Ультрафиолетовая бактерицидная установка

Изобретение относится к области обеззараживания воздуха в помещениях с повышенным риском распространения возбудителей инфекций. Ультрафиолетовая бактерицидная установка включает ультрафиолетовую лампу, анализатор ресурса работы, пускорегулирующий аппарат, блок анализаторов температуры и/или влажности окружающей среды, и/или напряжения сети, и/или времени работы лампы, соединённый с блоком управления, задающим время эффективного облучения по формуле tэ=kэ×tобл, где tэ - время эффективного облучения, tобл - время длительности облучения, а kэ=ku×kT×kφ×kt, где kТ - коэффициент, учитывающий колебания температуры окружающей среды, kφ - коэффициент, учитывающий колебания влажности окружающей среды, ku - коэффициент, учитывающий колебания напряжения питающей сети, kt - коэффициент, учитывающий расчетную длительность облучения. Изобретение обеспечивает автоматическое управление длительностью облучения. 1 ил.

 

Изобретение относится к устройствам для обеззараживания воздуха в помещениях с повышенным риском распространения возбудителей инфекций: в лечебно-профилактических, дошкольных, школьных, производственных и общественных организациях и других помещениях с большим скоплением людей, с целью снижения уровня бактериальной обсемененности и создания условий для предотвращения распространения возбудителей инфекционных болезней.

Известны ультрафиолетовые бактерицидные установки, включающие в себя либо ультрафиолетовый бактерицидный облучатель, либо группу ультрафиолетовых бактерицидных облучателей. Для обеззараживания воздуха используются ультрафиолетовые бактерицидные лампы [Сарычев Г.С. "Облучательные свето-технические установки", Энергоатомиздат, 1992]. Ультрафиолетовые бактерицидные лампы питаются от электрической сети переменного тока частотой 50 Гц и напряжением 220 В. Включение бактерицидных ламп в сеть производится через пускорегулирующие аппараты (ПРА), которые предназначены для обычных люминесцентных ламп соответствующей мощности. ПРА обеспечивают необходимые режимы зажигания, разгорания и нормальной работы ламп и представляют собой отдельный блок, монтируемый внутри бактерицидного облучателя.

Известны медицинский бактерицидный настенный облучатель ОБН-150УХЛ4.2 "Азов", антибактериальные лампы ОБР-15 и ОБР-30 со счетчиком работы ультрафиолетовой лампы (таймером) и облучатель-рециркулятор "АРМЕД" СН-111 (1*30) [Облучатель медицинский бактерицидный настенный ОБН-150УХЛ4.2 "Азов". Руководство по эксплуатации АВ 70.00.00.00.00 РЭ]. Счетчик отслеживает ресурс работы лампы. При выработке установленного ресурса счетчик подает сигнал персоналу о необходимости замены лампы.

Недостатком конструкции является отсутствие возможности управления режимами облучения бактерицидными лампами на рабочих местах по длительности и интенсивности.

Наиболее близкой по выполнению является ультрафиолетовая бактерицидная установка, включающая ультрафиолетовую лампу, датчик контроля интенсивности и счётчик времени работы лампы (патент РФ на полезную модель № 104068, МПК A61L9/20, 2011г.).

Недостатком установки является возможность контроля только интенсивности УФ-излучения лампы и времени наработки лампы.

Техническим результатом является расширение арсенала ультрафиолетовых бактерицидных установок.

Технический результат достигается тем, что ультрафиолетовая бактерицидная установка включает ультрафиолетовую лампу, счетчик ресурса работы (таймер), пускорегулирующий аппарат, блок анализаторов температуры и/или влажности окружающей среды, и/или напряжения сети, и/или времени работы лампы, соединённый с блоком управления, при этом блок анализатора температуры окружающей среды соединён с блоком управления, задающим время эффективного облучения tэ по формуле

где tэ - время эффективного облучения, tобл - время длительности облучения, kэ=kТ - коэффициент, учитывающий колебания температуры окружающей среды по расчетным зависимостям

