Устройство для определения пропускной способности форсунок и топливопроводов высокого давления

Изобретение может быть использовано в системах испытания топливной аппаратуры дизельных двигателей. Устройство для определения пропускной способности форсунок и топливопроводов высокого давления содержит топливный бак (1), электронасос (2), нагнетательный (3) и сливной (4) топливопроводы. Также устройство содержит манометр (5), испытываемую форсунку (6) (или топливопровод высокого давления). При этом устройство имеет секундомер (7), гидропневмоаккумулятор (8) и обратный клапан (9). Обратный клапан (9) размещен между электронасосом (2) и гидропневмоаккумулятором (8) таким образом, что обеспечивает движение топливу в направлении от электронасоса (2) через нагнетательный топливопровод (3) в гидропневмоаккумулятор (8) и от гидропневмоаккумулятора (8) через сливной топливопровод (4) к испытуемой форсунке (6) (или топливопроводу высокого давления). 1 ил.

 

Изобретение относится к области двигателестроения и может быть преимущественно использовано в испытаниях топливной аппаратуры дизельных двигателей.

Известно устройство для определения пропускной способности форсунок и топливопроводов высокого давления [Патент №2030625 РФ. Способ определения внутреннего объема топливопровода и устройство для его осуществления / Б.П. Удалов, А.П. Уханов. - №4891277; Заяв. 17.11.1990; Опубл. 10.03.1995, Бюл. №7], содержащее последовательно соединенные между собой резервуар топлива с фильтром и краном, испытываемый топливопровод (или форсунку), мерную емкость со шкалой, нагнетательной трубкой, верхним и нижним кранами и сосуд для сбора вытесненного из мерной емкости топлива.

В процессе испытания открывают соответствующие краны и топливо, вытекая из резервуара, статическим давлением вытесняет воздух из канала испытываемого топливопровода (или форсунки) в мерную емкость, предварительно заполненную топливом. При этом топливо из мерной емкости через открытый нижний кран вытекает в сосуд для сбора вытесненного топлива. Затем закрывают нижний кран мерной емкости и по установившемуся уровню топлива в мерной емкости со шкалы считают показания объема топлива. Фиксируя время от момента открытия нижнего крана до его закрытия и объем топлива, можно определить количество топлива, проходящего через топливопровод (или форсунку) в единицу времени под постоянным статическим давлением, а следовательно, и эффективное проходное сечение и пропускную способность.

Недостатком данного устройства является низкая точность определения эффективного проходного сечения форсунок и топливопроводов высокого давления, а следовательно, и их пропускной способности из-за сложности обеспечения постоянного давления в процессе испытания.

Наиболее близким по технической сущности является устройство для определения пропускной способности форсунок и топливопроводов высокого давления [Уханов А., Черняков А. Подбор эталонных форсунок и топливопроводов // Сельский механизатор. - 2004. - №2. - С.12-13], содержащее топливный бак, электронасос, демпфер, манометр, распределитель, нагнетательный и сливной топливопроводы, испытываемую форсунку (или топливопровод высокого давления), направляющее устройство, сливной топливопровод, мерный сосуд и весы.

В процессе испытания включают электронасос и топливо из бака под постоянным давлением, контролируемым по манометру, через нагнетательный топливопровод, демпфер и распределитель подается к форсунке (топливопроводу) и далее через направляющее устройство и сливной топливопровод направляется в мерный сосуд, установленный на весах.

Фиксируя время истечения и массу (вес) топлива, можно определить количество топлива, проходящего через форсунку (топливопровод) в единицу времени под постоянным давлением, а следовательно, и эффективное проходное сечение и пропускную способность.

Недостатком данного устройства является низкая точность определения эффективного проходного сечения форсунок и топливопроводов высокого давления, а следовательно, и их пропускной способности из-за сложности обеспечения постоянного давления в процессе испытания.

Предлагаемое изобретение направлено на устранение указанного недостатка и от его применения получен следующий технический результат: повышение точности определения пропускной способности форсунок и топливопроводов высокого давления.

