Промышленный томограф



Промышленный томограф
Промышленный томограф
Промышленный томограф
Промышленный томограф
Промышленный томограф

 


Владельцы патента RU 2542600:

Открытое акционерное общество "Федеральный научно-производственный центр "Алтай" (RU)

Использование: для неразрушающего контроля материалов и изделий методом рентгеновской компьютерной томографии. Сущность изобретения заключается в том, что промышленный томограф содержит источник жесткого тормозного излучения, расположенный от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения части сечения объекта, сканер, обеспечивающий только вращательное движение, неподвижный детекторный блок, управляющий компьютер, программное обеспечение, при этом источник излучения выполнен с возможностью поворота вокруг оси, перпендикулярной плоскости томограммы и проходящей через фокус пучка излучения, и расположен от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения менее половины сечения объекта и перекрытие веерными пучками половины сечения объекта за цикл поворотов. Технический результат: обеспечение возможности сканирования крупногабаритных изделий при высоком качестве получаемой томограммы за достаточно короткий промежуток времени без увеличения габаритов томографа. 3 ил.

 

Изобретение относится к области неразрушающего контроля материалов и изделий методом рентгеновской компьютерной томографии и может быть использовано для дефектоскопии крупногабаритных промышленных изделий, в том числе РДТТ диаметром от 1 до 4 м.

Среди радиационных методов неразрушающего контроля компьютерная томография дает наиболее полную информацию о контролируемом объекте.

Из зарубежных томографических средств, предназначенных для контроля РДТТ, наибольший интерес представляет томограф AF/ACNS-2 фирмы Aerojet Strategic Propulsion, Inc. (США) [Компьютерный томограф AF/ACTS-2 // Информационный материал ГОНТИ 0409. - 1986. - №41 (908) - 7 с.], содержащий источник жесткого тормозного излучения, сканер, детекторный блок, управляющий компьютер, программное обеспечение.

Немного ранее американская фирма American Science and Engineering разработала аналогичную томографическую установку для контроля двигателей ракеты Trident-2 [Неразрушающие методы контроля за рубежом // Аналитический обзор ГОНТИ 409. - 1985. - №6 (158) - 12 с.], содержащий источник жесткого тормозного излучения, сканер, детекторный блок, управляющий компьютер, программное обеспечение.

Известные из литературных источников томографические системы, предназначенные для контроля крупногабаритных РДТТ, имеют ряд одинаковых конструктивных особенностей:

- в качестве источника излучения применяется линейный ускоритель, генерирующий жесткое тормозное излучение с максимальной энергией в спектре 15 МэВ;

- РДТТ устанавливается вертикально на поворотном горизонтальном столе;

- в процессе получения радиометрических данных для одной плоской томограммы РДТТ поворачивается пошагово на поворотном столе и перемещается в горизонтальном направлении, а детекторы и источник излучения неподвижны: реализована схема томографа второго поколения [Хермен Г. Восстановление изображений по проекциям. - М., Мир, 1983. - 349 с.; Календер В. Компьютерная томография. - М., Техносфера, 2006. - 343 с.].

В отечественной практике сложилась традиция располагать крупногабаритное изделие при контроле горизонтально. В этом случае условия выявления таких дефектов, как трещины и расслоения, наиболее благоприятны. Конструкции известных томографов, предназначенных для вертикального расположения изделия, сложно применить для контроля изделия, расположенного горизонтально, поскольку потребуется вертикальное перемещение системы «источник - детекторы». Как излучательный блок ускорителя, так и блок детекторов с коллимационной системой являются достаточно тяжелыми и громоздкими, поэтому периодические подъем и опускание их (десятки раз при сканировании одного сечения) требуют мощных прецизионных механизмов.

Таким образом, вышеуказанные томографы неэффективны при контроле крупногабаритных изделий, расположенных горизонтально.

Томограф третьего поколения представляется более подходящим для сканера с горизонтальным расположением двигателя, поскольку здесь для получения томограммы требуется только вращение РДТТ.

Известен промышленный томограф, принятый за прототип, по патенту РФ №2431825 (опубл. 20.10.2011 г.), содержащий источник жесткого тормозного излучения, расположенный от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения части сечения объекта, сканер, обеспечивающий только вращательное движение, детекторный блок, управляющий компьютер, программное обеспечение.

При такой конструкции томографа при контроле изделия диаметром 1 м с энергией тормозного излучения 10 МэВ расстояние от источника излучения до оси вращения изделия составляет 2-2,5 м.