где

1,0 - среднее значение коэффициента при колебаниях температуры окружающего воздуха от 10 до 40°С, при котором время облучения лампы остается неизменным,

1,1 - среднее значение коэффициента при колебаниях температуры окружающего воздуха от 40 до 50°С, при котором время облучения лампы увеличивается на 10%,

1,2 - среднее значение коэффициента при колебаниях температуры окружающего воздуха от 5 до 10°С, при котором время облучения лампы увеличивается на 20%;

блок анализатора влажности воздуха окружающей среды соединён с блоком управления, задающим время эффективного облучения tэ по формуле

где tэ - время эффективного облучения, tобл - время длительности облучения, kэ=kφ - коэффициент, учитывающий колебания влажности окружающей среды по расчетным зависимостям

где

1,0 - коэффициент, учитывающий колебания влажности окружающего воздуха от 30% до 80%, при котором время облучения лампы остается неизменным,

1,1 - коэффициент, учитывающий колебания влажности окружающего воздуха менее 30%, при котором время облучения лампы увеличивается на 10%,

1,3 - коэффициент, учитывающий колебания влажности окружающего

воздуха более 80%, при котором время облучения лампы увеличивается на 30%;

блок анализатора напряжения сети соединён с блоком управления, задающим время эффективного облучения tэ по формуле

где tэ - время эффективного облучения, tобл - время длительности облучения, kэ=ku - коэффициент, учитывающий колебания напряжения питающей сети по расчетным зависимостям

где Uном - 220 В, Uc - измеряемая величина напряжения сети,

1,0 - коэффициент, учитывающий колебания напряжения питающей сети от 0,9 номинального напряжения сети до 1,1, при котором время облучения лампы остается неизменным,

1,15 - коэффициент, учитывающий колебания напряжения питающей сети от 0,8 номинального напряжения сети до 0,9 номинального напряжения сети, при котором время облучения лампы увеличивается на 15%,

1,5 - коэффициент, учитывающий колебания напряжения питающей сети от 1,1 номинального напряжения сети до 1,2 номинального напряжения сети, при котором длительность работы лампы увеличивается на 50%;

блок анализатора времени работы лампы соединён с блоком управления, задающим время эффективного облучения tэ по формуле

где tэ - время эффективного облучения, tобл - время длительности облучения, kэ=kt - коэффициент, определяемый по расчетным зависимостям

где tpec - ресурс облучателя (ч),

1,0 - коэффициент, учитывающий расчетную длительность облучения в пределах от 0% до 33% заданного ресурса лампы, при котором лампа не отработала одну треть своего ресурса, и время облучения лампы при нормальных условиях не изменяется,

1,2 - коэффициент, учитывающий расчетную длительность облучения в пределах от 33% до 66%, при котором лампа отработала более одной трети своего ресурса, и время облучения автоматически увеличивается на 20%,

1,3 - коэффициент, учитывающий расчетную длительность облучения в пределах от 66% до 100%, при котором лампа отработала более двух третьих своего ресурса, и время облучения лампы автоматически увеличивается на 30%;

блок анализаторов температуры, влажности окружающей среды, напряжения сети и времени работы лампы соединен с блоком управления, задающим время эффективного облучения tэ по формуле

tэ=kэ×tобл,

где tэ - время эффективного облучения, tобл - время длительности облучения,

kэ=ku×kт×kφ×kt,

где все коэффициенты имеют вышеприведенные значения.

Отличием является выполнение блоков управления с возможностью задавать время эффективного облучения по вышеприведенным формулам.

На фигуре 1 изображена схема предлагаемой ультрафиолетовой бактерицидной установки, где 1 - бактерицидная лампа, 2 - пускорегулирующий аппарат, 3 - конденсатор для повышения коэффициента мощности сети и подавления радиопомех, 4 - блок анализаторов параметров окружающей среды, который включает в себя 5 - цифровой датчик счетчика ресурса работы (таймер), который позволяет измерять время с момента первого включения бактерицидной лампы, а также длительность каждого цикла работы лампы, 6 - цифровой датчик анализатора параметра напряжения сети, 7 - цифровой датчик анализатора параметра колебаний температуры, 8 - цифровой датчик анализатора параметра колебания влажности воздуха, 9 - блок управления, который включает в себя 10 - интегральную схему (чип) счетчика ресурса работы, 11 - чип параметра напряжения сети, 12 - чип параметра колебаний температуры, 13 - чип колебания влажности воздуха, 14 - сумматор, 15 - жидкокристаллический экран, 16 - выключатель.

