Способ производства металлопродукции из легированных марок стали и сплавов


 


Владельцы патента RU 2542151:

Открытое акционерное общество "Челябинский трубопрокатный завод" (RU)

Изобретение относится к области металлургии и может быть использовано при изготовлении труб для энергетического машиностроения и оборудования АЭС. Способ производства металлопродукции из легированных марок стали, например нержавеющих и сплавов, включает выплавку стали, горячую деформацию, термическую обработку в интервале температур от 450 до 950°C с последующим охлаждением в воде или на воздухе, холодную деформацию и термическую обработку в интервале температур от 750 до 950°C с последующим охлаждением в воде или на воздухе. Изобретение обеспечивает улучшение комплекса механических свойств металла продукции из легированных марок стали и сплавов, в частности увеличение предела текучести при 350°C. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к металлургии легированных марок стали и сплавов и может быть использовано при изготовлении труб для энергетического машиностроения и оборудования АЭС. В качестве материала в таких случаях используется нержавеющая сталь типа 18-8 различных марок, например сталь марок 08Х18Н10Т и 12Х18Н10Т, рекомендованных для применения в промышленном оборудовании, работающем в коррозионно-активных средах в различных отраслях машиностроения. К механическим свойствам материала таких труб предъявляются требования при температурах дальнейшего изготовления деталей, узлов и эксплуатации, в частности пределу текучести при 350°C.

Известен способ производства, включающий выплавку стали, комплексное легирование стали молибденом, вольфрамом, медью и кобальтом, горячую деформацию, термическую обработку, холодную деформацию и окончательную термическую обработку. В данном способе, например, используется нержавеющая сталь, содержащая по массовой доле (%): углерод от 0,06 до 0,08; кремний от 0,6 до 0,8; марганец от 1,5 до 2,0; хром от 18,0 до 19,0; никель от 10,0 до 11,0; титан от 0,5 до 0,7; молибден от 0,1 до 0,3; вольфрам от 0,1 до 0,2; ванадий от 0,1 до 0,2; медь от 0,1 до 0,3; кобальт от 0,01 до 0,025; железо -остальное (Патент РФ №2035524, дата публикации 20.05.1995 г.). Однако повышение эксплуатационных свойств при температуре эксплуатации (350°C) за счет комплексного легирования приводит к существенному увеличению себестоимости производства продукции.

Наиболее близким аналогом является способ деформационно-термической обработки аустенитных нержавеющих марок сталей RU 2482197. Однако известные марки стали типа 18-8 после такой обработки не обеспечивают требуемый уровень механических и служебных свойств, в частности предел текучести, при температурах эксплуатации (350°C) и не отвечают требованиям, предъявляемым к конструкционным материалам для коллекторов парогенераторов АЭС нового поколения.

Главной задачей настоящего изобретения является создание способа производства труб из аустенитной нержавеющей стали типа 18-8, обеспечивающей требуемые эксплуатационные свойства, в частности предел текучести, при температуре эксплуатации (350°C), а также технологичностью на стадии металлургического передела и стойкостью против коррозионного растрескивания в хлоридсодержащих средах.

Поставленные задачи решаются настоящим изобретением следующим образом. После горячей деформации трубы из аустенитной нержавеющей стали типа 18-8 подвергаются термической обработке в интервале температур от 450 до 950°C с последующим охлаждением в воде или на воздухе, далее холодной прокатке и окончательной термической обработке в интервале температур от 750 до 950°C с последующим охлаждением в воде или на воздухе. При многопроходных вариантах изготовления между операциями холодной деформации термическая обработка либо не проводится, либо проводится в интервале температур от 750 до 950°C с последующим охлаждением в воде или на воздухе.

При первом нагреве в стали происходит выделение карбидов хрома Cr23C6, что приводит к повышению мартенситной точки и образованию дисперсных выделений мартенситной фазы при последующей холодной прокатке. Температура окончательного нагрева и скорость охлаждения после него обеспечивают распад мартенситной фазы и вместе с тем сохранение требуемого уровня упрочнения, достигнутого за счет холодной пластической деформации и повышения стойкости против коррозионного растрескивания.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известных тем, что после горячей деформации трубы из аустенитной нержавеющей стали типа 18-8 подвергаются термической обработке в интервале температур от 450 до 950°C с последующим охлаждением в воде или на воздухе, далее одно- или многопроходной холодной прокатке и окончательной термической обработке в интервале температур от 750 до 950°C с последующим охлаждением в воде или на воздухе. При многопроходных вариантах изготовления между операциями холодной деформации термическая обработка либо не проводится, либо проводится в интервале температур от 750 до 950°C с последующим охлаждением в воде или на воздухе. В данном случае не требуется микролегировать сталь. А термическая обработка в рекомендуемых интервалах и сочетаниях с пластической деформацией в меньшей степени влияет на прочностные свойства, полученные при деформации. Таким образом, эти отличия позволяют сделать вывод о соответствии критерию «изобретательский уровень».

