Способ диагностики предаварийных режимов работы рдтт при огневых стендовых испытаниях

Изобретение относится к области ракетной и измерительной техники, а именно к способу диагностики предаварийных режимов работы РДТТ при огневых стендовых испытаниях, и может быть использовано для аварийного гашения ракетных двигателей твердого топлива (РДТТ) при отработке и наземных испытаниях. Способ включает измерение с помощью датчиков величины виброускорения, преобразование полученных данных в вейвлет-коэффициенты по алгоритму непрерывного преобразования, определение масштаба разложения, имеющего максимальную энергию вейвлет-коэффициентов, проведение анализа дисперсии коэффициентов на данном масштабе, выработку суждения о неисправности в работе РДТТ. При этом датчики размещают в точках корпуса РДТТ, информативных относительно продольных акустических колебаний, а измерительные оси датчиков ориентируют по продольной оси РДТТ. Способ обладает расширенными эксплуатационными возможностями, позволяет повысить надежность и достоверность диагностики при одновременном увеличении запаса времени для принятия упреждающего воздействия за счет создания условий, обеспечивающих возможность получения информации о локальных предвестниках неисправности и полного использования время-частотной информации. 3 ил.

 

Изобретение относится к области ракетной и измерительной техники и может быть использовано для аварийного гашения ракетных двигателей твердого топлива (РДТТ) при отработке и наземных испытаниях.

При проведении огневых стендовых испытаний (ОСИ) крупногабаритных РДТТ актуальным является предотвращение его разрушения, которое сопровождается уничтожением испытательного оборудования и существенным повреждением конструкции огневого двора.

Известны способы диагностики двигателей, заключающиеся в регистрации физических сигналов (вибраций, колебаний давления, акустических шумов и т.п.) с последующей обработкой их путем спектрального Фурье-анализа (Волков В.Т., Ягодников Д.А. Исследование и стендовая отработка ракетных двигателей на твердом топливе. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2007, стр.110-144; Жарков А.С., Потапов М.Г., Демидов Г.А. Стендовые испытания энергетических установок на твердом топливе: Учебное пособие. - Изд-во Алт. гос. техн. ун-та, 2001, стр.182-213).

Недостатком этих способов является выявление лишь частотных характеристик без одновременного фиксирования их временных свойств, что позволяет регистрировать их эволюцию во времени только интегральным, а не локальным способом. Это требует сбора информации за достаточно длинный интервал времени, что приводит к запаздыванию к выработке упреждающего воздействия.

Известен способ диагностики, заключающийся в сборе информации и ее обработке по вейвлетным алгоритмам для прогнозирования развития аварийного режима работы [А.П. Черный, Ю.В. Лашко, И.И. Киба, Е.В. Остапенко. Вейвлет-анализ предаварийных режимов синхронных двигателей для настройки их защит. Вiсник КДПУ iменi Михаила Остроградського. Випуск 4/2009 (52). Частина 1, стр.91-94].

Недостатком метода является незначительный запас времени (0,2 с) для принятия упреждающего воздействия, что вызвано низкой эффективностью выделения диагностического признака по анализу теневой картины коэффициентов вейвлет-преобразования.

Известен способ диагностики, заключающийся в регистрации пульсаций давления в газотурбинном двигателе, с последующим их преобразованием в вейвлет-коэффициенты различного уровня (масштаба), в сравнении среднеквадратических отклонений коэффициентов с данными, полученными во время предварительных испытаний, на основании чего делают вывод о приближении к опасному режиму работы (патент RU 2493549, опубл. 20.09.2013).

Естественным недостатком способа является необходимость набора необходимой большой статистики по предварительным запредельным испытаниям, что исключено при отработке натурных крупногабаритных РДТТ.

Известен, принятый за прототип, способ диагностики работы двигателя (патент RU 2154813, опубл. 20.08.2000), включающий измерение физического параметра во времени с помощью датчиков, регистрацию параметра в компьютерном блоке, преобразование параметра в вейвлет-коэффициенты, анализ дисперсии этих коэффициентов в разных масштабах, выработку суждения о неисправности в работе РДТТ по изменению дисперсии.

