 нм. Способы получения такого стекла (варианты) и волоконный световод // Патент России № RU 2463264 от 10.10.2012. Бюл. №28.

3. Denker B.I., Galagan B.I., Shulman I.L., Sverchkov S.E., Dianov Е.М. Bismuth valence states and emission centers in Mg-Al-Silicate Glass. Applied Physics B: Lasers and Optics, 2011, vol.103, no.3, pp.681-685.

4. Г.К. Моисеев, Н.А. Ватолин, Н.В. Белоусова. Расчет термохимических свойств Bi2O5 и BiO2 // Журнал физической химии. - 2000. - Т.74, №12. - С.2124-2128.

5. Карапетьянц М.Х., Карапетьянц М.Л. Основные термодинамические константы неорганических и органических веществ. - М.: Химия, 1968. - 472 с.

6. Мойжес Б.Я. Физические процессы в оксидном катоде. - М.: Наука, 1968. - 400 с.

7. Никонов Б.П. Оксидный катод. - М.: Энергия, 1979. - 240 с.

Способ получения стекла, заключающийся в плавлении в тигле на воздухе смеси стеклообразующих оксидов, содержащей оксид кремния, оксид магния, оксид алюминия и оксид висмута, отличающийся тем, что дополнительно в смесь вводят в качестве основного восстановителя активированный уголь и в качестве демпфирующего восстановителя - картофельный крахмал в количествах соответственно 1,5 и 33 масс.% от массы стеклообразующих оксидов с последующим плавлением смеси при температуре 1600°С.



 

Похожие патенты:

Изобретение относится к оптическим материалам, в частности к плавленому алюмоборатному стеклу, активированному трехзарядными ионами церия (Се3+) и тербия (Tb3+), которое может использоваться в качестве визуализатора ультрафиолетовых изображений и светового трансформатора из ультрафиолетовой в желто-зеленую область спектра.

Изобретение относится к легированным прозрачным стеклокристаллическим материалам, которые могут использоваться в качестве активной среды лазеров и усилителей в ближней ИК области.

Изобретение относится к фторидным оптическим стеклам, обладающим способностью к люминесценции в диапазоне 1000-1700 нм при возбуждении излучением с длинами волн в пределах 400-1100 нм.

Изобретение относится к легированным стеклам, в частности к Yb-содержащему кварцевому стеклу, полученному по золь-гель процессу, которое может использоваться в качестве активного материала лазеров и усилителей инфракрасного диапазона.

Изобретение относится к оптическим материалам, в частности к составам оптических стекол, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных), генерирующих в оранжево-красной области спектра.

Изобретение относится к производству стекла для оптических целей и может быть использовано при изготовлении деталей, работающих в области спектра 0,4-5 мкм. .

Стекло // 1689315

Стекло // 1650620
Изобретение относится к составам силикатных стекол и может быть использовано в приборостроении, квантовой электронике , например в качестве люминесцентных трансформаторов и светофильтров.

Изобретение относится к лазерному материаловедению и касается разработки новых оптических материалов, используемых в различных системах лазерных устройств. .

Изобретение относится к области люминесцентных стекол для преобразования ультрафиолетового излучения в белый цвет. Техническим результатом изобретения является создание люминесцентного стекла с высокой прозрачностью в видимом диапазоне. Люминесцентное литий-боратное стекло на основе тетрабората лития Li2B4O7 содержит три легирующих добавки и имеет следующий состав: оксид туллия Tm2O3 в концентрации 0,38-0,40% (масс.), оксид тербия Tb2O3 в концентрации 0,38-0,40% (масс.), оксид европия Eu2O3 в концентрации 0,08-0,09% (масс.) и тетраборат лития Li2Β4O7 (остальное). 1 табл., 3 ил.

