Способ кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора



Способ кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора
Способ кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора
Способ кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора
Способ кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора
Способ кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора
Способ кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора
Способ кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора

 


Владельцы патента RU 2543004:

Открытое акционерное общество "Газпром" (RU)

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - увеличение площади и глубины вскрытия продуктивного пласта при устранении условий набухания глин, содержащихся в коллекторе. В способе кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора во внутреннюю полость эксплуатационной колонны спускают гидромеханический щелевой перфоратор, прорезают с помощью вертикально перемещающихся дисков-фрез гидромеханического щелевого перфоратора стенки эксплуатационной колонны с образованием двух продольных щелей, расположенных напротив друг друга на разных высотных отметках, в интервале от подошвы до кровли продуктивного пласта. Закачивают через гидромониторные насадки гидромеханического щелевого перфоратора технологическую жидкость на углеводородной основе и промывают через продольные щели в эксплуатационной колонне посредством технологической жидкости на углеводородной основе, истекающей под давлением, величиной, не превышающей давление гидроразрыва пласта, с образованием фильтрационных каналов в цементном камне за эксплуатационной колонной и окружающей горной породе призабойной зоны пласта, проходящих в глубину продуктивного пласта. После образования фильтрационных каналов из скважины извлекают гидромеханический щелевой перфоратор и в скважину на колонне насосно-компрессорных труб спускают подземное внутрискважинное оборудование, состоящее из пакера высокого давления и циркуляционного клапана. Запакеровывают пакер над кровлей продуктивного пласта и промывают фильтрационные каналы соляной кислотой 12%-ной концентрации с продавливанием в глубину продуктивного пласта технологической жидкости на углеводородной основе, ранее закачанной в скважину. После этого заполняют подпакерное пространство скважины загущенной глинокислотой, состоящей из соляной кислоты 12%-ной концентрации, фтористой кислоты 3%-ной концентрации и загустителя - карбоксиметилцеллюлозы, продавливают ее в глубину пласта в качестве жидкости разрыва и расклинивающего материала с образованием трещины разрыва. После завершения кислотного гидравлического разрыва и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12%-ной концентрации с разрушением загустителя - карбоксиметилцеллюлозы. Далее промывают надпакерное пространство скважины созданием циркуляции в затрубном и трубном пространствах с помощью циркуляционного клапана и осуществляют вызов притока из продуктивного пласта методом снижения противодавления. После освоения скважину вводят в эксплуатацию с оставлением в скважине спущенного в процессе гидравлического разрыва подземного внутрискважинного оборудования. 3 пр., 7 ил.

 

Изобретение относится к нефтегазодобывающей промышленности, а именно к гидравлическому разрыву пласта, в частности заглинизированных низкопроницаемых терригенных отложений, сложенных из влагонабухающих глин.

Сенон-туронские коллекторы газовых скважин на месторождениях севера Западной Сибири относятся к заглинизированным низкопроницаемым терригенным отложениям, сложенным из влагонабухающих глин. Из опыта ремонта скважин в таких отложениях известно, что применение водных растворов ведет к набуханию глин, препятствующих добыче газа из пласта. В то же время проведение кумулятивной перфорации в этих отложениях не обеспечивает необходимую глубину вскрытия пласта и приводит к значительной кольматации призабойной зоны пласта (ПЗП).

Для вскрытия низкопроницаемых терригенных отложений помимо кислотных обработок используют гидравлический разрыв пласта (ГРП) [Ягафаров АК. и др. Интенсификация притоков пластовых флюидов в нефтяных и газовых скважинах. - Тюмень: Изд-во «Вектор Бук», 2010. - 231 с.].

Известен способ гидравлического разрыва пласта низкопроницаемого терригенного пласта, включающий закачивание под давлением жидкости разрыва с образованием трещин разрыва и закрепление образованных трещин разрыва [патент РФ № 2462590, опубл. 2012].

Недостатком этого способа является недостаточная площадь и глубина вскрытия продуктивного пласта, набухание глин, содержащихся в заглинизированных низкопроницаемых терригенных отложениях продуктивного пласта, большая продолжительность удаления расклинивающего материала.

Наиболее близким к предлагаемому изобретению по совокупности признаков (прототипом) является способ гидравлического разрыва пласта низкопроницаемого терригенного пласта, включающий спуск в скважину устройства для прорезания щелей в эксплуатационной колонне, закачивание под давлением жидкости разрыва с образованием трещин разрыва и закрепление образованных трещин разрыва [патент РФ № 2177541, опубл. 2001].

Недостатком этого способа является недостаточная эффективность ГРП в заглинизированных низкопроницаемых терригенных отложениях, сложенных из влагонабухающих глин, ведущих к набуханию глин.

