Двухвальная униполярная электрическая машина



Двухвальная униполярная электрическая машина
Двухвальная униполярная электрическая машина
Двухвальная униполярная электрическая машина
Двухвальная униполярная электрическая машина

 


Владельцы патента RU 2542341:

Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" (RU)

Изобретение относится к электрическим машинам постоянного тока и может быть использовано в качестве электрического генератора либо электрического двигателя постоянного тока. Техническим результатом является обеспечение работы машины в электрических цепях постоянного тока как низкого, так и повышенного (удвоенного) напряжения, повышение эффективности работы и упрощение конструкции электрической машины постоянного тока. Машина содержит два проводящих диска, которые имеют общую точку соприкосновения и вращаются в разные стороны, систему возбуждения с постоянным магнитным полем, параллельным осям вращения дисков, и два токосъемника, установленных на валах дисков, благодаря чему достигается электромеханическое взаимодействие двух дисков, которые связаны как электрически, так и механически. Электрическая машина постоянного тока может быть выполнена с проводящими дисками разного диаметра. 1 з.п. ф-лы, 4 ил.

 

Предложение относится к электрическим машинам постоянного тока и может быть использовано в качестве электрического генератора либо электрического двигателя постоянного тока.

Известна конструкция униполярной электрической машины постоянного тока [Колесо Барлоу, книга «Исследование магнитных притяжений», 1824 г., Питер Барлоу], содержащая два горизонтально расположенных П-образных постоянных магнита, под которыми на одной оси размещены два медных зубчатых колеса. Недостатком известной конструкции является сложная конструкция электрической машины. Также известна усовершенствованная конструкция униполярной электрической машины постоянного тока [Диск Фарадея, List of homopolar generator patents, 1831 г., Майкл Фарадей], содержащая проводящий диск, постоянное магнитное поле, параллельное оси вращения диска и два токосъемника, один из которых расположен на оси диска, а второй у края диска. Недостатком известной конструкции является низкое генерируемое либо питающее напряжение диска (якоря) электрической машины, наличие сложного токосъемного устройства и, как следствие, ограничение ее установленной мощности.

Наиболее близким по технической сущности к заявляемому устройству является выбранное в качестве прототипа устройство электрической машины [патент US 406968, Dynamo electric machine 16.07.1889, Никола Тесла], конструктивно содержащее две униполярные машины, объединенные в одно целое устройство. Диски машины вращаются в одну сторону, будучи связанные гибким электропроводным поясом, направление магнитных полей, между которыми вращаются диски машин, противоположное. При этом питающее или генерируемое напряжение подводятся к валам дисков электрической машины. Технический результат такой конструкции обеспечивает работу машины в системах постоянного тока с удвоенным генерируемым или питающим напряжением, а также упрощение токосъемных контактов. Недостатком известного устройства является сложная конструкция индуктора, которая должна обеспечивать противоположное направление магнитных полей, между которыми вращаются диски, а также наличие гибкого электропроводного пояса.

Предлагаемая конструкция электрической машины постоянного тока позволяет упростить систему возбуждения и исключить из конструкции гибкий электропроводный пояс, а также удвоить рабочее напряжение по сравнению с классической дисковой униполярной машиной.

Описанные преимущества достигаются тем, что машина содержит два проводящих диска, которые имеют общую точку соприкосновения и вращающиеся в разные стороны, систему возбуждения с постоянным магнитным полем, параллельным осям вращения дисков, и два токосъемника, расположенных на валах дисков.

Электрическая машина постоянного тока, конструкция которой представлена на фиг.1, состоит из неподвижного индуктора 1, состоящего из магнитопровода 2 и обмотки возбуждения 3, двух одинаковых проводящих дисков (якорей) 4, 5 и двух токосъемников (щеточного узла с щетками) 6, 7, расположенных на валах дисков 4, 5. Причем диски 4 и 5 имеют общую точку соприкосновения и вращаются в разные стороны, а индуктор 1 выполнен в виде П-образного магнитопровода 2 с рабочими частями, параллельными плоскостям вращения дисков 4, 5.

Электрическая машина постоянного тока может содержать проводящие диски (якоря) 4, 5, имеющие разный диаметр.

