Ходовая гайка механизма линейного перемещения

Устройство относится к машино- и приборостроению и может быть использовано в механизмах, преобразующих вращательное движение в возвратно-поступательное. Ходовая гайка механизма линейного перемещения содержит основную полугайку (1) и вспомогательную полугайку (2), в которых выполнены равноудаленные от центра и между собой сквозные соосные отверстия, в которые вставлены цилиндрические штифты (3), соединяющие полугайки. Между сквозными отверстиями на близлежащих торцах полугаек расположены соосные цилиндрические углубления, в которые установлены цилиндрические пружины сжатия (4). В центре углублений во вспомогательной гайке выполнены резьбовые отверстия, а в центре углублений в основной полугайке - сквозные отверстия, диаметром меньше диаметра углублений, в которые установлены винты (5), соединяющие полугайки и регулирующие степень сжатия пружин (4). За счет применения пружин, расположенных между полугайками, при реверсивном движении автоматически компенсируется зазор между витками ходового винта и ходовой гайки, вызванный их износом. 2 ил.

 

Устройство относится к машино- и приборостроению и может быть использовано в механизмах, преобразующих вращательное движение в возвратно-поступательное с высокой точностью перемещения рабочих органов.

Известна ходовая гайка механизма линейного перемещения, содержащая соединенные между собой основную и вспомогательную полугайки и расположенный между полугайками пружинный элемент (см. патент РФ №2107857, F16H 25/20, 1996 г.).

Средство компенсации осевых зазоров в резьбе этого устройства исполнено в виде промежуточного соединительного кольца с секторным пазом, охватывающего пружину, выполненную в виде набора тарельчатых шайб, которое установлено между основной и вспомогательной гайками.

Недостатками данной конструкции являются сложность ее изготовления и монтажа, обусловленные геометрической сложностью конструктивных элементов деталей и необходимостью применения специальных приспособлений при сборке механизма, а также наличие степени свободы тарельчатых пружин в радиальном направлении, что может привести к возникновению вибраций.

Задача, на решение которой направлено данное техническое решение, заключается в разработке конструкции, лишенной указанных недостатков.

Сущность технического решения состоит в том, что ходовая гайка механизма линейного перемещения содержит соединенные между собой основную и вспомогательную полугайки, а также расположенные между ними пружинные элементы, при этом в полугайках выполнены равноудаленные от центра и между собой сквозные соосные отверстия, в которые вставлены цилиндрические штифты, а также между сквозными отверстиями на близлежащих торцах основной и вспомогательной гаек выполнены углубления, в которые установлены цилиндрические пружины сжатия, кроме того, дополнительно в углублениях основной полугайки выполнены сквозные отверстия меньшего диаметра, чем диаметр углубления, а во вспомогательной полугайке - глухие резьбовые отверстия, в которые ввернуты винты, пропущенные через соответствующие сквозные отверстия основной полугайки и регулирующие степень сжатия пружин.

Пример выполнения ходовой гайки механизма линейного перемещения иллюстрируется чертежами.

На фиг.1 изображен разрез ходовой гайки.

На фиг.2 изображен вид слева на фиг.1.

Ходовая гайка механизма линейного перемещения содержит соединенные между собой основную полугайку 1 (фиг.1) и вспомогательную полугайку 2, в которых выполнены равноудаленные от центра и между собой три сквозные отверстия, в которые вставлены цилиндрические штифты 3 (фиг.2), соединяющие полугайки, между которыми на близлежащих торцах полугаек расположены соосные цилиндрические углубления, в которые установлены цилиндрические пружины сжатия 4, причем степень сжатия пружин регулируется винтами 5, проходящими по центру углублений, сквозь отверстия в основной полугайке и вкручивающиеся в резьбовые отверстия в центре углублений во вспомогательной гайке.

Процесс изготовления ходовой гайки состоит из технологических процессов изготовления полугаек 1 и 2 и сборки ходовой гайки. Для изготовления полугаек используется цельнометаллическая заготовка. Обработка данной заготовки до разрезания включает две операции - токарную и сверлильную. На токарной операции производится обработка наружного контура заготовки, сверление и растачивание центрального отверстия, снятие в нем фасок, а также предварительное нарезание трапецеидальной резьбы. На сверлильной операции производится сверление и зенкерование сквозных отверстий во фланце, сверление, зенкерование и развертывание сквозных отверстий под штифты 3, причем развертывание выполняется в два этапа: со стороны фланца на глубину, равную длине полугайки 1 по переходной посадке штифта, и с противоположной стороны на глубину, равную сумме длины полугайки 2 и расстояния между полугайками а по скользящей посадке штифта. Кроме того, производится сверление глухих отверстий под резьбу для последующей установки винтов 5, их зенкерование и развертывание на глубину, равную длине полугайки 1, а также цекование под головку винта на глубину, превышающую высоту головки на половину шага резьбы винтов. Затем производится разрезка заготовки с глубиной резания, равной расстоянию между полугайками a.