Известный способ позволяет обнаружить предвестники неисправности (помпажа) по результатам вейвлет-анализа данных от датчиков давления.

Но давление не может быть информативным признаком применительно к РДТТ, т.к. является интегральным показателем работы, сглаженным по всему объему камеры сгорания и не несущим информацию о локальных предвестниках неисправности.

Кроме того, в аварийной ситуации время нарастания давления до разрушительного составляет 0,4-0,5 сек, что недостаточно для принятия мер упреждающего воздействия.

К другому недостатку прототипа относится использование алгоритма дискретного (ортогонального) вейвлет-преобразования, при котором составляющие сигнала анализируется с дискретностью по частоте в два раза, что приводит к утрате время-частотной информации, лежащей в промежутках, снижению чувствительности способа и недостаточной его достоверности.

Задачей предлагаемого изобретения является создание способа диагностики предаварийных режимов работы РДТТ с расширенными эксплуатационными возможностями, позволяющего повысить надежность и достоверность диагностики при одновременном увеличении запаса времени для принятия упреждающего воздействия за счет создания условий, обеспечивающих возможность получения информации о локальных предвестниках неисправности и полного использования время-частотной информации.

Поставленная задача решается заявляемым способом диагностики предаварийных режимов работы РДТТ при огневых стендовых испытаниях, включающим измерение физического параметра во времени с помощью датчиков, регистрацию параметра в компьютерном блоке, преобразование параметра в вейвлет-коэффициенты, анализ дисперсии этих коэффициентов в разных масштабах, выработку суждения о неисправности в работе РДТТ по изменению дисперсии. Особенность заключается в том, что с помощью датчиков измеряют величину виброускорения, преобразуют полученные данные в вейвлет-коэффициенты по алгоритму непрерывного преобразования, определяют масштаб разложения, имеющий максимальную энергию вейвлет-коэффициентов, проводят анализ дисперсии коэффициентов на данном масштабе, при этом датчики размещают в точках корпуса РДТТ, информативных относительно продольных акустических колебаний, а измерительные оси датчиков ориентируют по продольной оси РДТТ.

Из уровня техники неизвестно техническое решение поставленной задачи, в котором бы имело место предложенное сочетание признаков.

В заявляемом способе, в отличие от прототипа, использована иная физическая основа возникновения предвестников неисправности. В прототипе такой основой является резкий рост давления, вызванного появлением вращающегося срыва на лопатках компрессора, что влечет за собой уменьшение дисперсии вейвлетных коэффициентов. Именно это является предвестником помпажа и возможного разрушения газотурбинного двигателя. Основой предлагаемого способа является использование в качестве диагностического признака вибрации в точках корпуса, информативных относительно продольных акустических колебаний в РДТТ. Это можно пояснить следующим образом.

Известно, что при работе РДТТ в камере сгорания возникают акустические колебания, амплитуда которых может достигать значительных величин (до 3% от среднего давления) (Абугов Д.И., Бобылев В.М. Теория и расчет ракетных двигателей твердого топлива. - М.: Машиностроение, 1987. - С.143-147).

Для сравнительно длинных камер (длина которых более чем в два раза превышает радиус) наиболее низкая частота соответствует основной продольной моде колебаний, выражение для основной частоты имеет вид

где с - скорость звука, L - длина камеры.

Известно, что при продольных низкочастотных колебаниях, соответствующих первой собственной резонансной частоте камеры РДТТ, пучность (максимальная амплитуда акустического давления) расположена в средней части корпуса (между силовыми бандажами, крепящими корпус к силовому полу стенда) и в зоне передней крышки двигателя, а энергия колебаний в этих участках имеет максимальное значение. При возникновении аномалий в работе двигателя (разрушение заряда, попадание в сопловой блок его фрагментов или фрагментов теплозащитного покрытия) пучность в указанных частях падает, дисперсия вейвлетных коэффициентов на масштабе с максимальной энергией от вибродатчиков, ориентированных по продольной оси двигателя, снижается, что и является диагностическим признаком способа.

