Способ термической обработки режущего инструмента из быстрорежущих сталей


 

C21D1/46 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2543027:

Открытое акционерное общество "Завод им. В.А. Дегтярева" (RU)

Изобретение относится к области машиностроения и может быть использовано для термической обработки режущего инструмента, например протяжек небольшого диаметра, метчиков и других мелких инструментов. Для повышения прочности, вязкости и незначительного снижения красностойкости, например, с умеренными, при эксплуатации инструмента, скоростями резания, инструмент получают из прутка диаметром 25 мм и менее, осуществляют предварительный подогрев инструмента в соляной ванне, затем окончательный нагрев в хлорбариевой ванне до температуры, на 30-50°C ниже обычной температуры нагрева под закалку, охлаждение с обеспечением балла зерна не крупнее 12, многократный отпуск с обеспечением твердости не ниже 56 HRC и незначительного понижения красностойкости. 2пр.

 

Изобретение относится к области машиностроения и может быть использовано для термической обработки режущего инструмента, например протяжек небольшого диаметра, метчиков и других мелких инструментов, для работы которых необходимы максимально возможные прочность и вязкость, но допустимо незначительное снижение красностойкости, например, с умеренными, при эксплуатации инструмента, скоростями резания.

Известен способ термической обработки режущего инструмента из быстрорежущей стали (см. книгу Ю.А. Геллера «Инструментальные стали», Москва, «Металлургия», 1975 год, стр.427-432 и стр.435-437). Способ взят за прототип. Изготовление инструмента по способу-прототипу заключается в следующем. Укладывают режущий инструмент в корзину или другое приспособление. Загружают корзину с инструментом в соляную ванну подогрева с температурой 780-840°C, выдерживают требуемое время, а затем переносят корзину с инструментом в хлорбариевую ванну для окончательного нагрева с температурой, указанной в таблице 104, стр.429 прототипа. В зависимости от марки стали и вида инструмента выдерживают его в ванне определенное время, а затем охлаждают на воздухе, в масле или в горячих средах, в зависимости от сечения и вида инструмента. После выдержки в горячей среде инструмент окончательно охлаждают на воздухе или в масле. По завершении охлаждения режущий инструмент подвергают отпуску. Отпуск выполняют, как правило, трехкратный с нагревом в селитровой ванне на температуру 560±10°C с выдержкой 1 час и охлаждением на воздухе.

Недостатки прототипа.

Режущий инструмент, как правило, термообрабатывают на десятый балл зерна (см. таблицу 104, стр.429 прототипа). В этом случае достигается практически максимальная красностойкость, но прочность и вязкость не имеют при этом максимальных значений.

Это отрицательным образом сказывается на стойкости режущих инструментов, которые испытывают при работе не только кручение и изгиб, но очень жесткие растягивающие напряжения, которые возникают при эксплуатации, например, протяжек. Кроме того, работа протяжек, так же как и метчиков, не требует максимальной красностойкости, поскольку скорости резания умеренные.

Максимально высокие значения прочности и вязкости необходимы для работы мелкого режущего инструмента, так как до 70% этого вида инструмента ломаются до наступления нормального износа (см. стр.49 прототипа, раздел 10 «Прочность» I и II абзацы).

Кроме того, при закалке по способу-прототипу наблюдаются случаи изменения линейных и угловых размеров инструмента сверх установленных допусков.

Предлагаемым изобретением решается задача резкого снижения материальных, энергетических и трудовых затрат при изготовлении мелкого режущего инструмента из быстрорежущих сталей.

Технический результат, получаемый при реализации изобретения, заключается в многократном повышении стойкости мелкого режущего инструмента из быстрорежущей стали за счет обеспечения максимально возможных значений прочности и вязкости при незначительном снижении красностойкости.

Указанный технический результат достигается тем, что в способе термической обработки мелкого режущего инструмента из быстрорежущей стали, изготовленного из прутка диаметром 25 мм и менее, включающем предварительный подогрев в соляной ванне, окончательный нагрев в хлорбариевой ванне и охлаждение с последующим многократным отпуском, новым является то, что окончательный нагрев ведут до температуры на 30-50°C ниже обычной температуры закалки, с обеспечением после охлаждения балла зерна не крупнее 12, а после многократного отпуска твердости не ниже 56 HRC с незначительным понижением красностойкости.

Прочность режущего инструмента из быстрорежущих сталей зависит от содержания углерода в мартенсите, количества аустенита в структуре стали, величины зерна и состояния его пограничных слоев, дисперсности и условий распределения карбидов и напряжений.

С увеличением содержания углерода в мартенсите до 0,3-0,5% мас. прочность растет, при большей концентрации снижается, а содержание углерода в мартенсите зависит от полноты растворения карбидных фаз. В свою очередь, растворение карбидных фаз напрямую зависит от температуры нагрева под закалку. Чем выше температура закалки, тем больше степень растворения карбидных фаз, тем выше содержание углерода в мартенсите. Предлагаемые температуры закалки режущего инструмента из разных марок быстрорежущих сталей умеренной теплостойкости на 30-50°C ниже определенных прототипом надежно обеспечивают содержание углерода в пределах 0,3-0,4% масс.