Новые существенные признаки предлагаемого устройства заключаются в том, что имеется гидропневмоаккумулятор и обратный клапан, размещенный между электронасосом и гидропневмоаккумулятором таким образом, что в нерабочем положении устройства электронасос включен, а сливной топливопровод перекрыт обратным клапаном и топливо из бака электронасосом через нагнетательный топливопровод подается в гидропневмоаккумулятор, где сжимает воздух до заданного начального давления (например, до 5 МПа), контролируемого по манометру. В рабочем положении устройства электронасос выключен, а нагнетательный топливопровод перекрыт обратным клапаном, и топливо под действием давления сжатого воздуха из гидропневмоаккумулятора через сливной топливопровод проходит через испытываемую форсунку (или топливопровод высокого давления) и сливается в бак до момента достижения давления в гидропневмоаккумуляторе заданного конечного давления (например, 1 МПа). Таким образом, при включенном электронасосе обеспечивается движение топливу в направлении от электронасоса через нагнетательный топливопровод в гидропневмоаккумулятор и от гидропневмоаккумулятора через сливной топливопровод к испытуемой форсунке (или топливопроводу высокого давления).

Применение новых существенных признаков позволяет повысить точность определения пропускной способности форсунок и топливопроводов высокого давления за счет обеспечения переменного давления в процессе испытания.

На фигуре изображена схема устройства для определения пропускной способности форсунок и топливопроводов высокого давления.

Устройство для определения пропускной способности форсунок и топливопроводов высокого давления содержит топливный бак 1, электронасос 2, нагнетательный и сливной топливопроводы 3 и 4, манометр 5, испытываемую форсунку (или топливопровод высокого давления) 6, причем имеется секундомер 7, гидропневмоаккумулятор 8 и обратный клапан 9, размещенный между электронасосом 2 и гидропневмоаккумулятором 8 таким образом, что обеспечивает движение топливу в направлении от электронасоса 2 через нагнетательный топливопровод 3 в гидропневмоаккумулятор 8 и от гидропневмоаккумулятора 8 через сливной топливопровод 4 к испытуемой форсунке (или топливопроводу высокого давления) 6.

Так как подача электронасоса 2 значительно выше расхода топлива через форсунку (или топливопровод высокого давления) 6, то топливо заполняет внутреннюю полость гидропневмоаккумулятора 8 и сжимает воздух до заданного начального давления, контролируемого по манометру 5.

Работа устройства происходит следующим образом.

При включении электронасоса 2 топливо под давлением, создаваемым электронасосом 2, из бака 1 по нагнетательному топливопроводу 3 через обратный клапан 9 поступает в полость гидропневмоаккумулятора 8, где сжимает воздух до заданного начального давления (например, до 5 МПа), контролируемого по манометру 5. Затем электронасос 2 выключают, при этом движение топлива между электронасосом 2 и гидропневмоаккумулятором 8 перекрывается обратным клапаном 9. Одновременно с этим включают секундомер 7. Под действием давления сжатого воздуха топливо из гидропневмоаккумулятора 8 через сливной трубопровод 4 проходит через испытываемую форсунку (или топливопровод высокого давления) 6 и сливается в бак 1 до тех пор, пока давление в гидропневмоаккумуляторе 8 не упадет до заданного конечного давления (например, до 1 МПа). Одновременно с этим секундомер 7 выключают.

Зная по результатам испытания начальное и конечное давление, объем сжатого воздуха в гидропневмоаккумуляторе и время падения давления с начального до конечного значений, по величине среднего эффективного проходного сечения (µf) форсунки (или топливопровода) оценивают их пропускную способность (Q):

а) среднее эффективное проходное сечение

б) пропускная способность

где µ - коэффициент расхода; f - площадь поперечного канала форсунки (топливопровода), м2; ρт - плотность топлива, проливаемого через форсунку (топливопровод), кг/м3; P1, P2 - начальное и конечное давление воздуха в гидропневмоаккумуляторе, V1 - объем сжатого воздуха в гидропневмоаккумуляторе, м3; t - время падения давления с начального до конечного значений, с; g - ускорение свободного падения, м/с2; γ - удельный вес топлива, Н/м3; ΔР=Рнц - разность давлений, Па (Рн - давление начала впрыскивания топлива форсункой или давление топлива на входе в топливопровод, Рц - давление среды, в которую впрыскивается топливо или давление топлива на выходе из топливопровода).