Изобретение относится к оптическим материалам, в частности к составам Yb-содержащих оптических стекол, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных), генерирующих в ближней инфракрасной области спектра. Техническим результатом изобретения является создание стекла, характеризующегося интенсивной широкополосной люминесценцией в ближней инфракрасной области спектра и пригодного для использования в качестве активной среды лазера. Стекло, содержащее B2O3, Al2O3, La2O3 и/или Y2O3 и Yb2O3, имеет следующее соотношение компонентов, мол.%: 57-62 B2O3, 27-33 Al2O3, 1-9,5 La2O3 и/или Y2O3, 0,5-10 Yb2O3. 1 табл., 1 ил.

Изобретение относится к области оптического материаловедения, в частности к способу локальной нанокристаллизации легированных стекол под действием лазерного излучения. Эти стекла могут быть использованы в качестве активных волноводов и в разработке интегральных усилителей и лазеров на их основе. Изобретение позволяет осуществить самоограничивающийся процесс формирования в галлийсодержащем оксидном стекле локальных областей шириной более 100 мкм с увеличенным показателем преломления, содержащих нанокристаллы и люминесцирующих в широком диапазоне длин волн 1150-1700 нм ближней ИК области. Способ локальной нанокристаллизации стекол включает облучение сфокусированным пучком лазера на парах меди со средней мощностью 5-15 Вт при перемещении пучка относительно поверхности образца со скоростью 10-200 мкм/с, осуществление подогрева стекла до температуры, меньшей, чем температура стеклования, на 5÷30°C. Стекло имеет состав, мас.%: Li2O 1,3-2,3, Na2O 1,5-2,7, Ga2O3 32,5-37,9, SiO2 7,0-21,2, GeO2 37,0-56,5, NiO 0,05-0,8. 3 ил., 4 пр.
(57) Изобретение относится к составам оптических стекол и может быть использовано в лазерных системах в качестве активных сред ап-конверсионных лазеров с диодной накачкой, преобразующих инфракрасное лазерное излучение в видимую область, а именно в зеленую область спектра. Люминесцирующее стекло включает следующие компоненты, мол.%: SiO2 44,0-48,5; GeO2 1,5-5,5; PbO 35,0-39,5; PbF2 10,5-14,0 и Er2O3 0,5-1,0. Для получения люминесцирующего стекла требуется температура синтеза 900±50оС, что упрощает процесс. Полученное стекло имеет высокую яркость и способно люминесцировать без термической обработки. 2 табл.

Изобретение относится к технологии получения люминесцентных стекол на основе силикатных, боросиликатных, боратных стекол и стеклокомпозитов, активированных редкоземельными ионами, в частности ионами Ce, Pr и Eu, для их использования в преобразователях энергии возбуждения в световое излучение видимого или УФ-диапазона. Техническим результатом изобретения является стабилизация трехвалентных ионов церия (Ce3+) и празеодима (Pr3+) и двухвалентного европия (Eu2+) в силикатных стеклах и стеклокомпозитах путем введения карбида кремния. В способе стабилизации трехвалентных ионов церия (Се3+), празеодима (Pr3+) и двухвалентного европия (Eu2+) в силикатных стеклах и стеклокомпозитах в шихту для варки стекла вводят добавку карбида кремния в соотношении карбида кремния к оксидам церия, празеодима или европия в пределах от 2/1 до 1/3, причем предварительно готовят «премикс» карбида кремния и оксидов церия, празеодима или европия, который затем смешивают с компонентами шихты. 3 ил., 1 табл.

Изобретение относится к технологии получения сцинтилляционных неорганических материалов для измерения ионизирующего изучения на основе силикатных стекол и стеклокомпозитов, активированных ионами церия, в частности к материалам для регистрации нейтронов. Техническим результатом изобретения является увеличение выхода сцинтилляций силикатных стекол, содержащих литий и активированных ионами редкоземельных активаторов. Присутствие в стекле нанокристаллитов дисиликата лития приводит к смещению суммарного спектра люминесценции ионов трехвалентного церия в длинноволновую область и увеличению суммарного выхода сцинтилляций. Исходное стекло и композит из стекла и нанокристаллитов включают в состав природный Li или Li, обогащенный изотопом Li-6 для более высокой чувствительности к тепловым нейтронам, а также другие легкие элементы из числа Si, Al, Mg и редкоземельный активатор из числа Ce, Pr, Eu, Tb, Dy, Yb. 2 табл., 3 ил.