Сравнение заявленного способа не только с прототипом, но и с другими техническими решениями в данной области техники, не позволило выявить в них признаки, отличающие заявленное решение от прототипа, что соответствует патентоспособности «изобретательский уровень».

Предлагаемый способ был реализован на ОАО «ЧТПЗ». Термическая обработка горячекатаных труб-заготовок размером 470×47 мм проводилась в секционной печи при температуре 920±15°C в течение от 60 до 70 мин с охлаждением на воздухе. Прокат по маршруту 470×47→426×41 мм проводился на стане ХПТ 450, коэффициент вытяжки составил μ=1,26. Термообработка труб промежуточного размера 426×41 мм осуществлялась на индукционной установке при температуре 880±30°C с охлаждением в спрейере с расходом воды 120 м3/ч. Скорости движения труб составляла 0,1 м/мин. Далее на стане ХПТ 450 проводился прокат по маршруту 426×41→353×38 мм, коэффициент вытяжки составил μ=1,32. Трубы готового размера 353×38 мм подвергались окончательной термической обработке на индукционной установке при температуре 900±30°С с охлаждением в спрейере с расходом воды 120 м3/ч. Скорость движения труб составляла 0,1 м/мин. Сравнение механических свойств металла труб, изготовленных по ранее использовавшейся технологии и по новой технологии, приведено в таблице.

Использование предлагаемого способа прокатки позволило обеспечить требуемые значения предела текучести при 350°C при использовании нержавеющей стали без микролегирующих элементов.

1. Способ производства труб из аустенитной нержавеющей стали типа 18-8, включающий выплавку стали, горячую деформацию и холодную деформацию, термическую обработку, отличающийся тем, что после горячей деформации осуществляют термическую обработку в интервале температур от 450 до 950°C с последующим охлаждением в воде или на воздухе.

2. Способ по п.1, отличающийся тем, что осуществляют многопроходную холодную деформацию с необязательной термической обработкой между проходами, при этом в случае проведения термической обработки её ведут в интервале температур от 750 до 950°C с последующим охлаждением в воде или на воздухе.

3. Способ по п.1, отличающийся тем, что после холодной деформации проводят окончательную термическую обработку в интервале температур от 750 до 950°C с последующим охлаждением в воде или на воздухе.



 

Похожие патенты:

Изобретение относится к области прокатного производства, а точнее к оборудованию, предназначенному для термической обработки труб (нормализации, закалки и отпуска) в трубопрокатных и трубосварочных агрегатах.
Изобретение относится к области машиностроения и может быть использовано при закалке длинномерных, тонкостенных труб из стали СП-28, к которым предъявляются жесткие требования по геометрии внутренней поверхности.

Изобретение относится к области металлургии и может быть использовано при изготовлении бурильных труб из легированных марок стали с требованиями к работе удара сварного соединения.
Изобретение относится к способу изготовления ствола стрелкового оружия. Способ включает механическую обработку с образованием канала ствола сверлением, затем его развертку.
Изобретение относится к области металлургии и нефтяного машиностроения и может быть использовано для изготовления и ремонта насосно-компрессорных труб (НКТ). Для обеспечения высокого комплекса прочностных свойств и мелкозернистой однородной структуры концы труб нагревают до Ас3+(180÷230)°C, затем фиксируют трубу одновременно в двух местах: в матрице и с помощью зажима на расстоянии 500÷4500 мм от высаживаемого конца трубы.

Изобретение относится к области машиностроения, в частности к термической обработке деталей с использованием индукционного нагрева. Для предохранения от окисления и улучшения качества внутренней поверхности детали осуществляют закалку детали с нагрева токами высокой частоты при одновременной подаче охлаждающей жидкости на внутреннюю и наружную поверхности трубных деталей в стенде, который содержит стойку, гидравлический подъемник, приспособление, состоящее из верхнего центра, корпуса и пружины сжатия, нижнего центра, индуктора, узла управления подачи охлаждающей жидкости, при этом в верхнем центре выполнены каналы с определенными сечением и углом для подачи и равномерного распределения охлаждающей жидкости на внутренней поверхности трубной детали.