При замене форсунки (топливопровода) 6 рекомендуется полностью сливать топливо из гидропневмоаккумулятора 8, что способствует свободному поступлению атмосферного воздуха в его полость.

Устройство для определения пропускной способности форсунок и топливопроводов высокого давления, содержащее топливный бак, электронасос, нагнетательный и сливной топливопроводы, манометр, испытываемую форсунку (или топливопровод высокого давления), отличающееся тем, что имеется секундомер, гидропневмоаккумулятор и обратный клапан, размещенный между электронасосом и гидропневмоаккумулятором таким образом, что обеспечивает движение топливу в направлении от электронасоса через нагнетательный топливопровод в гидропневмоаккумулятор и от гидропневмоаккумулятора через сливной топливопровод к испытуемой форсунке (или топливопроводу высокого давления).



 

Похожие патенты:

Изобретение относится к двигателестроению, в частности может использоваться для диагностирования плунжерных пар топливных насосов высокого давления (ТНВД) дизелей.

Изобретение относится к двигателестроению, в частности к устройствам для обкатки и испытания топливных насосов высокого давления дизелей. Устройство для обкатки топливного насоса высокого давления (7), соединенного топливопроводами (8) с форсунками (9), содержащее топливный бак (11) с фильтром (12) и трубопроводами (13), электродвигатель (16) и вал привода (1), связанный с кулачковым валом насоса, отличающееся тем, что передача крутящего момента на кулачковый вал обкатываемого насоса осуществляется через шарнир (4) неравных угловых скоростей, ведущий вал (3) которого соединен с приводным валом (1) стенда, а ведомый (5) - через муфту (6) с кулачковым валом обкатываемого насоса, причем положение ведущего (3) и ведомого (5) валов относительно друг друга в зависимости от технических требований к режиму обкатки меняется за счет перемещения обкатываемого насоса (7) относительно вертикальной оси шарнира (4) в горизонтальной плоскости.

Изобретение относится к испытаниям топливной аппаратуры двигателей внутреннего сгорания. Изобретение позволяет повысить точность измерения.

Изобретение относится к области транспорта и может быть использовано в устройстве для диагностики неисправностей расходомера (11) воздуха в двигателе внутреннего сгорания.

Изобретение относится к двигателестроению, в частности к ремонтным работам топливной аппаратуры двигателей внутреннего сгорания. Изобретение позволяет снизить расход топлива и дымность выхлопных газов двигателя.

Изобретение относится к двигателестроению, в частности к испытательной аппаратуре двигателей внутреннего сгорания. Технический результат: повышение точности определения эффективного проходного сечения форсунок и топливопроводов высокого давления.

Изобретение относится к двигателестроению, в частности к испытаниям топливной аппаратуры двигателей внутреннего сгорания. .

Изобретение относится к области транспорта и может быть использовано для контроля блока управления двигателем внутреннего сгорания. .

Изобретение относится к двигателестроению и может быть использовано для определения технического состояния системы топливоподачи двигателей с впрыском легкого топлива.

Изобретение относится к области эксплуатации машин и может быть использовано при диагностировании электробензонасосов системы топливоподачи автомобиля. .

Изобретение относится к двигателестроению, в частности к устройствам для испытания и регулировки форсунок. Предложен стенд для испытания и регулировки форсунок, содержащий устройство противодавления (8), позволяющее создавать переменное противодавление впрыску топлива, меняющееся аналогично давлению газов в цилиндре двигателя в процессе впрыска, отличающийся тем, что устройство противодавления состоит из двух плунжеров (10, 11), регулировочных обойм (12, 13) с пружинами противодавления (14, 15) и перепускного клапана (19). Технический результат заключается в удешевлении и упрощении конструкции стенда. 2 ил.