Предлагаемый способ позволяет заблаговременно обнаружить предвестник аномалии в работе РДТТ примерно за 1,2-1,75 сек, что недостижимо другими методами.

Общее пояснение

Подробное рассмотрение основ вейвлет-анализа и способы его алгоритмической реализации представлено в [Дремин И.М., Иванов О.В., Нечитайло. Вейвлеты и их применение // Успехи физических наук. - 2001. - №5, с.465-501]. При дискретном преобразовании строятся и используются строго ортогональные базисы, что позволяет точно преобразовывать и восстанавливать сигнал. Этим объясняется их широкое использование для хранения и передачи информации, сжатия изображений и т.п. Однако требование строгой ортогональности и ограниченности резко сужает множество функций, которые можно использовать в качестве вейвлетного базиса.

Непрерывное преобразование не столь требовательно к используемым базисным функциям, допуская их достаточно большую протяженность и не строгую ортонормированность, что значительно расширяет их возможный набор, позволяя достичь большей гибкости при анализе сигнала, приводит к более наглядным результатам, нежели при использовании дискретного базиса. Именно возможность использования достаточно произвольной функции позволяет подобрать ее такой, чтобы существенно повысить эффективность обработки данных, увеличить точность определения параметров обрабатываемого сигнала, например, путем адаптации формы вейвлета к форме сигнала.

Кроме того, возможность выбора наиболее информативного (заранее рассчитанного) масштаба разложения позволяет уменьшить время обработки и сконцентрировать внимание на выявлении локальных характеристик сигнала. Наконец при использовании комплексных вейвлетов появляется возможность проведения фазового анализа сигнала, который в ряде случаев оказывается более чувствительным, чем амплитудный. Именно эти свойства используются в ряде областей техники, медицины, где те или иные вейвлет-коэффициенты имеют диагностическую ценность.

Предлагаемый способ реализуют следующим образом.

Предварительно вибродатчики, например типа АНС-114, с ориентацией измерительной оси вдоль продольной оси двигателя устанавливают на корпусе в заранее определенных узлах пучности акустического давления. Измеряют значения виброускорения и передают результаты измерения в компьютерный блок. Проводят непрерывное вейвлет-преобразование пошагово с назначенным интервалом и определяют масштаб (частоту) преобразования, на котором энергия вейвлет-коэффициентов имеет максимальное значение. В конце каждого интервала проводят расчет дисперсии коэффициентов на указанном масштабе и по их значительному падению делают вывод о наступлении предаварийного режима работы.

Заявляемый способ иллюстрируется примерами анализа результатов аварийных огневых испытаний. На фиг.1-3 показаны окна разработанной авторами программы Qwavelet 1.0 на завершающем этапе расчета дисперсии. Основные элементы вейвлет-преобразования реализованы в соответствии с [Torrence С., Combo G.P. A Practical Guide to Wavelet Analysis // Bulletin of the American Meteorological Society. - 1998. - №1. - Vol.79. - P.61-78].

Пример 1. Крупногабаритный РДТТ диаметром около 2 м и длиной камеры сгорания около 4 м. По формуле (1) при скорости звука около 1000 м/с основная частота колебаний составляет около 125 Гц. Датчик с ориентацией измерительной оси вдоль продольной оси двигателя установлен на передней крышке. Частота дискретизации 20000 Гц.

На этапе «преобразование» происходит вычисление вейвлетных коэффициентов.

На этапе «подробности» определяется масштаб разложения, имеющий максимальную энергию коэффициентов. Так при длительности исходного сигнала 100000 отсчетов (что соответствует 5 сек) и использовании комплексного вейвлета Morlet анализируется 125 масштабов, из которых максимальную энергию несет масштаб j=51. Этот масштаб соответствует частоте Fr[51]=116,631 Гц, что практически совпадает с рассчитанной выше частотой колебаний.