С увеличением диаметра изделия требуется увеличивать энергию излучения. Оба этих фактора приводят к увеличению габаритов томографа. Для двигателя диаметром 2 м и энергии изучения 15 МэВ в томографе-прототипе потребуется расположить источник на расстоянии около 6 м, что создает эксплуатационные неудобства и экономически нецелесообразно.

Кроме увеличения габаритов, отнесение источника излучения на большое расстояние приводит к уменьшению интенсивности потока излучения и, следовательно, уменьшению производительности контроля.

Задачей настоящего изобретения является создание промышленного томографа с расширенными эксплуатационными возможностями и удобствами, позволяющего сканировать крупногабаритные изделия диаметром 2-4 м при сохранении фукциональных результатов (качество томограммы и время ее получения) на уровне прототипа без увеличения габаритов томографа.

Поставленная задача решается предлагаемым промышленным томографом, содержащим источник жесткого тормозного излучения, расположенный от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения части сечения объекта, сканер, обеспечивающий только вращательное движение, неподвижный детекторный блок, управляющий компьютер, программное обеспечение. Особенность заключается в том, что источник излучения выполнен с возможностью поворота вокруг оси, перпендикулярной плоскости томограммы и проходящей через фокус пучка излучения, и расположен от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения менее половины сечения объекта и перекрытие веерными пучками половины сечения объекта за цикл поворотов.

Из уровня техники неизвестно техническое решение поставленной задачи, в котором бы имело место предложенное сочетание признаков.

Рассмотрим заявляемый томограф, в котором веерный пучок перекрывает не половину сечения объекта, как в прототипе, а меньшую часть (фиг. 1). Сканирование производят поворотом объекта на 360°. Очевидно, что за один оборот получается лишь часть данных для реконструкции томограммы. Другую порцию данных можно получить, если повернуть источник излучения таким образом, чтобы пучок перекрывал другую часть половины сечения объекта (фиг. 2). После этого объект контроля снова поворачивается на 360°. Источник излучения поворачивают столько раз, сколько необходимо, чтобы веерные пучки перекрыли в итоге половину поля томограммы. Полученные данные веерных пучков можно переупаковать в параллельные проекции, а затем реконструировать томограмму.

В предлагаемом томографе, по сравнению с прототипом в случае его использования применительно к крупногабаритным изделиям диаметром 2-4 м, существенно уменьшается расстояние от источника излучения до объекта (источник может быть установлен даже вплотную к объекту контроля); сокращается время сбора радиометрических данных, достаточных для реконструкции томограммы такого же качества, как при удаленном источнике.

Утверждение о сокращении времени требует пояснения. Допустим, что в томографе-прототипе расстояние от источника излучения до центра вращения изделия равно L, радиус изделия равен R, а расстояние от источника до детекторов L+R+d (d - расстояние от поверхности объекта до детекторов).

Веерный пучок перекрывает при этом половину поля томограммы. Время получения данных на одну томограмму равно Т. Расположим теперь источник в два раза ближе к оси вращения объекта. Интенсивность излучения, регистрируемого детекторами, увеличится в (L+R+d)2/(L/2+R+d)2. Время экспозиции при измерении данных можно уменьшить в такое же количество раз. Статистическая погрешность при этом не увеличится. Но при таком расположении источника необходимо выполнить два цикла вращения изделия вместо одного. В итоге время сбора данных Т' в предлагаемом томографе можно вычислить по формуле

Допустим, что радиус изделия R=1 м, расстояние от поверхности объекта до детекторов d=0,2 м, энергия тормозного излучения 15 МэВ (максимум в спектре), тогда раствор пучка составляет 10° и расстояние источник - ось вращения L=6 м. Подставив эти данные в формулу (1), получим

T′=0,68·Т.

Если сократить расстояние L втрое, то время сбора данных можно вычислить по формуле

В рассмотренном примере оно составит Т′=0,59·Т. В обоих случаях наблюдается сокращение габаритов томографа и времени сбора данных.