Изобретение относится к области металлургии. Для обеспечения высокой стойкости труб для нефтяных скважин к сульфидному растрескиванию под напряжением (СРН-стойкость) бесшовная стальная труба содержит, мас.%: от 0,15 до 0,50 С, от 0,1 до 1,0 Si, от 0,3 до 1,0 Mn, 0,015 или менее P, 0,005 или менее S, от 0,01 до 0,1 Al, 0,01 или менее N, от 0,1 до 1,7% Cr, от 0,4 до 1,1% Мо, от 0,01 до 0,12 V, от 0,01 до 0,08 Nb, от 0,0005 до 0,003 В или дополнительно содержит от 0,03 до 1,0 мас.% Cu и имеет микроструктуру, которая содержит 0,40% или более растворенного Mo и фазу отпущенного мартенсита, которая является главной фазой и которая имеет зерна первичного аустенита с размером зерна 8,5 или более и 0,06 мас.% или более диспергированного осадка M2C-типа, имеющего по существу зернистую форму.

Изобретение относится к области обработки металлов давлением, в частности к устройствам для термоправки сильфонов. .

Изобретение относится к области металлургии и может быть использовано при изготовлении сварных труб различного назначения. .

Изобретение относится к металлургической промышленности и может быть использовано при термообработке лифтовых труб, требующих вакуумирования межтрубного пространства, или аналогичных изделий в машиностроении.
Изобретение относится к области черной металлургии, а именно к производству рессорно-компрессорных штанг нефтяных насосов, выполненных из среднеуглеродистой легированной конструкционной стали.

Изобретение относится к области металлургии, в частности к нержавеющей стали для нефтяной скважины и трубе из нержавеющей стали для нефтяной скважины. Нержавеющая сталь для нефтяной скважины содержит, % по массе: С не более 0,05, Si не более 0,5, Mn от 0,01 до 0,5, Р не более 0,04, S не более 0,01, Cr свыше 16,0 и не более 18,0, Ni свыше 4,0 и не более 5,6, Мо от 1,6 до 4,0, Cu от 1,5 до 3,0, Al от 0,001 до 0,10, и N не более 0,050, причем остальное составляют Fe и примеси.

Изобретение относится к области металлургии. Для обеспечения высокой стойкости труб для нефтяных скважин к сульфидному растрескиванию под напряжением (СРН-стойкость) бесшовная стальная труба содержит, мас.%: от 0,15 до 0,50 С, от 0,1 до 1,0 Si, от 0,3 до 1,0 Mn, 0,015 или менее P, 0,005 или менее S, от 0,01 до 0,1 Al, 0,01 или менее N, от 0,1 до 1,7% Cr, от 0,4 до 1,1% Мо, от 0,01 до 0,12 V, от 0,01 до 0,08 Nb, от 0,0005 до 0,003 В или дополнительно содержит от 0,03 до 1,0 мас.% Cu и имеет микроструктуру, которая содержит 0,40% или более растворенного Mo и фазу отпущенного мартенсита, которая является главной фазой и которая имеет зерна первичного аустенита с размером зерна 8,5 или более и 0,06 мас.% или более диспергированного осадка M2C-типа, имеющего по существу зернистую форму.

Изобретение относится к обработке металлов давлением, в частности к способам формовки тройников, и может быть использовано в различных отраслях машиностроения для изготовления штампованных и штампосварных тройников трубопроводов.
Изобретение относится к металлургии, а именно к производству трубных заготовок диаметром от 90 до 110 мм, 140 мм и 150 мм. .
Изобретение относится к области металлургии, а именно к производству трубных заготовок. .

Изобретение относится к области металлургии, в частности стальному листу для производства магистральной трубы и способу изготовления стального листа. .
Изобретение относится к металлургии, в частности к производству трубной заготовки диаметром от 90 до 110 мм. .

Изобретение относится к области металлургии, а именно к получению нефтегазопромысловой бесшовной трубы из мартенситной нержавеющей стали, обладающей прочностью с пределом текучести YS на уровне 95 кфунт/кв.дюйм (665-758 МПа) и повышенной низкотемпературной ударной прочностью.

Изобретение относится к области металлургии. Для повышения сопротивления усталости способ изготовления нержавеющей мартенситной стали содержит этап электрошлаковой переплавки слитка упомянутой стали, а затем этап охлаждения упомянутого слитка.
Наверх