Недостатком этого способа является набухание глин, содержащихся в заглинизированных низкопроницаемых терригенных отложениях продуктивного пласта, большая продолжительность удаления расклинивающего материала.

Задача, стоящая при создании изобретения, состоит в повышении эффективности гидравлического разрыва продуктивного пласта в низкопроницаемых терригенных отложениях, сложенных из влагонабухающих глин.

Достигаемый технический результат, который получается в результате применения изобретения, состоит в увеличении площади и глубины вскрытия продуктивного пласта при устранении условий набухания глин, содержащихся в этом коллекторе.

Поставленная задача и технический результат решается и достигается соответственно тем, что при кислотном продольно-щелевом гидравлическом разрыве низкопроницаемого терригенного пласта, сложенного влагонабухающими сцементироваными глинами, во внутреннюю полость эксплуатационной колонны спускают гидромеханический щелевой перфоратор, прорезают с помощью вертикально перемещающихся дисков-фрез гидромеханического щелевого перфоратора стенки эксплуатационной колонны с образованием двух продольных щелей, расположенных напротивдруг друга на разных высотных отметках, в интервале от подошвы до кровли продуктивного пласта, закачивают через гидромониторные насадки гидромеханического щелевого перфоратора технологическую жидкость на углеводородной основе и промывают через продольные щели в эксплуатационной колонне посредством технологической жидкости на углеводородной основе, истекающей под давлением, величиной, не превышающей давление гидроразрыва пласта, с образованием фильтрационных каналов в цементном камне за эксплуатационной колонной и окружающей горной породе призабойной зоны пласта, проходящих в глубину продуктивного пласта, после образования фильтрационных каналов из скважины извлекают гидромеханический щелевой перфоратор и в скважину на колонне насосно-компрессорных труб спускают подземное внутрискважинное оборудование, состоящее из пакера высокого давления и циркуляционного клапана, далее запакеровывают пакер над кровлей продуктивного пласта и промывают фильтрационные каналы соляной кислотой 12 %-ной концентрации с продавливанием в глубину продуктивного пласта технологической жидкости на углеводородной основе, ранее закаченной в скважину, после этого заполняют подпакерное пространство скважины, загущенной глинокислотой, состоящей из соляной кислоты 12 %-ной концентрации, фтористоводородной кислоты 3 %-ной концентрации и загустителя - карбоксиметилцеллюлозы, продавливают ее в глубину пласта в качестве жидкости разрыва и расклинивающего материала с образованием трещины разрыва, затем после завершения кислотного гидравлического разрыва и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12 %-ной концентрации с разрушением загустителя - карбоксиметилцеллюлозы, далее промывают надпакерное пространство скважины созданием циркуляции в затрубном и трубном пространствах с помощью циркуляционного клапана и осуществляют вызов притока из продуктивного пласта методом снижения противодавления, и после освоения скважину вводят в эксплуатацию с оставлением в скважине спущенного в процессе гидравлического разрыва подземного внутрискважинного оборудования.

На фиг. 1 показана схема реализации заявленного изобретения при прорезании в эксплуатационной колонне продольных вертикальных щелей, на фиг. 2 - то же при промывке и образовании фильтрационных каналов в цементном камне и прилегающей к скважине горной породе струями технологической жидкости на углеводородной основе, на фиг. 3 - то же при промывке образованных фильтрационных каналов соляной кислотой, на фиг. 4 - то же при закачивании загущенной глинокислоты и проведении кислотного гидравлического разрыва пласта, на фиг. 5 - то же при промывке трещин разрыва соляной кислотой с целью разрушения карбоксиметилцеллюлозы, на фиг. 6 - то же при промывке скважины и вызове притока из пласта, на фиг. 7 - то же при эксплуатации скважины после завершения кислотно-щелевого гидравлического разрыва.

Заявленное изобретение осуществляется следующим образом.

В скважину на насосно-компрессорных трубах (НКТ) 1 до кровли продуктивного пласта 2 спускают гидромеханический щелевой перфоратор 3. Выдвигают за габаритные размеры корпуса гидромеханического щелевого перфоратора 3 диски-фрезы 4, расположенные на диаметрально противоположных сторонах корпуса на разных высотных отметках, и продолжают спуск гидромеханического щелевого перфоратора 3 до подошвы продуктивного пласта 2. При возвратно-поступательном движении колонны НКТ 1 с гидромеханическим щелевым перфоратором 3 по обрабатываемому интервалу эксплуатационной колонны 5 от кровли до башмака продуктивного пласта 2 и обратно, с поэтапным увеличением создаваемого давления в колонне НКТ 1 диски-фрезы 4 прорезают стенки эксплуатационной колонны 5 и выходят за ее пределы, формируя продольные щели 6, расположенные напротив друг друга на разных высотных отметках. При этом продольные щели 6 выполнены таким образом, что нижняя кромка верхней щели располагается на уровне середины нижней щели, а верхняя кромка нижней щели - на уровне середины верхней щели. Давление в колонне НКТ 1, воздействующее на диски-фрезы 4, зависит от толщины стенки эксплуатационной колонны 5.