Дальнейшая обработка полугаек осуществляется на двух операциях: токарной и сверлильной. На токарной операции обрабатываются полученные после разрезания торцы полугаек. На сверлильной операции выполняется цекование углублений для установки пружин, а также нарезание резьбы под винты 5 на глубину b, приблизительно равную рабочему ходу пружин 4 таким образом, чтобы на ней укладывалось целое число шагов резьбы винтов. Кроме того, для снятия заусенцев в отверстиях под штифты 3, образовавшихся при разрезании, производится развертывание на небольшую глубину.

После этого выполняется сборка гайки. Сборка происходит следующим образом: основная полугайка 1 устанавливается на стол фланцем. В ее отверстия запрессовываются штифты 3, используемые для жесткой механической связи полугаек в направлении вращения и в качестве направляющих осевого перемещения, а в углубления устанавливаются пружины 4, подобранные таким образом, чтобы при их сжатии на величину рабочего хода обеспечивалась суммарная сила, превышающая действующие осевые нагрузки при работе винтовой пары на 10-15%. Затем на штифты 3 устанавливается вспомогательная полугайка 2, после чего конструкция переворачивается и устанавливается на стол торцом полугайки 2. Далее винты 5 устанавливают в отверстия полугайки 1 и завинчивают в резьбовые отверстия полугайки 2 на длину, равную рабочему ходу пружин, контролируя ее по числу оборотов ключа. При этом расстояние между полугайками должно быть кратно шагу трапецеидальной резьбы. При невыполнении данного требования производится подрезка соответствующего торца полугайки 2 и повторная сборка ходовой гайки.

В собранном состоянии производится окончательная обработка трапецеидальной резьбы на токарном станке.

Монтаж ходовой гайки на ходовой винт механизма линейного перемещения производят следующим образом. Навинчивают собранную гайку на ходовой винт. Затем производят отвинчивание винтов 5 на пол-оборота. При этом за счет действия силы упругости пружин 4 полугайки 1 и 2 перемещаются друг относительно друга в осевом направлении до соприкосновения витков резьбы полугаек с витками резьбы ходового винта. При реверсивном движении ходовой гайки нагрузку воспринимает только одна из полугаек, так как витки полугаек 1 и 2 прижимаются к виткам винта своими противоположными сторонами, а во время движения в одном направлении нагружена только одна сторона профиля резьбы. При этом за счет наличия упругих элементов - пружин 4, расположенных между полугайками 1 и 2, при реверсивном движении автоматически компенсируется зазор между витками ходового винта и ходовой гайки, вызванный их износом.

Использование предлагаемой конструкции ходовой гайки механизма линейного перемещения позволяет устранить явление «мертвого хода» при смене направления вращения ходового винта, снизить уровень вибраций и шума, обеспечивает высокую точность перемещения исполнительного органа и долговечность ходовой гайки. Кроме того, предложенная конструкция является технологичной, что позволяет даже в условиях малого предприятия (единичного и мелкосерийного производства) значительно повысить надежность работы изготавливаемых механизмов линейного перемещения при небольших затратах.

Ходовая гайка механизма линейного перемещения, содержащая соединенные между собой основную и вспомогательную полугайки, а также расположенные между ними пружинные элементы, отличающаяся тем, что в полугайках выполнены равноудаленные от центра и между собой сквозные соосные отверстия, в которые вставлены цилиндрические штифты, а также между сквозными отверстиями на близлежащих торцах основной и вспомогательной гаек выполнены углубления, в которые установлены цилиндрические пружины сжатия, кроме того, дополнительно в углублениях основной полугайки выполнены сквозные отверстия меньшего диаметра, чем диаметр углубления, а во вспомогательной полугайке - глухие резьбовые отверстия, в которые ввернуты винты, пропущенные через соответствующие сквозные отверстия основной полугайки и регулирующие степень сжатия пружин.



 

Похожие патенты:

Изобретение относится к ограничителю крутящего момента для привода. Ограничитель крутящего момента для привода содержит винт (101), установленную на винте гайку, приводную трубу (105), жестко связанную с этой гайкой, и средства (109, 133) приведения указанного винта во вращение.

Изобретение относится к способам точных перемещений и может использоваться в приводе перемещения режущего инструмента в прецизионных металлообрабатывающих станках, в высокоточном приборостроении.