В нормальном режиме эксплуатации (при нормальных или нормированных документами значениях напряжения сети, температуры, влажности и ресурсе работы лампы) ультрафиолетовая бактерицидная установка работает следующим образом.

При включении устройства выключателем (16) через пускорегулирующий аппарат (2) питание подается на бактерицидную лампу (1) и лампа зажигается. В момент включения установка с помощью блока анализаторов (4) получает информацию об окружающей среде: изменениях напряжения сети через цифровой датчик анализатора параметра напряжения сети (6), о изменениях температуры через цифровой датчик анализатора параметра колебаний температуры (7), о изменениях влажности окружающего воздуха через цифровой датчик анализатора параметра колебания влажности воздуха (8). Затем информация в цифровом виде передается в блок управления (9), который содержит в себе интегральные схемы, обрабатывающие информацию об окружающей среде, поступающую от соответствующих датчиков блока анализаторов. В каждой интегральной схеме производятся расчеты.

Чип анализатора ресурса работы лампы (10) рассчитывает соответственно её ресурс работы. Чип счетчика анализатора напряжения сети (11) получает информацию с соответствующего цифрового датчика и рассчитывает колебания напряжения питающей сети ku по расчетным зависимостям

Чип анализатора параметра колебаний температуры (12) рассчитывает значение коэффициента, учитывающего колебания температуры kТ, по расчетным зависимостям

Чип счетчика параметра колебаний влажности воздуха (13) получает информацию об изменениях влажности окружающего воздуха с соответствующего датчика, рассчитывает значение коэффициента kφ, учитывающего влияние относительной влажности воздушной среды, по расчетным зависимостям

Затем информация о расчетных коэффициентах попадает через линии связи в сумматор - интегральную схему. В зависимости от конкретных условий и длительности эксплуатации бактерицидной лампы сумматор автоматически устанавливает оптимальные значения коэффициента эффективности облучения kэ по формуле

В самом сложном варианте, когда все анализируемые параметры превышают нормативные, лампа должна работать с kэ=1,5×1,2×1,3×1,3=3,042. Как видно, для эффективного обеззараживания среды при значительных колебаниях напряжения сети, температуры, влажности, выработке ресурса устройство работает в 3 раза дольше новой лампы, работающей в нормативных условиях. Это обеспечивается блоком управления, который выдает команду на отключение лампы, через промежуток времени кратный коэффициенту kэ=ku×kТ×kφ×kt, то есть значительно позже, чем определено заданным ресурсом работы лампы при нормальных условиях.

В случае выполнения условия равенства между временем работы облучателя, в данном цикле облучения, полученным с помощью таймера работы лампы, и временем эффективного облучения tэ, рассчитанным по формуле tэ=kэ×tобл, блок управления выдает команду на пускорегулирующий аппарат на размыкание цепи питания бактерицидной лампы.

Таким образом, установка позволяет автоматически управлять временем облучения бактерицидной лампы, исключая влияние человеческого фактора.

Ультрафиолетовая бактерицидная установка, характеризующаяся тем, что включает ультрафиолетовую лампу, анализатор ресурса работы, пускорегулирующий аппарат, блок анализаторов температуры и/или влажности окружающей среды, и/или напряжения сети, и/или времени работы лампы, соединённый с блоком управления, задающим время эффективного облучения по формуле

где tэ - время эффективного облучения, tобл - время длительности облучения,

где kТ - коэффициент, учитывающий колебания температуры окружающей среды по расчетным зависимостям

kφ - коэффициент, учитывающий колебания влажности окружающей среды по расчетным зависимостям

ku - коэффициент, учитывающий колебания напряжения питающей сети по расчетным зависимостям

где Uном - 220 В,
Uc - измеряемая величина напряжения сети,
kt - коэффициент, определяемый по расчетным зависимостям

где tpec - ресурс облучателя (ч).