Струи технологической жидкости 7 на углеводородной основе, истекаемые из гидромониторных насадок 8 гидромеханического щелевого перфоратора 3, под высоким давлением, не превышающим давление гидроразрыва пласта, размывают цементный камень 9 за эксплуатационной колонной и прилегающую горную породу призабойной зоны продуктивного пласта 2, в результате образуют фильтрационные каналы 10, представляющие собой вертикальные трещины глубокого проникновения в продуктивный пласт 2. В качестве технологической жидкости 7 применяют жидкости на углеводородной основе, например газоконденсат, нефть, керосин, дизельное топливо, не приводящие к набуханию глинистой составляющей продуктивного пласта 2, такого как туронский коллектор месторождений севера Западной Сибири.

После завершения гидромеханической щелевой перфорации из скважины извлекают гидромеханический щелевой перфоратор 3. В скважину спускают колонну НКТ 1 с пакером высокого давления 11 и циркуляционным клапаном 12, оборудованную на башмаке центрирующей воронкой 13. Пакер высокого давления 11 устанавливают и запакеровывают над кровлей продуктивного пласта 2, герметизируя затрубное пространство 14 скважины между эксплуатационной колонной 5 и колонной НКТ 1 выше продольных щелей 6. Осуществляют промывку фильтрационных каналов 10 соляной кислотой 12 %-ной концентрации 15, продавливая в глубину продуктивного пласта 2 ранее закаченную технологическую жидкость 7 на углеводородной основе.

Далее проводят кислотный гидравлический разрыв продуктивного пласта 2 путем заполнения подпакерного пространства скважины загущенной глинокислотой 16, состоящей из соляной кислоты 12 %-ной концентрации, фтористоводородной кислоты 3 %-ной концентрации и загустителя - карбоксиметилцеллюлозы, последующего продавливания ее через продольные щели 6 и фильтрационные каналы 10 в глубину продуктивного пласта 2 в качестве жидкости разрыва и расклинивающего материала с образованием более глубокой трещины разрыва 17. Особенностью предлагаемого кислотного продольно-щелевого ГРП является то, что он проводится после образования в эксплуатационной колонне 5, цементном камне 9 и прилегающей горной породе ПЗП 2 продольных щелей 6 и продольных фильтрационных каналов 10 на загущенной глинокислоте 16 без применения проппанта в качестве расклинивающего материала.

Скважину оставляют на технологическую выстойку и после завершения кислотного гидравлического разрыва и закрепления трещины разрыва промывают трещину разрыва 17 соляной кислотой 12 %-ной концентрации 15 с разрушением загустителя - карбоксиметилцеллюлозы.

Далее промывают надпакерное пространство скважины созданием циркуляции в затрубном 14 пространстве скважины и внутренней полости НКТ 1 с помощью открываемого на период циркуляции циркуляционного клапана 12, с одновременным снижением плотности циркулирующей выше пакера высокого давления 11 жидкости и осуществляют вызов притока из продуктивного пласта 2 методом снижения противодавления.

После освоения скважину вводят в эксплуатацию с оставлением в скважине спущенного в процессе гидравлического разрыва подземного внутрискважинного оборудования, включающего центрирующую воронку 13, пакер высокого давления 11 и циркуляционный клапан 12.

Примеры реализации способа.

Пример 1.В скважину спускают гидромеханический щелевой перфоратор фирмы ООО «НЕККО» (г. Екатеринбург) и возвратно-поступательными движениями колонны НКТ диаметром 114 мм по обрабатываемому интервалу эксплуатационной колонны диаметром 168 мм с поэтапным увеличением создаваемого давления от 0 до 15 МПа формируют продольные вертикальные щели, расположенные в эксплуатационной колонне напротив друг друга на разных высотных отметках. Истечением струй газоконденсата из гидромониторных насадок перфоратора под давлением 15 МПа образуют в цементном камне и прилегающей горной породе ПЗП фильтрационные каналы глубиной 1,5 м. После завершения гидромеханической щелевой перфорации осуществляют промывку скважины соляной кислотой 12 %-ной концентрации. Далее через образованные вертикальные трещины проводят кислотный ГРП на загущенной с помощью КМЦ глинокислоте из смеси соляной кислоты 12 %-ной концентрации и фтористоводородной кислоты 3 %-ной концентрации без применения проппанта в качестве расклинивающего материала. Затем после завершения кислотного ГРП и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12 %-ной концентрации с разрушением загустителя - карбоксиметилцеллюлозы. После этого скважину промывают газоконденсатом и оставляют на технологическую выстойку на 24 ч. Скважину осваивают с оставлением спущенного при ГРП пакере марки ПРО-ЯМО и циркуляционном клапане марки ЦК 114x70.