Изобретение относится к диагностическим стендам для испытания и регулировки топливной аппаратуры дизельных двигателей внутреннего сгорания. Предложен способ испытания и регулировки дизельной топливной аппаратуры, позволяющий определить параметры работы форсунок, например давление начала впрыска топлива, с учетом противодавления впрыску топлива, равному давлению газов в цилиндре двигателя, что, в свою очередь, повышает точность измерения цикловой подачи топлива. Технический результат заключается в повышении качества регулировки дизельной топливной аппаратуры и повышении уровня автоматизации стенда. 1 з.п. ф-лы, 2 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложен способ диагностики топливной форсунки, в котором для уравновешивания крутящих моментов, производимых цилиндром двигателя, производят регулирование количества впрыскиваемого топлива или начало/конец синхронизации впрыска топлива в указанный цилиндр. В предложенном способе определяют уменьшение эффективности регулировки впрыска топлива или начала/конца синхронизации впрыска топлива при уравновешивании произведенных цилиндром крутящих моментов, когда минимальное количество топлива, впрыскиваемое в цилиндр или начало/конец синхронизации впрыска топлива, необходимые для уравновешивания крутящего момента цилиндра, находятся за пределами предопределенного диапазона. Предложенный способ диагностики топливной форсунки различает типы уменьшения эффективности работы форсунки. 3 н. и 17 з.п. ф-лы, 5 ил.

Изобретение относится к способам оценки склонности автомобильных бензинов к образованию отложений на инжекторах двигателей внутреннего сгорания. Согласно предложенному способу осуществляют прокачку испытываемого бензина через нагретый до температуры 180±3°С инжектор в течение не более четырех суток, в каждые сутки из которых в течение 18 часов осуществляют впрыск топлива через нагретый инжектор в течение 0,2 с, с интервалом между впрысками 300 с, а в течение последующих 6 часов этих суток, при выключенном нагреве, инжектор выдерживают в нерабочем состоянии. По окончании испытания фиксируют цвет поверхности донышка инжектора, который сравнивают с цветовой шкалой, а склонность испытываемого бензина к образованию отложений оценивают в баллах, при этом каждые сутки после нерабочего состояния инжектора дополнительно оценивают герметичность его запорной иглы, при разгерметизации которой бензин считают некондиционным. Технический результат - сокращение продолжительности и повышение точности результатов испытаний. 1 табл., 2 ил.

Изобретение относится к двигателестроению, в частности к устройствам для испытания и регулировки форсунок, и может быть использовано заводами по производству дизельной топливной аппаратуры, в сервисных центрах и станциях технического обслуживания. Технический результат заключается в непрерывной корректировке сигнала, полученного с первого датчика давления в штуцере с использованием коэффициента корректировки, пропорционально скорости распространения волны давления в трубопроводе в режиме реального времени. Устройство содержит штуцер 3, вмонтированный в него первый датчик 2 давления, трубопровод 1, соединяющий штуцер 3 и регулирующий блок 6, в который вмонтирован второй датчик 8 давления, редукционный клапан 5 и электромагнитный клапан 7. Система управления содержит широтно-импульсный модулятор 9, электронный блок управления 10, аналогово-цифровой преобразователь 11 и монитор 12. 2 ил.

Изобретение относится к двигателестроению, в частности к устройствам для контроля технического состояния плунжерных пар топливных насосов высокого давления дизельных двигателей. Устройство измерения гидроплотности плунжерных пар состоит из основания 1, расположенного в его верхней части рычага 2, толкателя 3 с пружиной 4 и регулировочной гайкой 5. На основании 1 жестко закреплен соленоид 6, внутри которого перемещается толкатель 3. Корпус 11 плунжера закреплен в стакане 10 запорной гайкой 9. К стакану 10 подсоединены патрубок 8 с краном 9 для слива дизельного топлива. В корпусе 11 плунжера установлен плунжер 12. В нижней части стакана 10 установлены уплотнительное кольцо 14 и датчик давления 13. К устройству подсоединены повышающий трансформатор 15, блок управления 16, панель индикации 17 и панель ввода 18. 1 ил.
Наверх