 

Похожие патенты:

Изобретение относится к медицинской технике и может быть использовано для обеззараживания воздуха в помещениях со скоплением людей. Рециркулятор бактерицидный компактный содержит корпус, состоящий из двух полукорпусов, один из которых имеет входное окно, в котором размещен фильтр, а другой - выходное окно, в котором размещен вентилятор, камеру облучения с установленными в ней бактерицидными лампами и лабиринтные светозащитные экраны, расположенные на входе и выходе продольно по оси разъема корпуса.

Изобретение относится к области дезинфекции, а именно к бактерицидным облучателям открытого типа. Бактерицидный облучатель содержит центральную стойку с верхними и нижними ламподержателями - патронами, в которых вокруг центральной стойки закреплены газоразрядные ртутные лампы низкого давления, подключенные к блоку питания, продольные оси которых расположены с наклоном к вертикальной оси центральной стойки, при этом расстояние от нижних ламподержателей - патронов до вертикальной оси центральной стойки больше, чем соответствующее расстояние от верхних ламподержателей - патронов до вертикальной оси центральной стойки.

Изобретение относится к области дезинфекции с использованием ультрафиолетового излучения, а именно к бактерицидным облучателям открытого типа. Бактерицидный облучатель содержит центральную стойку с верхними и нижними ламподержателями-патронами, в которых вокруг центральной стойки закреплены газоразрядные ртутные лампы низкого давления, при этом верхний и нижний ламподержатели-патроны каждой газоразрядной ртутной лампы низкого давления одинаково удалены - установлены на равном расстоянии от вертикальной оси центральной стойки.

Изобретение относится к области обеззараживания и очистки воздуха от болезнетворных микроорганизмов, органических веществ, запахов и может быть использовано в агропромышленном комплексе.

Изобретение относится к обеззараживанию воздуха. .

Изобретение относится к области обеззараживания воздуха. .

Изобретение относится к обеззараживанию воздуха в пассажирских вагонах метрополитена. .

Изобретение относится к области обеззараживания воздуха. .

Изобретение относится к средствам обеззараживания воздуха. .

Изобретение относится к области дезинфекции, а именно к бактерицидным облучателям открытого типа, и может быть использовано для обеззараживания воздуха и загрязненных поверхностей в медицинских помещениях в отсутствие людей. Бактерицидный облучатель содержит корпус с ламподержателями - патронами, в которых закреплены компактные газоразрядные ртутные лампы U-образной или Н-образной формы с односторонними выводами, подключенные к пускорегулирующему аппарату узла питания и управления. При этом узел питания и управления содержит блок сетевого включения и блок питания и управления. Блок сетевого включения выполнен в виде последовательно включенных поворотного выключателя с нормально разомкнутыми контактами, снабженного замком, аварийного кнопочного выключателя с нормально замкнутыми контактами, кнопочного выключателя с нормально разомкнутыми контактами и пускового реле, нормально разомкнутые контакты которого включены параллельно нормально разомкнутым контактам кнопочного выключателя. Блок питания и управления содержит блок задержки включения газоразрядной лампы, который подключен к блоку сетевого включения, блок - задатчик времени работы газоразрядной лампы, пускорегулирующий аппарат, датчик контроля работы газоразрядной лампы и счетчик наработки газоразрядной лампы. Изобретение обеспечивает повышение надежности и безопасности работы бактерицидного облучателя. 10 з.п. ф-лы, 2 ил.