Пример 2. В скважину спускают гидромеханический щелевой перфоратор фирмы ООО «НЕФТЕПРОМЦЕНТР» (Республика Башкортостан, г. Нефтекамск) и возвратно-поступательными движениями колонны НКТ диаметром 102 мм по обрабатываемому интервалу эксплуатационной колонны диаметром 146 мм, с поэтапным увеличением создаваемого давления от 0 до 13 МПа формируют продольные вертикальные щели, расположенные в эксплуатационной колонне напротив друг друга на разных высотных отметках. Истечением струй сырой нефти из гидромониторных насадок перфоратора под давлением 13 МПа образуют в цементном камне и прилегающей горной породе ПЗП фильтрационные каналы глубиной 1,0 м. После завершения гидромеханической щелевой перфорации осуществляют промывку скважины соляной кислотой 12 %-ной концентрации. Далее через образованные вертикальные трещины проводят кислотный ГРП на загущенной с помощью КМЦ глинокислоте из смеси соляной кислоты 12 %-ной концентрации и фтористоводородной кислоты 3 %-ной концентрации без применения проппанта в качестве расклинивающего материала. Затем после завершения кислотного ГРП и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12 %-ной концентрации с разрушением загустителя - карбоксиметилцеллюлозы. После этого скважину промывают сырой нефтью и оставляют на технологическую выстойку на 24 ч. Скважину осваивают с оставлением спущенного при ГРП пакере марки ПРО-ЯДЖ и циркуляционном клапане марки ЦК 102x70.

Пример 3. В скважину спускают гидромеханический щелевой перфоратор фирмы ООО «Комплекс» (г. Екатеринбург) и возвратно-поступательными движениями колонны НКТ диаметром 89 мм по обрабатываемому интервалу эксплуатационной колонны диаметром 140 мм с поэтапным увеличением создаваемого давления от 0 до 10 МПа формируют продольные вертикальные щели, расположенные в эксплуатационной колонне напротив друг друга на разных высотных отметках. Истечением струй дизельного топлива из гидромониторных насадок перфоратора под давлением 10 МПа образуют в цементном камне и прилегающей горной породе ПЗП фильтрационные каналы глубиной 0,5 м. После завершения гидромеханической щелевой перфорации осуществляют промывку скважины соляной кислотой 12 %-ной концентрации. Далее через образованные вертикальные трещины проводят кислотный ГРП на загущенной с помощью КМЦ глинокислоте из смеси соляной кислоты 12 %-ной концентрации и фтористоводородной кислоты 3 %-ной концентрации без проппанта в качестве расклинивающего материала. Затем после завершения кислотного ГРП и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12 %-ной концентрации с разрушением загустителя -карбоксиметилцеллюлозы. После этого скважину промывают дизельным топливом и оставляют на технологическую выстойку на 24 ч. Скважину осваивают с оставлением спущенного при ГРП пакере марки ПРО-ЯМОГ и циркуляционном клапане марки ЦК 89x70.

Особенностью предлагаемого кислотного продольно-щелевого ГРП является то, что он проводится после образования в эксплуатационной колонне, цементном камне и прилегающей горной породе ПЗП продольных щелей и продольных фильтрационных каналов по всей толщине продуктивного пласта от кровли до подошвы на загущенной глинокислоте без применения проппанта в качестве расклинивающего материала, тем самым обеспечивается увеличение площади и глубины вскрытия продуктивного пласта при устранении условий набухания глин, содержащихся в этом коллекторе, и снижении стоимости ремонта скважин за счет исключения применения дорогостоящего проппанта в качестве расклинивающего материала и последующего удаления остатков проппанта, не вошедших в трещину разрыва и, порою, перекрывающих ствол скважины до 100 м и более.