Для проверки работоспособности алгоритма реконструкции томограммы по данным сканирования веерным пучком с поворачивающимся источником излучения была разработана программа компьютерного моделирования, включающая в себя формирование проекционных данных, переупаковку фрагментов веерных проекций в параллельные проекции, расчет и визуализацию томограммы. На фиг. 3 представлены томограммы, полученные по данным параллельного (А), веерного (Б) и половинного веерного (В) пучка, полученного за три цикла вращения изделия. В первом случае реконструкция производилась методом обратного проецирования фильтрованных параллельных проекций [Введение в современную томографию. Под общей редакцией Тернового К.С. и Синькова М.В. - Киев. Наукова думка, 1983. - 231, с. 5], во втором - методом обратного проецирования фильтрованных веерных проекций [Введение в современную томографию. Под общей редакцией Тернового К.С. и Синькова М.В. - Киев. Наукова думка, 1983. - 231, с. 5], в третьем случае производилась переупаковка фрагментов веерного пучка в параллельные с последующей реконструкцией, как в первом пункте. Заметного различия качества томограмм не наблюдается.

Таким образом, заявляемый промышленный томограф позволяет удовлетворить давно существующую потребность в решении поставленной задачи.

Промышленный томограф, содержащий источник жесткого тормозного излучения, расположенный от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения части сечения объекта, сканер, обеспечивающий только вращательное движение, неподвижный детекторный блок, управляющий компьютер, программное обеспечение, отличающийся тем, что источник излучения выполнен с возможностью поворота вокруг оси, перпендикулярной плоскости томограммы и проходящей через фокус пучка излучения, и расположен от объекта на расстоянии, обеспечивающем перекрытие веерным пучком излучения менее половины сечения объекта и перекрытие веерными пучками половины сечения объекта за цикл поворотов.



 

Похожие патенты:

Изобретение относится к обработке медицинских изображений. Техническим результатом является повышение точности оценки движения интересующей ткани.

Использование: для рентгеноскопического контроля кольцевого сварного шва трубопровода. Сущность изобретения заключается в том, что устройство для рентгеноскопического контроля кольцевого сварного шва трубопровода включает направленный источник рентгеновского излучения, который вводят в секцию трубопровода и который может вращаться в трубопроводе, средство для выравнивания направленного источника рентгеновского излучения с внешним детектором рентгеновского излучения таким образом, чтобы они оба могли вращаться на 360°, в сущности, соосно секции трубопровода, а также средство для выборки данных, детектируемых детектором рентгеновского излучения, для последующего анализа.

Использование: для контроля сварных швов трубопровода посредством проникающего излучения с внешней стороны трубопровода. Сущность изобретения заключается в том, что устройство для внешнего осмотра кольцевого сварного шва трубопровода включает источник излучения (5) и детектор излучения (3).

Использование: для проверки объектов посредством проникающего излучения. Сущность: заключается в том, что установка для проверки объектов посредством электромагнитных лучей содержит по меньшей мере два расположенных рядом друг с другом проверочных блока, содержащих по меньшей мере один источник излучения для формирования электромагнитного излучения и по меньшей мере одно соотнесенное с источником излучения детекторное устройство, расположенные в переносном корпусе контейнерного типа, при этом проверочные блоки расположены так, что объект облучается с различных направлений.

Использование: для формирования рентгеновских изображений. Сущность изобретения заключается в том, что устройство формирования рентгеновских изображений согласно настоящему изобретению включает фазовую решетку 130, поглощательную решетку 150, детектор 170 и арифметический блок 180.

Использование: для рентгеновской томографии. Сущность способа: заключается в том, что облучают и воспринимают массив изображения энергетического спектра рентгеновского излучения, проходящего через объект, при этом восстанавливают изображения по теневым проекциям объекта, затем формируют, сравнивают и анализируют текущие и эталонные интегральные характеристики изображения объекта, определяют дефекты объекта и отображают результаты анализа объекта.

Использование: для определения теплопроводности керна. Сущность: заключается в том, что подготавливают образец керна и рентгеновский микрокомпьютерный томограф для сканирования указанного образца керна и получения изображения для каждого сканирования, сканируют указанный образец керна, передают для обработки трехмерное сканированное изображение с томографа на компьютер, предназначенный для анализа изображений, задают толщину слоя внутри полученного трехмерного сканированного изображения для анализа, определяют слой с максимальной теплостойкостью внутри полученного трехмерного сканированного изображения и определяют эффективную теплопроводность образца керна.

Использование: для томографии целевого объекта. Сущность изобретения заключается в том, что измеряют потерю энергии заряженных частиц, которые входят и проникают сквозь объем или останавливаются внутри объема без проникновения сквозь объем; на основании измеряемой потери энергии определяют пространственное распределение заряженных частиц, которые входят и проникают сквозь объем или останавливаются внутри объема без проникновения сквозь объем; и используют пространственное распределение потери энергии заряженных частиц для восстановления трехмерного распределения материалов в досматриваемом объеме.