Изобретение относится к области дезинфекции, а именно к бактерицидным облучателям открытого типа, и может быть использовано для обеззараживания воздуха и загрязненных поверхностей в медицинских помещениях в отсутствии людей. Бактерицидный облучатель содержит корпус с ламподержателями - патронами, в которых закреплены компактные газоразрядные ртутные лампы U-образной или Н-образной формы с односторонними выводами, подключенные к узлу питания и управления с пускорегулирующим аппаратом. При этом узел питания и управления бактерицидного облучателя содержит блок сетевого включения и блок питания и управления, а между блоком сетевого включения и пускорегулирующим аппаратом блока питания и управления включены блок задержки включения и блок - задатчик времени работы газоразрядной лампы. Кроме того, блок питания и управления снабжен датчиком контроля работы газоразрядной лампы и счетчиком наработки газоразрядной лампы. Изобретение обеспечивает повышение надежности и безопасности работы бактерицидного облучателя. 8 з.п. ф-лы, 2 ил.

Изобретение относится к области обеззараживания воздуха и загрязненных поверхностей в помещениях в отсутствие людей с использованием ультрафиолетового излучения. Устройство системы питания и управления бактерицидного облучателя открытого типа содержит блок сетевого включения и блок питания и управления с пускорегулирующим аппаратом, к которому подключена по крайней мере одна газоразрядная лампа бактерицидного облучателя, при этом блок питания и управления снабжен датчиком контроля работы газоразрядной лампы и счетчиком наработки газоразрядной лампы, выполненным со светодиодным цифровым индикатором. Между блоком сетевого включения и пускорегулирующим аппаратом блока питания и управления включены блок задержки включения и блок-задатчик времени работы газоразрядной лампы. Изобретение обеспечивает повышение надежности и безопасности работы бактерицидного облучателя открытого типа. 6 з.п. ф-лы, 1 ил.

Изобретение относится к устройству для дезинфицирующей обработки текучей среды путем воздействия на текучую среду ультрафиолетовым светом. Устройство содержит реактор (10), имеющий внутреннее пространство (11), в котором размещено средство (20) излучения ультрафиолетового света, впуск (12) для впускания текучей среды во внутреннее пространство (11) и выпуск для выпускания текучей среды из внутреннего пространства. Средство (20) излучения света содержит один электрод, причем стенка (14), окружающая внутреннее пространство (11), выполнена с возможностью функционирования в качестве электрода и содержит электропроводный материал. Устройство дополнительно содержит средство (30), которое также содержит электропроводный материал и которое выполнено с возможностью локального увеличения электропроводности в пространстве между стенкой (14) реактора и средством (20) излучения света. Технический результат - улучшение дезинфицирующего эффекта обработки ультрафиолетовым светом. 12 з.п. ф-лы, 6 ил.

Изобретение относится к области дезинфекции и может быть использовано для обеззараживания воздуха и загрязненных поверхностей в помещениях в отсутствие людей. Устройство системы питания и управления бактерицидного облучателя открытого типа содержит блок сетевого включения и блок питания и управления с пускорегулирующим аппаратом, при этом блок питания и управления снабжен датчиком контроля работы газоразрядной лампы и счетчиком наработки газоразрядной лампы со светодиодным цифровым индикатором, а между блоком сетевого включения и пускорегулирующим аппаратом блока питания и управления включены блок задержки включения и блок-задатчик времени работы газоразрядной лампы. Изобретение повышает надежность и безопасность работы облучателя. 6 з.п. ф-лы, 1 ил.

Изобретение относится к области дезинфекции воздуха и загрязненных поверхностей в отсутствие людей. Бактерицидный облучатель содержит размещенный в коробчатом корпусе блок питания и управления и газоразрядные ртутные лампы низкого давления, закрепленные в патронах на верхней поверхности корпуса, на которой установлены также защитное ограждение в виде решетки вокруг ламп и центральная стойка с зажимами, фиксирующими лампы. Блок питания и управления содержит блок сетевого включения, блок управления и силовой блок. Блок сетевого включения выполнен в виде кнопочного выключателя с фиксацией и нормально разомкнутыми контактами, кнопочного выключателя аварийного отключения без фиксации с нормально замкнутыми контактами, источника пониженного напряжения и кнопочного выключателя без фиксации с нормально разомкнутыми контактами. Блок управления содержит многопозиционный переключатель режимов работы и подключенный к источнику пониженного напряжения микропроцессор. Силовой блок выполнен с электронными пускорегулирующими аппаратами (ЭПРА), снабженными контроллерами, количество которых соответствует количеству ртутных ламп, управляющие входы ЭПРА подключены к выходам микропроцессора, а выходы контроллеров подключены к входам микропроцессора. К выходам микропроцессора подключены также сумматоры счетчика наработки газоразрядных ламп и счетчика количества включений, блок световой индикации и блок звукового оповещения. Изобретение позволяет повысить удобство, надежность и безопасность процесса обеззараживания. 7 з.п. ф-лы, 2 ил.