Следует отметить, что конструктивно величина зазора между пластинами магнитопровода 2, между которыми вращаются диски, должна быть как можно меньше, а диски 4 и 5 должны быть электрически изолированы от магнитопровода 2 изолирующими втулками (подшипниками) 8, 9, 10, 11.

Поперечное сечение машины (поперек осей вращения), поясняющее принципы ее работы в двигательном и генераторном режимах, а также взаимодействие поля индуктора 1 с током, протекающим по дискам якорей 4, 5, представлено на фиг.2 и фиг.3.

Рассмотрим работу предлагаемой машины постоянного тока в режиме двигателя фиг.2. Пусть направление тока в обмотке возбуждения 3 такое, что линии однородного магнитного поля, создаваемые индуктором 1, направлены сверху вниз (согласно правилу правой руки), а к валам дисков 4, 5 подведено напряжение и по дискам протекает ток, как изображено на фиг 2а. Тогда согласно закону Ампера на диски 4, 5 будет действовать сила Лоренца, определяемая по правилу левой руки. В результате действия сил на диски 4, 5 они будут вращаться в разные стороны. Причем скорости вращения двух одинаковых дисков будут одинаковыми за счет того, что диски соединены не только электрически, но и механически. Данное утверждение справедливо для дисков с одинаковыми радиусами. Для дисков с разными радиусами скорости вращения дисков распределятся согласно равенству ν=ω·R при условии, что в точке соприкосновения дисков линейная скорость ν одинакова. Реверс электрической машины возможен, но только сразу для обоих дисков, которые всегда вращаются в разные стороны. Для изменения направления вращения дисков машины необходимо изменить направление потока электромагнитного поля индуктора 1, изменив направление тока в обмотке возбуждения 3 либо изменив направление тока в дисках машины 4, 5 (фиг.2в, фиг.2г).

Предлагаемая электрическая машина согласно принципу обратимости может работать и в генераторном режиме согласно фиг.3, если будет обеспечено однородное магнитное поле индуктора 1 и хотя бы одному из дисков 4 либо 5, либо обоим дискам 4, 5 будет передано вращение внешними силами (внешним источником механической энергии). При этом второй диск 5 либо 4 будет вращаться за счет общей точки соприкосновения в противоположную сторону. При этом ЭДС, вырабатываемая дисками, будет складываться и удваиваться по сравнению с ЭДС, вырабатываемой классической дисковой униполярной машиной.

Если предлагаемая униполярная электрическая машина постоянного тока будет иметь диски 4, 5 разного диаметра, то ЭДС, вырабатываемая каждым из дисков 4, 5, будет пропорциональна радиусу диска фиг.4. При этом должно быть обеспечено условие, что диски должны приводиться внешними силами во вращение в противоположные стороны с соотношениями частот вращения согласно равенству ω 1 ω 2 = R 2 R 1 либо диски должны приводиться во вращение от одного источника механической энергии через один вал дисков 4 или 5. Такая электрическая машина позволяет обеспечить выработку двух разных значений ЭДС при работе электрической машины в режиме генератора либо обеспечить разную частоту вращения выходных валов дисков при работе электрической машины в режиме двигателя.

Таким образом, предлагаемая электрическая машина с электромеханической связью двух дисков позволяет существенно упростить конструкцию, обеспечить простую коммутацию, повысить эффективность и надежность работы, осуществлять суммирование рабочих напряжений дисков и, как следствие, возможность работы такой электрической машины постоянного тока в системах постоянного тока повышенного (удвоенного) напряжения.

1. Электрическая машина постоянного тока, содержащая неподвижный индуктор, состоящий из магнитопровода и обмотки возбуждения, два одинаковых проводящих диска (якоря) и два токосъемника, расположенных на валах дисков, отличающаяся тем, что диски имеют общую точку соприкосновения и вращаются в разные стороны, а индуктор выполнен в виде П-образного магнитопровода с рабочими частями, параллельными плоскостям вращения дисков.

2. Электрическая машина постоянного тока по п.1, отличающаяся тем, что проводящие диски (якоря) имеют разный диаметр.