На фиг.1 (этап «Инструменты») приведена дисперсия вейвлетных коэффициентов (ось y) от времени (ось x). Основное деление по оси x в 20000 отсчетов соответствует 1 сек. Ширина окна (интервал расчета дисперсии) 8000 отсчетов соответствует 0,4 сек, сдвиг окна 20 отсчетов. Изменение дисперсии от точки максимума (65000) до точки катастрофического роста вибрации и давления (99800) длится порядка 1,75 сек. Это время и заметное падение дисперсии (около 40%) служат предвестником этого роста и достаточны для надежной диагностики.

Фиг.2 иллюстрирует результаты от датчика, установленного на цилиндрической части корпуса при тех же условиях регистрации и обработки. Изменение дисперсии длится 1,25 сек, а падение также составляет около 40%. Аналогичные зависимости получены от датчиков на неподвижном корпусе поворотного управляющего сопла.

Пример 2 (фиг.3). РДТТ диаметром около 1 м и длиной камеры сгорания около 3 м с ожидаемой частотой колебаний 160 Гц. Датчик установлен на выходном блоке вдоль оси двигателя. Частота дискретизации 25000 Гц. Аналогично предыдущему примеру предвестником аварии уменьшение дисперсии примерно на 50%. Длительность предвестника около 1,5 сек.

Во всех приведенных примерах длительность предвестника значительно превышает время анализа на компьютере (около 0,2 сек), поэтому возможна выработка соответствующего упреждающего воздействия, например подача команды на узел отсечки тяги. Изменения в фазовых характеристиках сигналов использовались для дополнительного контроля появления предвестников.

Следует отметить, что использование датчиков с другими ориентациями измерительных осей указанного эффекта не обнаруживает. Эффект также отсутствует при обработке данных от датчиков давления.

Таким образом, заявляемое техническое решение практически реализуемо и позволяет удовлетворить давно существующую потребность в решении поставленной задачи.

Способ диагностики предаварийных режимов работы РДТТ при огневых стендовых испытаниях, включающий измерение физического параметра во времени с помощью датчиков, регистрацию параметра в компьютерном блоке, преобразование параметра в вейвлет-коэффициенты, анализ дисперсии этих коэффициентов в разных масштабах, выработку суждения о неисправности в работе РДТТ по изменению дисперсии, отличающийся тем, что с помощью датчиков измеряют величину виброускорения, преобразуют полученные данные в вейвлет-коэффициенты по алгоритму непрерывного преобразования, определяют масштаб разложения, имеющий максимальную энергию вейвлет-коэффициентов, проводят анализ дисперсии коэффициентов на данном масштабе, при этом датчики размещают в точках корпуса РДТТ, информативных относительно продольных акустических колебаний, а измерительные оси датчиков ориентируют по продольной оси РДТТ.



 

Похожие патенты:

Изобретение может быть использовано при диагностировании технического состояния (ДТС) двигателей внутреннего сгорания (ДВС). ДТС осуществляется путем измерения с привязкой по углу поворота коленчатого вала (КВ), в том числе на рабочем такте каждого цилиндра (Ц), углового ускорения КВ и ротора турбокомпрессора (ТКР), давления наддува в стационарном режиме, в разгоне и выбеге, а также гармоник ускорения.

Изобретение относится к газотурбостроению и предназначено для определения рациональных параметров режимов влажной очистки проточного тракта газотурбинных двигателей (ГТД) на малоразмерной стендовой установке в заводских (цеховых) условиях.

Изобретение относится к области испытания авиационных двигателей по схеме «с присоединенным трубопроводом». Технический результат изобретения - повышение надежности и технологичности стенда путем создания простой и универсальной конструкции, исключающей влияние тепловых изменений диаметра и длины присоединенного трубопровода (ПТ) на монтажное положение его оси, достижение универсальности конструкции опор ПТ.