Изобретение относится к области санитарной гигиены и предназначено для обеззараживания воздуха в зданиях. Рециркулятор вентилируемого воздуха содержит воздушный фильтр (3), соединенный с впускным отверстием для воздуха, вентилятор (2), камеру (4) с ультрафиолетовыми лампами (5) и датчик влажности воздуха. Рециркулятор также содержит водяной насос (15), гидравлическую камеру (6), снабженную гидравлическим коллектором (7) с обратным патрубком (17) и с встроенными в корпус гидравлической камеры распылительными форсунками (8), дренажный желоб (9), вход которого соединен с корпусом гидравлической камеры и выполнен под форсунками, а выход соединен с входом водяного фильтра (12). Выход водяного фильтра (12) соединен с входом водяного насоса (15), выход которого соединен с обратным патрубком (17), который соединен с гидравлическим коллектором (7). Изобретение позволяет повысить качество и экологическую безопасность бактерицидной обработки рециркулируемого воздуха в закрытых помещениях. 1 ил., 1 табл.

Группа изобретений относится к области фотокаталитической очистки газов и может быть использована для уничтожения органических загрязняющих веществ, присутствующих в воздухе. Устройство (1) для обработки газа содержит диэлектрический канал (2), содержащий: вход (Е) и выход (S) газа; установленную внутри канала (2) ультрафиолетовую лампу (3); электроды (4 и 5); съемный фотокаталитический элемент (6). Электрод (4) расположен на наружной стенке (22) канала (2). Электрод (5) расположен внутри канала (2). Фотокаталитический элемент (6) расположен на внутренней стенке (21) канала (2) и содержит подложку, на которой находится фотокатализатор. Электрод (5) образован спиральной металлической нитью, содержащей витки (51, 52, 53, 54), прижимающие фотокаталитический элемент (6) к внутренней стенке (21) канала (2). Система обработки газа содержит: устройство (1); электрические генераторы (8 и 9) переменного тока; средство создания разрежения. Генератор (8) питает лампу (3). Генератор (9) питает электроды (4 и 5). Обеспечивается повышение эффективности и скорости снижения концентрации загрязняющих веществ, упрощение конструкции. 3 н. и 14 з.п. ф-лы. 2 ил.

Группа изобретений относится к области фотокаталитической очистки газов и может быть использована для уничтожения органических загрязняющих веществ, присутствующих в воздухе. Устройство (1) для обработки газа содержит диэлектрический канал (2), содержащий: вход (Е) и выход (S) газа; установленную внутри канала (2) ультрафиолетовую лампу (3); электроды (4 и 5); съемный фотокаталитический элемент (6). Электрод (4) расположен на наружной стенке (22) канала (2). Электрод (5) расположен внутри канала (2). Фотокаталитический элемент (6) расположен на внутренней стенке (21) канала (2) и содержит подложку, на которой находится фотокатализатор. Электрод (5) образован спиральной металлической нитью, содержащей витки (51, 52, 53, 54), прижимающие фотокаталитический элемент (6) к внутренней стенке (21) канала (2). Система обработки газа содержит: устройство (1); электрические генераторы (8 и 9) переменного тока; средство создания разрежения. Генератор (8) питает лампу (3). Генератор (9) питает электроды (4 и 5). Обеспечивается повышение эффективности и скорости снижения концентрации загрязняющих веществ, упрощение конструкции. 3 н. и 14 з.п. ф-лы. 2 ил.
Наверх