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано в широком ассортименте промышленных и бытовых изделий и приборов, в частности в гибридных автомобилях.

Изобретение относится к электромашиностроению и может быть использовано в электроприводах общепромышленных механизмов. Техническим результатом является увеличение момента силы тяги электродвигателя для облегчения его запуска и повышение КПД двигателя.

Изобретение относится к области электротехники, в частности, к электрическим машинам. Предлагаемый униполярный генератор тока может быть использован в качестве генератора электрической энергии постоянного или переменного тока в промышленности и может найти другие применения.

Изобретение относится к области электротехники и касается особенностей конструктивного выполнения электрических машин, в частности униполярных машин (УМ) постоянного тока.

Изобретение относится к области электротехники и электромашиностроения и касается создания новых генерирующих устройств постоянного тока с использованием неисчерпаемых природных запасов альтернативных потоков энергии водной среды.

Изобретение относится к области электротехники, в частности к электромеханическому преобразованию электрической энергии, и может быть использовано в электротехнической и электромашиностроительной промышленности и на транспорте в качестве электрического привода с низковольтным питанием.

Изобретение относится к области электротехники, в частности к электрическим машинам с осевым расположением основного магнитного потока в немагнитном зазоре. .

Изобретение относится к области электротехники и электромеханики, а конкретнее - к электрическим машинам постоянного тока. .

Изобретение относится к области электротехники и может быть использовано при создании надежных двигателей постоянного тока упрощенной конструкции. .

Изобретение относится к электротехнике и может быть использовано для демонстрации явления униполярной электромагнитной индукции. .

Изобретение относится к электротехнике и физике магнетизма, в частности к электромагнитным явлениям, обусловливающим возбуждение ЭДС индукции при взаимодействии катушки из проводника с магнитным полем. Заявлен генератор постоянного тока, содержащий ротор и статор с наложенной на него рабочей обмоткой, отличающийся тем, что ротор выполнен в виде прямого магнита, один магнитный полюс которого расположен на оси вращения ротора, а другой - вблизи рабочей обмотки статора, а статор представляет собой ферромагнитный тороид, соосный оси вращения ротора, на котором намотана рабочая обмотка в один или несколько слоев виток к витку по всей поверхности ферромагнитного тороида, а также совмещен снаружи с ферромагнитным тороидальным корпусом, при этом витки рабочей обмотки находятся в пазах между двумя половинами статора, а части витков рабочей обмотки, находящиеся в промежутке между ротором и статором, удалены от статора на некотором расстоянии применением промежуточного тороида из немагнитного материала. Технический результат - упрощение конструкции и повышение ЭДС индукции в бесконтактном генераторе постоянного тока. 3 ил., 4 фото.

Изобретение относится к физике магнетизма и к униполярным машинам, которые могут быть использованы либо как генератор, либо как двигатель постоянного тока. Она содержит намагниченный ферромагнитный тороид, тороид из немагнитного материала, а корпус- статор выполнен с крышками из немагнитного материала и магнитопроводящего материала, при этом на оси вращения ротора, выполненной из магнитомягкого материала, закреплены осесимметрично намагниченный ферромагнитный тороид - с одной стороны и шайба магнитной связи - с другой, расположенная с минимальным зазором от магнитопроводящей крышки корпуса-статора, внутри которого напротив намагниченного ферромагнитного тороида установлен вплотную к цилиндру корпуса-статора тороид из немагнитного материала с намотанной виток к витку рабочей обмоткой, витки которой расположены на минимальном расстоянии от намагниченного ферромагнитного тороида и соприкасаются с цилиндрическим корпусом-статором, при этом на крышке корпуса-статора из немагнитного материала установлены изолированные от нее выводы рабочей обмотки статора, а подшипники оси вращения ротора закреплены в упомянутых крышках. Изобретение позволяет увеличить внутреннее сопротивление рабочей обмотки униполярной машины, выполнение ее без скользящих контактов при значительном упрощении конструкции и увеличении надежности и долговечности ее работы и рекомендовано к использованию в электромобилях и тяговых двигателях на железнодорожном транспорте при использовании сверхсильных неодимовых магнитов. 1 ил.
Наверх