Изобретение относится к области диагностики повреждения деталей машин в процессе их непрерывной эксплуатации и может быть использовано для определения технического состояния машинных агрегатов и обеспечения их безопасной, ресурсосберегающей эксплуатации.

Способ наземного контроля нормальной работы установленного на самолете авиационного газотурбинного двигателя. Для этого производят испытание, которое содержит осуществление - на работающем газотурбинном двигателе и начиная от определенного режима - быстрого уменьшения расхода топлива по запрограммированному понижению с целью оценки стойкости к самогашению камеры сгорания упомянутого газотурбинного двигателя во время быстрого сброса его оборотов в полете.

Изобретение может быть использовано для диагностирования двигателей внутреннего сгорания (ДВС). Способ осуществляется путем контроля частоты вращения коленчатого вала двигателя при отключении части цилиндров и одновременном воздействии на топливоподачу.
Изобретение относится к способу комплексной диагностики технического состояния межроторных подшипников двухвальных авиационных и наземных газотурбинных двигателей методами вибродиагностики и может быть использовано в авиадвигателестроении.

Изобретение может быть использовано при обкатке двигателей внутреннего сгорания (ДВС). Способ создания нагрузки при испытаниях и обкатке заключается в том, что нагрузку создают тормозным моментом от собственной компрессии ДВС при закрытых впускном и выпускном коллекторах.

Изобретение относится к области испытания устройств на герметичность и может быть использовано для оценки герметичности корпуса сервопривода. Сущность: устройство (1) оценки герметичности корпуса (3) сервопривода (4) включает: сервопривод (4), имеющий электродвигатель (11), предназначенный для создания движения механической составляющей, устройство (12) определения положения механической составляющей, сменным образом присоединенное к соединителю (15), механическое устройство (13), сменным образом присоединенное к соединителю (16); средство (2) всасывания потока, соединенное с сервоприводом (4) через отверстие в корпусе (3), закрываемое посредством пробки (8); средство (6) предотвращения прохождения потока между средством (2) всасывания газа и корпусом (3) в направлении, обратном направлению всасывания; средство (7) измерения давления внутри корпуса.
Способ диагностирования ГТУ может быть использован при эксплуатации компрессорных станций. Разработчик ГТУ на месте эксплуатации проводит анализ изменения параметров двигателя ГТУ в процессе эксплуатации относительно полученных параметров при приемо-сдаточных испытаниях на заводе-изготовителе, затем выполняет оценку мощности, вырабатываемой на валу свободной турбины двигателя, на ее соответствие мощностной характеристике руководства по эксплуатации с учетом установки на двигателе регулировки ограничения максимальной температуры газа за свободной турбиной.

Изобретение относится к прибору контроля усилия сжатия уплотнительных колец. Прибор содержит базовую плиту, механизм фиксации кольца на плите и элемент задания усилия сжатия кольца. Прибор оснащен устройством измерения величины замкового зазора кольца, выполненным в виде фотоэлектрического датчика, корпус которого выполнен скобообразным и установлен на базовой плите, на одном плече скобообразного корпуса установлены светодиод с коллиматором, а на другом - фоторезистор, соединенный с устройством измерения тока, механизм фиксации кольца выполнен в виде ползуна, установленного с возможностью перемещения в базовой плите, и штока, установленного в ползуне с возможностью поворота и осевого перемещения и подпружиненного относительно него, причем на конце штока установлен прижим, имеющий возможность взаимодействия с кольцом, при этом в базовой плите с возможностью перемещения и фиксации в заданном положении размещены установочный и упорный элементы, предназначенные для выставки кольца в заданное положение на базовой плите. Техническим результатом является расширение функциональных возможностей прибора за счет обеспечения возможности замера упругих свойств широкой гаммы колец уплотнительных, а также повышение точности измерений. 3 з.п. ф-лы, 7 ил.
Изобретение может быть использовано для оценки моющей способности бензина и дизельного топлива и влияния их моющей способности на технико-экономические и экологические (ТЭ) характеристики двигателя (Д). Способ заключается в предварительном «загрязнении» Д эталонной загрязняющей смесью (ЭЗС) топлива и масла, обеспечивая его работу на фиксированном режиме. После выработки 20-40 л ЭЗС Д останавливают, охлаждают, разбирают и фиксируют загрязнения (З). Затем Д работает на испытуемом топливе на стандартных режимах (СР). При этом измеряют его ТЭ характеристики. Далее повторно фиксируют З. Приведены параметры СР. Технический результат - повышение степени надежности и объективности определения моющей способности бензина и дизельного топлива. 8 з.п. ф-лы, 4 табл.