Изобретение относится к устройству для преобразования вращательного движения в продольное движение. Устройство для преобразования движения содержит резьбовой шток, на котором установлена с возможностью перемещения вдоль оси резьбового штока гайка (2) и, по меньшей мере, один стопорный элемент.

Изобретение относится к регулирующему устройству для изменения положения с возможностью поворота двух деталей автомобиля относительно друг друга. Регулирующее устройство содержит шпиндель, закрепленный на одной детали автомобиля с возможностью поворота вокруг первой поворотной оси, регулирующий привод, имеющий корпус привода и посредством шпиндельной гайки находящийся в зацеплении со шпинделем, и размещенное на другой детали автомобиля крепление, которое устанавливает регулирующий привод на другой детали автомобиля с возможностью поворота вокруг второй поворотной оси.

Изобретение относится к области авиации, более конкретно к приводу ходового винта. Привод содержит первую цепь нагрузки, включающую первую гайку, выполненную с возможностью введения в зацепление с резьбовым штоком, а также вторую цепь нагрузки, включающую вторую гайку, которая выполнена с возможностью введения в зацепление с резьбовым штоком и которая установлена с возможностью перемещения в аксиальном направлении резьбового штока относительно первой гайки в одном положении привода (100) ходового винта.

Изобретение относится к машиностроению и может быть использовано в качестве механической винтовой передачи для преобразования вращательного движения в поступательное.

Привод // 2517023
Изобретение относится к линейному приводу. Линейный привод (1) содержит электродвигатель, соединенный через зубчатую передачу со шпинделем, на котором установлена шпиндельная гайка, прикрепленная к приводному элементу, оснащенному передним связующим звеном (3).

Линейный привод многократного действия (100) предназначен для использования в реверсоре тяги гондолы турбореактивного двигателя и приведения по меньшей мере двух подвижных элементов в движение относительно друг друга и относительно неподвижного элемента.

Изобретение относится к линейному приводу. .

Изобретение относится к области машиностроения и может быть использовано в механизмах для усиления механической мощности. Механический усилитель мощности содержит основание, входной и выходной валы и механизм преобразования поступательного движения во вращательное движение выходного вала.

Изобретение относится к машиностроению и может использоваться для соединения звеньев механизмов. Удерживающая трехподвижная кинематическая пара состоит из двух звеньев - корсет (1) и цилиндр (2), и обеспечивает три относительных движения между звеньями.

Изобретение относится к устройствам для передачи и преобразования движения и сил, в частности к кулачковым реверсивным механизмам. Кулачковый реверсивный механизм содержит стойку, ведущий кулачок и ведомое коромысло, введенные со стойкой в подвижные соединения.

Изобретение относится к устройствам для передачи и преобразования движения и сил, в частности к кулачковым реверсивным механизмам. Кулачковый реверсивный механизм содержит стойку, ведущий кулачок и ведомый толкатель, введенные со стойкой в подвижные соединения.

Изобретение относится к устройствам для передачи и преобразования движения и сил, в частности к кулачковым реверсивным механизмам. Кулачковый реверсивный механизм содержит стойку, ведущий кулачок и ведомый толкатель, введенные со стойкой в подвижные соединения.

Изобретение относится к устройствам для передачи и преобразования движения и сил, в частности к реверсивным механизмам. .

Изобретение относится к устройствам для передачи и преобразования движения и сил, в частности к кулачковым реверсивным механизмам. .

Изобретение относится к области машиностроения, а именно к механизмам преобразования движения. .

Изобретение относится к области машиностроения и может быть использовано в станках - автоматах различного назначения. .

Изобретение относится к механизмам преобразования вращательного движения в возвратно-поступательное. .

Изобретение относится к области машиностроения и может использоваться для соединения звеньев механизмов и деталей машин. Двухподвижная кинематическая пара включает два звена - цилиндр (2) и двойной корсет (1), поверхности которых имеют разную кривизну и входят между собой в точечный контакт. Цилиндр (2) выполнен прямым эллиптическим, удерживающимся двойным корсетом (1). Радиус кривизны образующей вогнутой поверхности корсета (1) обеспечивается большим длины малой полуоси эллипса основания цилиндра (2). Кинематическая пара исполнена двухподвижной, воспроизводящей независимые поступательное и вращательное движения относительно двух из осей декартовых координат. Технический результат: создание двухподвижной кинематической пары, воспроизводящей комплекс двух независимых движений - поступательного и вращательного относительно двух из осей декартовой системы координат (движений ПВ) путем устранения вращательного движения вокруг продольной оси цилиндра. 2 ил.
Наверх