Способ кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора, при котором во внутреннюю полость эксплуатационной колонны спускают гидромеханический щелевой перфоратор, прорезают с помощью вертикально перемещающихся дисков-фрез гидромеханического щелевого перфоратора стенки эксплуатационной колонны с образованием двух продольных щелей, расположенных напротив друг друга на разных высотных отметках, в интервале от подошвы до кровли продуктивного пласта, закачивают через гидромониторные насадки гидромеханического щелевого перфоратора технологическую жидкость на углеводородной основе и промывают через продольные щели в эксплуатационной колонне посредством технологической жидкости на углеводородной основе, истекающей под давлением, величиной, не превышающей давление гидроразрыва пласта, с образованием фильтрационных каналов в цементном камне за эксплуатационной колонной и окружающей горной породе призабойной зоны пласта, проходящих в глубину продуктивного пласта, после образования фильтрационных каналов из скважины извлекают гидромеханический щелевой перфоратор и в скважину на колонне насосно-компрессорных труб спускают подземное внутрискважинное оборудование, состоящее из пакера высокого давления и циркуляционного клапана, далее запакеровывают пакер над кровлей продуктивного пласта и промывают фильтрационные каналы соляной кислотой 12 %-ной концентрации с продавливанием в глубину продуктивного пласта технологической жидкости на углеводородной основе, ранее закачанной в скважину, после этого заполняют подпакерное пространство скважины загущенной глинокислотой, состоящей из соляной кислоты 12 %-ной концентрации, фтористоводородной кислоты 3 %-ной концентрации и загустителя - карбоксиметилцеллюлозы, продавливают ее в глубину пласта в качестве жидкости разрыва и расклинивающего материала с образованием трещины разрыва, затем после завершения кислотного гидравлического разрыва и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12 %-ной концентрации с разрушением загустителя - карбоксиметилцеллюлозы, далее промывают надпакерное пространство скважины созданием циркуляции в затрубном и трубном пространствах с помощью циркуляционного клапана и осуществляют вызов притока из продуктивного пласта методом снижения противодавления, и после освоения скважину вводят в эксплуатацию с оставлением в скважине спущенного в процессе гидравлического разрыва подземного внутрискважинного оборудования.



 

Похожие патенты:
Изобретение относится к нефтедобывающей промышленности, в частности к способам интенсификации добычи нефти из продуктивных карбонатных пластов, вскрытых скважинами с открытыми горизонтальными стволами.
Изобретение относится к нефтедобывающей промышленности, в частности к способам интенсификации добычи нефти из продуктивных карбонатных пластов, вскрытых скважинами с открытыми горизонтальными стволами.
Изобретение относится к области нефтегазодобычи. Технический результат - повышение эффективности и технологичности удаления кольматирующих образований из призабойной зоны продуктивного ствола скважин, в том числе пологих и горизонтальных, после использования технологической жидкости, содержащей высокомолекулярные соединения и кольматанты.
Изобретение предназначено для восстановления фильтрационных свойств призабойных зон нефтегазовых скважин, нарушенных в процессе эксплуатации, с использованием гидрореагирующих металлов.

Изобретение относится к способам гидравлического разрыва пласта, сложенного карбонатными породами. Способ включает вскрытие пласта вертикальной скважиной, спуск в скважину на колонне труб гидромониторного инструмента с четным количеством струйных насадок и размещение его в заданном интервале пласта, закачку рабочей жидкости через струйные насадки гидромониторного инструмента для образования каверн в пласте, последующий разрыв пласта из каверн за счет давления торможения в них струи.

Изобретение относится к способам гидравлического разрыва в открытых стволах горизонтальных скважин. Способ включает бурение горизонтального ствола скважины в нефтенасыщенной части продуктивного пласта скважины, спуск колонны труб в скважину, формирование перфорационных каналов и трещин с помощью гидроразрыва пласта в стволе горизонтальной скважины последовательно, начиная с конца дальнего от оси вертикального ствола скважины.
Изобретение относится к нефтяной промышленности и может быть использовано при обработке призабойной зоны в поглощающих скважинах. Технический результат - повышение эффективности обработки призабойной зоны скважины.

Изобретение относится к разработке нефтяных и газовых месторождений с применением кислотных методов воздействия на призабойную зону пласта и может быть использовано для оценки эффективности кислотной обработки и повышения результативности воздействия на призабойную зону продуктивного пласта.
Изобретение относится к нефтедобывающей промышленности. Технический результат - повышение эффективности кислотной обработки карбонатного пласта.