Изобретение может быть использовано при диагностике технического состояния дизеля в условиях эксплуатации судна. В предлагаемом способе определяют скорости воздушного потока в сечениях патрубка путем пошагового введения комбинированного зонда (КЗ) и измерения разности полного и статического давлений воздушного потока (ВП). КЗ вводят перпендикулярно направлению ВП с шагом 5-15 мм. Пошагово измеряют разность полного и статического давлений воздушного потока в точках, соответствующих положениям отверстий в КЗ. Вычисляют скорость ВП в конкретных точках поперечного сечения патрубка, затем их усредняют и математически обрабатывают для определения расхода воздуха. КЗ ориентируют так, что ось одного отверстия располагается вдоль воздушного потока, а расстояние между точками по оси патрубка соответствует расстоянию между отверстиями КЗ и составляет 3-5 мм. Технический результат заключается в упрощении контроля расхода воздуха. 2 з.п. ф-лы. 2 ил.

Изобретение может быть использовано для определения угла опережения впрыска топлива (УОВТ) двигателей внутреннего сгорания (ДВС) в эксплуатационных условиях. Способ основан на измерении частоты вращения Д при появлении максимума производных по частоте вращения (ЧВ) автокорреляционной функции (АКФ) или энергетического спектра средних за цикл ускорений (Уск) разгона (Р), смещения по времени максимума взаимокорреляционной функции (ВКФ) этих Уск Р и выбега (В) относительно максимума АКФ выбега, наклона фазочастотной характеристики (ФЧХ) взаимного энергетического спектра этих Уск. При определении УОВТ по отдельным цилиндрам способ основан на измерении ЧВ при появлении максимумов производных по ЧВ средних за рабочие такты Уск Р, смещения по времени максимумов АКФ Уск Р или полной нагрузки на рабочем такте каждого цилиндра относительно верхней мертвой точки (ВМТ), максимумов ВКФ Уск Р и В на рабочем такте относительно максимумов АКФ В, наклона ФЧХ взаимных энергетических спектров Уск Р и В, а также прокрутки и полной нагрузки. Для ДВС с неуравновешенной гармоникой используют аналогично смещение относительно неуравновешенной гармоники Уск. Устройство содержит датчики ЧВ и ВМТ первого цилиндра, дифференциаторы, блоки регистров сигналов и максимумов, блок синхронизации начала отсчета угловых меток (УМ), задатчики частоты измерения, УМ цикла и их номеров, усреднители ЧВ и Уск, селектор уровня, коррелометр, измеритель энергетического спектра, два измерителя максимумов, два определителя УОВТ, измеритель ФЧХ. Техническим результатом является упрощение, снижение трудоемкости и повышение точности определения УОВТ. 2 н. и 7 з. п. ф-лы, 11 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя на газодинамическую устойчивость работы компрессора. Конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ТРД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на этапе серийного промышленного производства при повышении достоверности определения границ допустимого диапазона варьирования тяги. 2 н. и 9 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя на влияние климатических условий на основные характеристики работы компрессора. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей, и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ТРД, а именно тяги, экспериментально проверенным ресурсом и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на этапе серийного промышленного производства 2 н. и 8 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства турбореактивного двигателя изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного регулируемого реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний на этапе серийного производства и расширении репрезентативности оценки ресурса и надежности работы турбореактивного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 2 н. и 10 з.