Использование: для осмотра объектов путем их одновременного обследования в проходящем и рассеянном свете. Сущность заключается в том, что выполняют облучение объекта первым лучом проникающего излучения, генерирование сигнала пропускания на основе проникающего излучения, пропущенного через объект и зарегистрированного датчиком регистрации пропускания, сканирование объекта вторым лучом проникающего излучения, генерирование сигнала рассеивания на основе проникающего излучения, рассеянного объектом и зарегистрированного датчиком регистрации рассеивания, корректирование любой помехи в сигнале рассеивания, возникающей вследствие первого луча проникающего излучения при наличии объекта, и отображение изображения, видимого оператору и включающего информацию по меньшей мере от сигнала рассеивания.

Настоящее изобретение относится к формированию фазово-контрастного изображения, которым визуализируют фазовую информацию когерентного излучения, проходящего через сканируемый объект. Указанное изображение формируется при помощи фокусирующей дифракционной решётки, канавки которой имеют гладкие стенки и наклонены по отношению друг к другу. Для создания указанных канавок фокусирующих дифракционных решеток используют электромагнитное излучение лазера, которое направляется под углом к поверхности обрабатываемой решётки. После обработки лазером канавки подвергаются травлению для сглаживания их поверхностей. Технический результат - уменьшение образование трапециевидного профиля при проецировании под конкретным углом к оптической оси. 3 н. и 12 з.п. ф-лы, 17 ил.

Использование: для определения геометрических смещений сенсоров в плоскопанельном детекторе рентгеновского изображения. Сущность изобретения заключается в том, что на рабочей поверхности детектора размещают тест-объект, включающий по меньшей мере два объекта «острый край», соответствующих положению технологического зазора между указанными сенсорами, поток рентгеновского излучения направляют на тест-объект, получают его рентгеновское изображение, на полученном изображении идентифицируют пиксели, соответствующие изображению острого края каждого объекта «острый край», по которым определяют геометрические смещения сенсоров из условия минимума целевого функционала с ограничениями на указанные смещения, причем ограничения включают линейные ограничения, соответствующие геометрическим смещениям сенсоров, расположенных рядом друг с другом по горизонтали или вертикали, и нелинейные ограничения, соответствующие геометрическим смещениям сенсоров, расположенных рядом друг с другом по диагонали. Технический результат: расширение арсенала технических средств определения геометрических смещений сенсоров в плоскопанельном детекторе рентгеновского излучения и возможность определения смещения сенсоров с высокой точностью. 3 з.п. ф-лы, 11 ил.

Изобретение относится к устройствам для компьютерной томографии без гентри. Установка КТ содержит туннель сканирования, стационарный источник рентгеновских лучей, расположенный вокруг туннеля сканирования и содержащий множество фокусных пятен, испускающих излучение, и множество стационарных модулей детектора, расположенных вокруг туннеля сканирования напротив источника рентгеновского излучения. Одна часть модулей из множества модулей детектора расположена в первом направлении, а вторая часть модулей из множества модулей детектора расположена во втором направлении, и схема расположения этих частей модулей детектора имеет L-образную форму. Первое направление образует прямую линию, формируемую путем соединения центральных точек поверхностей приема пучков излучения одной части модулей детектора. Второе направление образует вторую прямую линию, формируемую путем соединения центральных точек поверхностей приема пучков излучения другой части модулей детектора, которые пересекаются в некоторой точке, если рассматривать в плоскости, пересекающей туннель сканирования. Поверхности приема пучков излучения одной части модулей детектора наклонены относительно первого направления и обращены в сторону источника рентгеновского излучения, а поверхности приема пучков излучения другой части модулей детектора наклонены относительно второго направления и обращены в сторону источника рентгеновского излучения. Стационарная установка КТ без гентри по настоящему изобретению имеет небольшие размеры и высокую точность идентификации данных. 17 з.п. ф-лы, 3 ил.