Изобретение относится к нефтедобывающей промышленности, в частности к способам обработки нефтяного пласта в скважинах с низкопроницаемыми терригенными коллекторами.
Изобретения относятся к нефтегазодобывающей промышленности. Технический результат - создание состава для кислотной обработки, обладающего низкой скоростью коррозии при пластовых температурах, значительное увеличение эффективности кислотной обработки. Кислотный состав для кислотной обработки добывающих и нагнетательных скважин в карбонатных и терригенных коллекторах содержит, % масс.: соляную кислоту 24%-ную или 36%-ную 25,0-50,0, алкилбензолсульфокислоту, содержащую в алкильной группе 12-14 атомов углерода, 0,1-2,0, лимонную кислоту 0,5-3,0, уксусную кислоту 3,0-12,0, метиловый спирт 3,0-10,0, препарат ОС-20 0,5-2,5, ингибитор коррозии типа «ИКУ-118» 1,0-5,0, фтористоводородную кислоту 40%-ную 0,0-7,5, стабилизатор железа типа «Ферикс» 0,0-5,0, воду остальное. Способ кислотной обработки призабойной зоны карбонатного, терригенного или смешанного пласта включает закачку в скважину кислотного состава в количестве 1,0-5,0 м3 на 1 м перфорированной толщины пласта, продавку его в пласт, выдержку на реакцию в течение не более 8 часов и последующее удаление продуктов реакции, причем в качестве кислотного состава используют указанный выше состав или его раствор в пресной воде при соотношении указанный выше состав : пресная вода, равном 1:1-1:2 соответственно. Способ обработки развит в зависимом пункте. 2 н. п. ф-лы, 1 з. п. ф-лы, 3 табл., 4 пр.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке низкопроницаемых неоднородных карбонатных нефтяных залежей. Технический результат - повышение коэффициента охвата и увеличение нефтеотдачи нефтяной залежи. В способе разработки карбонатной нефтяной залежи, включающем бурение горизонтальных скважин с отбором керна в продуктивном пласте, проведение лабораторных исследований керна, кислотную обработку и многократный гидравлический разрыв пласта в данных скважинах, согласно изобретению керн отбирают в разных участках вдоль всей длины горизонтального ствола. На отобранном керне проводят лабораторные исследования на определение давления гидроразрыва, при этом выявляют участки вдоль ствола, где требуется минимальное Pmin, МПа, и максимальное Pmax, МПа, давление гидроразрыва. Предварительно проводят кислотную обработку каждого участка, причем концентрацию кислоты для каждого участка задают одинаковой. Во время проведения кислотной обработки каждый обрабатываемый участок пласта временно изолируют пакерами от остальной части скважины. Затем осуществляют многократный пропантный гидравлический разрыв пласта под давлением, не превышающим Pmax, причем на участках, где требуется Pmax, проводят кислотную обработку в объеме Qmax, м3/м, где требуется Pmin, кислотную обработку проводят в объеме не более 10% от максимального. В остальных участках объем закачиваемой кислоты определяют пропорционально полученным давлениям гидроразрыва, согласно соотношению: Q n = Q min − Q max P min − P max ⋅ (P n − P min ) + Q min , где Qn - удельный на метр толщины объем кислоты, необходимый для закачки в n-й участок пласта вдоль горизонтального ствола, м3/м, Pn - требуемое давление гидроразрыва на n-ом участке пласта вдоль горизонтального ствола, МПа. 1 ил.

Группа изобретений относится к нефтедобывающей промышленности. Технический результат - повышение приемистости нагнетательных скважин и интенсификации притока флюида из продуктивного пласта с карбонатными коллекторами за счет замедления скорости реакции кислоты с породой пласта, уменьшения интенсивности кислотной коррозии, предотвращения выпадения вторичных осадков и образования эмульсии и обеспечения моющего действия состава. Состав для кислотной обработки призабойной зоны пласта содержит, мас.%: соляную кислоту 10,0-20,0; анионоактивное АПАВ, или неионогенное НПАВ, или катионоактивное КПАВ, или их смесь 0,4-3,0; фосфорсодержащее соединение Афон 300М 0,01-15,0, растворитель 5,0-25,0, воду остальное. Способ обработки призабойной зоны пласта включает закачку указанной выше кислотной композиции с последующей ее продавкой, проведение технологической выдержки и удаление продуктов реакции, причем закачку кислотной композиции проводят в импульсном или постоянном режиме в объеме из расчета 1-3 м3 на погонный метр перфорированной мощности пласта при давлении, не превышающем допустимое на данный пласт. 2 н. и 2 з.п. ф-лы, 2 табл., 17 пр.

Изобретение относится к нефтяной промышленности и может быть применено для гидроразрыва пласта в карбонатных породах. Способ включает спуск в скважину в зону гидроразрыва колонны насосно-компрессорных труб, герметизацию заколонного пространства скважины пакером, осуществление гидроразрыва породы с образованием трещины закачкой газированной жидкости разрыва под давлением по колонне насосно-компрессорных труб с расклиниванием трещины, технологическую выдержку и последующее освоение скважины. После герметизации заколонного пространства скважины пакером производят охлаждение призабойной зоны пласта закачкой по колонне насосно-компрессорных труб газообразного азота с температурой от минус 40 до минус 45°C. Далее производят гидроразрыв закачкой по колонне насосно-компрессорных труб смеси соляной кислоты с добавлением азота в количестве, необходимом для получения солянокислотной пены с содержанием пены 57% на забое скважины. Затем в трещину гидроразрыва по колонне насосно-компрессорных труб производят закачку перегретого пара с температурой 220°C, причем объем закачиваемого в трещину пара выбирают равным или превышающим объем закачанной солянокислотной пены и объем колонны насосно-компрессорных труб, после чего осваивают скважину. Технический результат заключается в повышении эффективности гидравлического разрыва карбонатного пласта. 1 ил.