п. ф-лы, 2 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного поворотного реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. Устанавливают на технологическом стапеле промежуточный корпус, газогенератор, включая компрессор высокого давления, основную камеру сгорания и турбину высокого давления. Перед промежуточным корпусом устанавливают компрессор низкого давления, а за газогенератором последовательно соосно устанавливают турбину низкого давления, смеситель, фронтовое устройство, форсажную камеру сгорания и поворотное реактивное сопло. Поворотное реактивное сопло включает поворотное устройство и регулируемое реактивное сопло. При этом поворотное устройство разъемно прикрепляют неподвижным элементом к форсажной камере сгорания, а регулируемое реактивное сопло аналогично прикрепляют к подвижному элементу поворотного устройства с возможностью выполнения поворотов для изменения направления вектора тяги. В процессе изготовления КПД входной направляющий аппарат оснащают аэродинамически прозрачной силовой решеткой из радиальных стоек. Стойки устанавливают равномерно распределение по кругу входного сечения ВНА и с аэродинамическим затенением, создаваемым упомянутой решеткой совместно с фронтальным коком ВНА, составляющим менее 30% от полной площади входного круга ВНА. После сборки производят испытания двигателя на газодинамическую устойчивость работы компрессора. Конкретный или идентичные для статистической репрезентативности результатов три-пять экземпляров из партии серийно произведенных двигателей испытаны на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно, дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ТРД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на этапе серийного промышленного производства при повышении достоверности определения границ допустимого диапазона варьирования тяги. 2 н.и 10 з.п. ф-лы, 4 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. В способе серийного производства ТРД изготавливают детали и комплектуют сборочные единицы, элементы и узлы модулей и систем двигателя. Собирают модули в количестве не менее восьми - от компрессора низкого давления до всережимного поворотного реактивного сопла. Помодульно собирают двигатель, который выполняют двухконтурным, двухвальным. После сборки производят испытания двигателя на влияние климатических условий на основные характеристики работы компрессора. Испытания проведены с измерением параметров работы двигателя на различных режимах в пределах запрограммированного диапазона полетных режимов для конкретной серии двигателей и осуществляют приведение полученных параметров к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий. Технический результат состоит в повышении эксплуатационных характеристик ТРД, а именно тяги, экспериментально проверенным ресурсом, и надежности двигателя в процессе эксплуатации в полном диапазоне полетных циклов в различных климатических условиях, а также в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на этапе серийного промышленного производства 2 н. и 9 з.п. ф-лы, 2 ил., 4 табл.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Доводке подвергают опытный ТРД, выполненный двухконтурным, двухвальным. Доводку ТРД производят поэтапно. На каждом этапе подвергают испытаниям на соответствие заданным параметрам от одного до пяти ТРД. Проводят обследование. Для анализа и оценки состояния при необходимости производят разборку с последующей возможной доработкой и/или заменой деталей любого из модулей и/или узлов опытного ТРД. Обследуют и при необходимости заменяют доработанными любой из поврежденных в испытаниях или несоответствующих требуемым параметрам модуль - от компрессора низкого давления до всережимного регулируемого реактивного сопла. В программу доводочных испытаний с последующей доводочной доработкой включают испытания двигателя на газодинамическую устойчивость работы компрессора. Опытный двигатель испытан на стенде. Стенд снабжен входным аэродинамическим устройством с регулируемо пересекающим воздушный поток, преимущественно дистанционно управляемым выдвижным интерцептором. Интерцептор включает отградуированную шкалу положений интерцептора, имеющую фиксированную критическую точку, отделяющую двигатель на 2-5% от перехода в помпаж. При необходимости осуществляют повтор испытаний на определенном по регламенту наборе режимов, соответствующих режимам реальной работы ТРД в полетных условиях. Технический результат состоит в упрощении технологии и сокращении трудозатрат и энергоемкости процесса испытания ТРД на стадии доводки ТРД при повышении достоверности определения границ допустимого диапазона варьирования тяги. 5 з.п. ф-лы, 4 ил.
Наверх