Использование: для осмотра тела человека на основе обратного рассеяния излучения. Сущность изобретения заключается в том, что используют блок формирования бегущих пятен, имеющий распределенные по спирали бегущие пятна, с чередованием пиков и спадов рентгеновского излучения на облучаемой поверхности. Таким образом, можно точно управлять временем начала сканирования, чтобы побуждать два устройства иметь время начала сканирования, которое отличается на половину цикла. То есть лучи, выводимые из одного устройства, находятся на максимуме, когда лучи, выводимые из другого устройства, находятся на минимуме. Другими словами, даже если источник излучения одного устройства излучает лучи, он не будет существенно влиять на результат визуализации другого устройства. Таким образом, два устройства могут излучать лучи и выполнять сканирование одновременно. Технический результат: сокращение времени сканирования при сохранении высокого качества результатов сканирования. 4 н. и 6 з.п. ф-лы, 5 ил.

Использование: для радиографического неразрушающего контроля. Сущность изобретения заключается в том, что производят ряд снимков при разных значениях анодного напряжения, разные значения анодного напряжения достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного напряжения, питающего рентгеновскую трубку, при этом также производят ряд снимков при разных значениях анодного тока, разные значения анодного тока достигаются путем регистрации снимков в разные моменты времени действия переменного или пульсирующего анодного тока, протекающего через рентгеновскую трубку, обработкой снимков получают изображение, на котором для всех функциональных элементов (узлов) изделия микроэлектроники с неоднородной структурой обеспечен заданный контраст. Технический результат: обеспечение возможности создания способа мультиэнергетической рентгенографии, позволяющего расширить возможности цифровой рентгенографии на изделия микроэлектроники с неоднородной структурой, повысив достоверность и оперативность радиографического неразрушающего контроля. 4 ил.

Изобретение относится к медицинской технике, а именно к рентгеновским комплексам для проведения широкого спектра различных рентгеновских исследований пациентов. Комплекс содержит стол пациента, установленный на неподвижном основании, и колонну, установленную с возможностью перемещения вдоль стола пациента, стол пациента включает в себя раму, соединенную с одной стороны с неподвижным основанием, а с противоположной стороны имеет две параллельные опоры, на которых установлена рентгенопрозрачная дека. На колонне с возможностью вертикального перемещения по ней и вращения вокруг нее смонтирована каретка, на которой установлен кронштейн с возможностью вращения вокруг оси, перпендикулярной оси колонны. Кронштейн содержит на одном конце рентгеновский излучатель, а на другом - рентгеновский детектор, установленные напротив друг друга. В столе пациента имеется проем между рамой стола и рентгенопрозрачной декой, выполненный с возможностью захода и выхода рентгеновского детектора при повороте каретки вокруг колонны, границами проема служат параллельные опоры. Колонна установлена на независимой от основания стола пациента направляющей, кронштейн выполнен в виде U-дуги, рентгенопрозрачная дека выполнена с возможностью перемещения перпендикулярно направлению перемещения колонны, вдоль параллельных опор, а рама стола соединена с неподвижным основанием посредством подъемно-поворотного механизма и выполнена с возможностью поворота на заданный угол относительно плоскости основания стола. Использование изобретения обеспечивает свободный доступ к пациенту и выполнение всех основных видов рентгеновских исследований. 7 з.п. ф-лы, 13 ил.

Изобретение относится к технологии получения рентгеновского изображения. Устройство для фазоконтрастного формирования изображений содержит источник рентгеновского излучения, элемент детектора рентгеновского излучения, первый и второй элементы решетки, причем объект может быть расположен между источником рентгеновского излучения и элементом детектора рентгеновского излучения, причем первый элемент решетки и второй элемент решетки могут быть расположены между источником рентгеновского излучения и элементом детектора рентгеновского излучения, а источник рентгеновского излучения, первый и второй элементы решетки и элемент детектора рентгеновского излучения соединены с возможностью получения фазоконтрастного изображения объекта, имеющего поле обзора, большее чем размер детектора. Элемент детектора рентгеновского излучения может перемещаться и выполнен с возможностью получения подобласти поля обзора. При этом когда элемент детектора рентгеновского излучения перемещается из первого положения для получения первой подобласти поля обзора ко второму положению для получения второй подобласти поля обзора, первый элемент решетки и второй элемент решетки перемещаются относительно друг друга на дополнительное значение Δ для обеспечения первого состояния пошагового изменения фазы в первом положении и второго состояния пошагового изменения фазы во втором положении. Рентгеновская система содержит устройство для фазоконтрастного формирования изображений. Способ получения информации фазоконтрастного изображения состоит в том, что получают первую информацию фазоконтрастного изображения в первом состоянии пошагового изменения фазы, перемещают, наклоняют и/или вращают элемент детектора рентгеновского излучения относительно по меньшей мере одного из объекта и источника рентгеновского излучения, перемещают первый элемент решетки и второй элемент решетки относительно друг друга на дополнительное значение Δ и получают вторую информацию фазоконтрастного изображения во втором состоянии пошагового изменения фазы. Устройство для фазоконтрастного формирования изображений применяют в одном из рентгеновской системы, системы CT и системы томографической реконструкции. Использование изобретения позволяет улучшить качественное и информационное содержание получаемых изображений. 4 н. и 11 з.п. ф-лы, 8 ил.