Изобретение относится к технологии повышения продуктивности скважины. Технический результат - повышение эффективности большеобъемной селективной кислотной обработки (БСКО) карбонатных коллекторов. Способ большеобъемной селективной кислотной обработки (БСКО) добывающих скважин в карбонатных коллекторах включает закачку в скважину оторочки кислотного состава с удельным объемом 1,5-3 м3 на 1 м нефтенасыщенного интервала и нелинейно-вязкой отклоняющей жидкости-отклонителя перед и/или после оторочки кислотного состава, причем закачку кислотного состава осуществляют с оптимальным расходом и оптимальным соотношением объема отклонителя к объему кислотного состава, которые определяют математическим моделированием процесса с учетом изменения устьевого и забойного давления, типа кислотного состава, типа отклонителя, пористости и проницаемости породы, причем для оптимизации расхода закачки кислотного состава получают зависимости оптимального расхода закачки от удельного объема закачки реагентов с различными константами реакции. 1 з.п. ф-лы, 5 табл., 1 пр., 11 ил.
Изобретение относится к нефтяной промышленности. Технический результат - увеличение нефтеотдачи залежи. Способ разработки нефтяной залежи включает закачку рабочего агента через нагнетательные скважины и отбор пластовой продукции через добывающие скважины. Разрабатывают залежь с установившимся соотношением компенсации отбора пластовой продукции закачкой рабочего агента. В нагнетательной скважине проводят кислотную обработку околоскважинной зоны. Разрабатывают залежь с вновь установившимся соотношением компенсации отбора пластовой продукции закачкой рабочего агента до подхода фронта вытеснения, измененного в результате кислотной обработки, до добывающей скважины. Проводят гидроразрыв пласта в добывающей скважине, а компенсацию отбора восстанавливают до начального значения после восстановления обводненности пластовой продукции, измененной в процессе гидроразрыва пласта. 1 пр.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке карбонатных нефтяных пластов с естественной трещиноватостью горизонтальными скважинами с применением большеобъемной кислотной обработки при наличии вблизи горизонтальных стволов водонасыщенных пропластков. Технический результат - увеличение нефтеотдачи продуктивного пласта за счет повышения охвата пласта воздействием. Способ кислотной обработки нефтяного пласта включает проведение в открытом горизонтальном стволе скважины геофизических исследований по определению пересекаемых стволом в пласте нарушений - трещин, разломов, каверн, спуск в горизонтальный ствол на колонне труб фильтров с переменной плотностью перфорации, установку пакеров, закачку в горизонтальный ствол скважины кислоты, продавку кислоты, промывку скважины и пуск ее в работу. Причем один пакер устанавливают до открытого ствола между обсадной колонной и колонной труб, а остальные пакеры - набухающие пакеры - в открытом стволе размещают в местах пересечения стволом нарушений. Для каждого нарушения подбирают пакер длиной, превышающей ширину нарушения, определяемую по геофизическим кривым, не менее чем в десять раз. В колонны труб закачивают с концентрацией 10-20% объем соляной кислоты из расчета 5-30 м3 на метр нефтенасыщенной толщины пласта под устьевым давлением Pу=(0,008…0,011)·H, МПа, где H - средняя глубина пласта, м. Перфорационные отверстия фильтров выполняют круглыми с диаметром отверстий 5-10 мм, одинаковыми вдоль всего ствола. Плотность перфорации фильтров для каждого участка, образуемого между пакерами, а также между пакером и концом ствола, увеличивают линейно от нуля на периферии до максимального значения в центре, которую, в свою очередь, определяют через коэффициент гидродинамического совершенства исходя из соотношения: k 1 ⋅ h 1 Ln l 1 r c + С 1 = k 2 ⋅ h 2 Ln l 2 r c + С 2 = ... = k n ⋅ h n Ln l n r c + С n , где C1, C2, Cn - коэффициенты гидродинамического совершенства скважины по характеру вскрытия каждого n-го участка вдоль горизонтального ствола скважины; l1, l2, ln - длина n-го участка, м; k1, k2, kn - средняя проницаемость n-го участка, м2; h1, h2, hn - средняя нефтенасыщенная толщина n-го участка, м; rc - радиус скважины, м. 2 ил., 2 пр.