Изобретение относится к составам оптических стекол, а именно к люминесцирующим стеклам, активированным ионами редкоземельных элементов, в частности ионами европия и иттербия, и предназначено для использования в качестве активной среды в ап-конверсионных лазерах, люминофорах для преобразования инфракрасного лазерного излучения в видимое оранжево-красное. Люминесцирующее стекло включает SiO2, PbO, PbF2, CdF2, Eu2O3 и YbF3 при следующем соотношении компонентов, мол. %: SiO2 35,0-42,0; PbO 15,0-20,0; PbF2 27,5-32,0; CdF2 8,0-15,0; Eu2O3 0,5-1,5 и YbF3 1,0-2,5. Техническая задача изобретения - создание стекла, обладающего свойством преобразования инфракрасного излучения в видимую область спектра и характеризующегося высокой интенсивностью ап-конверсионной люминесценции оранжево-красного излучения в спектральной области при λ - 612 нм. Область применения - оптоэлектроника, фотоника, лазерное приборостроение. 2 табл.

Изобретение относится к оптическим материалам, в частности к составам Yb-содержащих оптических стекол, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных), генерирующих в ближней инфракрасной области спектра. Задачей предлагаемого изобретения является создание стекла, характеризующегося эффективной широкополосной люминесценцией с барицентром при λ≈1000 нм и пригодного для использования в качестве активной среды лазера. Таким стеклом является люминесцирующее фосфатное стекло, содержащее оксиды фосфора (Р2О5), кремния (SiO2), алюминия (Al2O3), бора (В2О3), калия (K2O), бария (ВаО) и иттербия (Yb2O3)2 при следующем соотношении компонентов, масс. %: (55-65) P2O5, (1-4) SiO2, (5-10) Al2O3, (8-12) B2O3, (10-14) K2O, (8-12) ВаО и (0,5-15) Yb2O3. 1 табл., 2 ил.

Изобретение относится к прозрачным стеклокристаллическим оксидным материалам, которые могут использоваться в качестве активной части конверторов в видимую область спектра УФ излучения солнечно-слепого диапазона. Технический результат изобретения - создание прозрачного стеклокристаллического материала на основе γ-Ga2O3, люминесцирующего в синей области спектра с минимальным откликом при возбуждении на длине волны >290 нм. Стеклокристаллические материалы имеют следующий состав, мас.%: Li2O 0,03-3,02; Na2O 0,08-6,07; Ga2O3 27,9-52,5; SiO2 15,4-25,5; GeO2 26,8-44,4. 4 ил., 2 табл.

Изобретение относится к технологии новых оптических стеклообразных кварцоидных материалов, обладающих люминесценцией в широком спектральном диапазоне, и может быть использовано в производстве волоконных световодов с лазерной генерацией в инфракрасном спектральном диапазоне и различных устройств на их основе для оптимизации элементов волоконно-оптических линий связи. Предложен способ получения висмут-содержащего кварцоидного стекла на основе высококремнеземного нанопористого стекла (НПС). Способ включает внедрение в поровое пространство НПС матриц в несколько этапов по 24 ч при 22±2°С 0.5М раствора Bi(NO3)3, сушку образцов при 30-65°С 40-60 мин. Пропитанные и высушенные образцы подвергают многостадийной тепловой обработке в воздушной атмосфере в электрической печи. При этом образцы размещают на подложке из высокочистого кварцевого стекла и осуществляют нагрев в течение 5 мин с помощью кислородно-водородной горелки, которую подводят со стороны кварцевой подложки. Изобретение обеспечивает получение стеклообразных висмутсодержащих кварцоидных материалов с формированием в них различных висмутовых активных центров (ВАЦ), включая центры ИК люминесценции. 2 з.п. ф-лы, 4 ил., 1 пр.
Наверх