Изобретение относится к области электрооптического (радиооптического) приборостроения и, в частности, к визуализации электромагнитного излучения. Устройство визуализации электромагнитных излучений содержит набор антенн, включающий в себя по меньшей мере одну антенну, выполненную с возможностью приема сигнала визуализируемого излучения, устройство опроса, выполненное с возможностью формирования и выдачи по меньшей мере одного опорного импульса заданной длительности, причем заданная длительность опорного импульса по меньшей мере в два раза больше одного периода принимаемого сигнала визуализируемого излучения, по меньшей мере одно устройство амплитудно-импульсной модуляции, выполненное с возможностью формирования промодулированного сигнала посредством модуляции принятого опорного импульса Uоп. имп заданной длительности сигналом визуализируемого излучения UЭМИ сигн, принятым по меньшей мере одной антенной набора, причем амплитуда Uоп. имп больше максимальной амплитуды UЭМИ сигн, фильтр низкой частоты, выполненный с возможностью отсечки шума, создаваемого остальными антеннами набора, временно не участвующими в процессе опроса устройства амплитудно-импульсной модуляции устройством опроса, и пропускания отфильтрованного промодулированного сигнала, восстанавливающий фильтр, выполненный с возможностью формирования сигнала огибающей промодулированного сигнала, блок формирования видеосигнала, выполненный с возможностью формирования видеосигнала с наведенными служебными синхроимпульсами из по меньшей мере одного сигнала огибающей промодулированного сигнала, устройство отображения, принимающее видеосигнал и преобразующее его в изображение. 2 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к медицинской технике, а именно к устройству компьютерной томографии. Устройство содержит канал сканирования, стационарный источник рентгеновского излучения, размещенный вокруг канала сканирования и содержащий множество фокальных пятен излучения и множество стационарных детекторных модулей, размещенных вокруг канала сканирования и расположенных напротив источника рентгеновского излучения. При этом линии удлинения внешних сторон секториальных пучков излучения, излучаемых из двух фокальных пятен излучения, соответственно размещенных на одном конце и другом конце множества фокальных пятен излучения, пересекаются в точке пересечения, и линия, образованная соединением точки пересечения с центральной точкой поверхности приема излучения каждого из детекторных модулей, перпендикулярна поверхности приема излучения каждого из детекторных модулей, при наблюдении в плоскости, пересекающей канал сканирования. Использование изобретения позволяет увеличить скорость анализа данных. 17 з.п. ф-лы, 6 ил.

Использование: для неразрушающего контроля механической детали. Сущность изобретения заключается в том, что устройство неразрушающего контроля механической детали, в частности, такой как турбинная лопатка, содержит источник испускания высокоэнергетического электромагнитного излучения по оси (92) и экран, выполненный из материала, способного поглощать электромагнитное излучение и содержащий проем, форма и размеры которого определены таким образом, чтобы подвергать действию электромагнитного излучения только заданную контролируемую зону детали (12), при этом устройство содержит средства опоры и позиционирования поглощающего экрана и механической детали и средства выравнивания проема экрана и контролируемой зоны механической детали с источником излучения, при этом средства опоры и позиционирования содержат раму (72), содержащую первый (76) и второй (78) ярусы, расположенные друг над другом вдоль оси (92) электромагнитного пучка, при этом второй ярус (78) расположен между первым ярусом (76) и источником (70) и содержит, по меньшей мере, одно место (80, 82, 84) для размещения поглощающего экрана (96), выровненного вдоль оси (92) пучка излучения, по меньшей мере, с одним местом (86, 88, 90) опоры (104) детали первого яруса (76). Технический результат: обеспечение возможности повышения контраста на получаемых изображениях. 7 з.п. ф-лы, 11 ил.
Наверх