Изобретение относится к нефтедобыче. Технический результат - интенсификация добычи нефти из горизонтальной скважины, увеличение дебита нефти в 1,5-2 раза, снижение обводненности добываемой продукции на 30-50%. В способе поинтервальной кислотной обработки горизонтальной скважины, эксплуатирующей карбонатный коллектор, включающем спуск колонны труб в скважину, закачку по колонне труб в пласт кислотных составов, до начала обработки в горизонтальной скважине проводят геофизические исследования. Выделяют и разделяют интервалы горизонтальной скважины на две группы. В первую группу включают интервалы с проницаемостью от 40 до 70 мД и обводненностью добываемой продукции от 70 до 80%. Во вторую группу включают интервалы с проницаемостью от 5 до 39 мД и обводненностью добываемой продукции от 50 до 69%. Затем спускают в горизонтальную скважину заглушенную снизу колонну труб, оснащенную двумя пакерами с перфорированным патрубком между ними. Затем проводят последовательную обработку интервалов горизонтальной скважины, относящихся к первой группе, путем герметичного отсечения каждого интервала с последующей чередующейся закачкой в каждый интервал в три цикла временного блокирующего состава с расходом 6-12 м3/ч, в качестве которого используют обратную водонефтяную эмульсию с динамической вязкостью 120 мПа·с при 20°C, и кислотного состава с расходом 54-66 м3/ч. После обработки интервалов горизонтальной скважины, относящихся к первой группе, извлекают колонну труб из горизонтальной скважины, на устье горизонтальной скважины колонну труб выше перфорированного патрубка оснащают импульсным пульсатором жидкости и вновь спускают заглушенную снизу колонну труб, оснащенную двумя пакерами с перфорированным патрубком между ними, в горизонтальную скважину. Производят обработку интервалов горизонтальной скважины второй группы путем герметичного отсечения каждого интервала с последующей импульсной закачкой в каждый интервал самоотклоняющейся кислотной композиции на основе гелирующего агента с расходом 24-36 м3/ч. 3 ил.

Изобретение относится к нефтедобывающей промышленности. Технический результат - выравнивание профиля притока добывающих скважин в неоднородных по проницаемости карбонатных пластах, создание новых флюидопроводящих каналов по всей перфорированной толщине пласта, восстановление коллекторских свойств призабойной зоны за счет ее очистки от кольматирующих твердых частиц. Способ кислотной обработки призабойной зоны карбонатного коллектора включает закачку кислотной композиции, содержащей, мас. %: неорганическую или органическую кислоту, или их смеси 9,0-24,0; цвиттерионное поверхностно-активное вещество - олеинамидопропилбетаин 1,0-10,0; гидрофобно-модифицированный полиуретановый полимер 0,05-3,0; воду остальное, причем закачку кислотной композиции проводят в одну стадию либо порциями с проведением выдержки между закачками. Кислотная композиция дополнительно может содержать анионное поверхностно-активное вещество в количестве 0,1-3,0 мас.%. Закачку указанной выше кислотной композиции могут чередовать с закачкой соляной кислоты 12-24%-ной концентрации. 2 з.п. ф-лы, 1 табл., 16 пр., 4 ил.
Изобретение относится к нефтегазодобывающей промышленности. Технический результат - увеличение проницаемости осушенной призабойной зоны пласта, повышение степени разглинизации призабойной зоны и повышение производительности скважин. Способ разглинизации призабойной зоны низкопроницаемого низкотемпературного терригенного пласта, расположенного вблизи многолетнемерзлых пород, включает последовательное закачивание через колонну насосно-компрессорных труб в призабойную зону заглинизированного низкопроницаемого низкотемпературного терригенного пласта метанола в объеме 1-2 м3 на 1 м перфорированной толщины, ортофосфорной кислоты 5-6%-ной концентрации с технологической выстойкой не более 0,5 ч. После закачивают аэрировано-диспергированный водный раствор перекиси водорода малой концентрации не более 10-15 мас.% в объеме 2-3 м3 на 1 м перфорированной толщины с продавливанием ортофосфорной кислоты в удаленную часть пласта. Затем снова закачивают и продавливают аэрировано-диспергированный водный раствор перекиси водорода в пласт с помощью газового конденсата с кратковременной технологической выстойкой не более 0,5-1,0 ч. Затем производят удаление и вынос оставшейся части аэрировано-диспергированного водного раствора перекиси водорода из пласта и скважины на поверхность. Затем осуществляют освоение скважины подачей в скважину инертного газа, например, азота, отрабатывают и вводят скважину в эксплуатацию. При этом закачивание аэрировано-диспергированного водного раствора перекиси водорода осуществляют импульсно-циклическим методом попеременным закачиванием водного раствора перекиси водорода и инертного газа, например, азота. 3 пр.
Наверх