Количество остаточного аустенита в структуре быстрорежущей стали снижает ее прочность, но поскольку режущий инструмент после закалки подвергают многократному отпуску, вызывающему распад аустенита, то в конечном итоге в готовом инструменте останется не более нескольких процентов аустенита. Предлагаемая закалка инструмента с более низких температур снижает устойчивость аустенита, поэтому в готовом инструменте, как правило, остаточный аустенит отсутствует.

Особенно значительно влияние на прочность величины зерна. Прочность быстрорежущих сталей снижается почти пропорционально с увеличением зерна, а величина зерна напрямую зависит от температуры закалки. Чем выше температура закалки, тем крупнее зерно. Поэтому закалка режущего инструмента с предлагаемым пониженным диапазоном температур обеспечивает балл зерна не крупнее 12, по прототипу (10-10,5) балл (см. стр.429, табл.104). При отпуске режущего инструмента из быстрорежущих сталей, закаленных согласно прототипу, наблюдается понижение значений прочности и вязкости за счет выделения карбидов, в том числе по границам зерен в процессе дисперсионного твердения. При сохранении мелкого зерна и не очень значительном выделении карбидов, что характерно для пониженных температур закалки, прочность возрастает.

Прочность в значительной степени зависит от карбидной неоднородности. Чем больше диаметр прутка, из которого изготовлен инструмент, тем больше карбидная неоднородность. Но поскольку в предлагаемом способе термической обработки рассматривается только мелкий инструмент, который изготовляют из прутков диаметром 25 мм и меньше, то карбидный балл при этом не больше 2, поэтому значения прочности существенно не отличаются (см. стр.169, табл.27 прототипа).

Таким образом, из всех рассмотренных факторов особое влияние на прочность оказывает величина зерна, а следовательно, температура закалки. Пониженная температура закалки режущего инструмента на 30-50°C обеспечивает получение мелкого зерна не крупнее 12 баллов.

Вязкость характеризует сопротивление образованию трещин и разрушение инструмента под действием ударных нагрузок. Большинство режущих инструментов испытывают при работе ударные нагрузки: при врезании инструмента в обрабатываемый материал, сквозном сверлении, прерывистом резании и часто при недостаточной жесткости (наладке) станка, даже при относительно небольших нагрузках, происходит поломка режущих, в особенности мелких, инструментов. Поэтому для резкого повышения стойкости наряду с высокой прочностью режущие инструменты должны обладать высокой вязкостью. Предлагаемое снижение температуры закалки на 30-50°C одновременно, существенным образом повышает и прочность, и вязкость режущего инструмента из быстрорежущих сталей.

Вязкость таким же образом, как и прочность, зависит от величины зерен и состояния их пограничных слоев, количества, размеров и условий распределения карбидов.

Влияние этих факторов в предлагаемом способе термической обработки режущего инструмента на прочность, а значит, и на вязкость, рассмотрены выше.

Границы зерна служат барьером, задерживающим распространение трещины, которая возникает при хрупком разрушении. В конце трещины создается наибольшая концентрация напряжений. Она тем значительнее, чем больше трещина, следовательно, чем крупнее зерно. У сталей с более мелким зерном больше сопротивление распространению трещин и ниже температурный порог хладноломкости.

Между величиной зерна и красностойкостью, естественно, нет прямой связи. Однако проведенные исследования показывают, что понижение температуры закалки на 30-50°C обеспечивает балл зерна не крупнее 12, в то же время достигается значительное растворение карбидов и насыщение аустенита, а следовательно, достаточная красностойкость, особенно для мелкого инструмента. После окончательной упрочняющей термической обработки инструмента по предлагаемому способу, дополнительный нагрев на 620°C с выдержкой 4 часа не приводит к заметному снижению твердости. В этом случае имеем твердость ≥56 HRC, при обычной закалке режущего инструмента при проверке красностойкости имеем твердость ≥58 HRC.

В то же время при закалке с пониженных температур получаем значительный выигрыш в прочности и вязкости (см. стр.345, рис.231 прототипа). При закалке стали Р18 с обычной для нее температуры 1280°C имеем прочность при изгибе σизг=250 кгс/мм2, вязкость α=6 кгс·м/см2. Предлагаемое снижение температуры закалки на 30-50°C обеспечивает прочность при изгибе σизг≈320 кгс/мм2, а вязкость α≈7,4 кгс·м/см2.

Понижение температуры закалки сверх выбранного диапазона 30-50°C приводит к снижению прочности, вязкости и красностойкости.

Таким образом, предлагаемый способ термической обработки режущего инструмента из быстрорежущих сталей умеренной теплостойкости при получаемом незначительном снижении красностойкости всего на 3,3% обеспечивает повышение прочности на 28% и вязкости на 23%, а значит, резкое повышение его стойкости.

Технические решения с признаками, отличающими заявляемое решение от прототипа, неизвестны и явным образом из уровня техники не следуют. Это позволяет считать, что заявляемое решение является новым и обладает изобретательским уровнем.

Предложенный способ термической обработки режущего инструмента реализуется следующим образом.

Устанавливают режущий инструмент в специальное приспособление. Загружают инструмент в соляную ванну для подогрева, выдерживают требуемое время, затем переносят инструмент в приспособлении в хлорбариевую ванну с температурой на 30-50°C ниже, чем установленная прототипом, выдерживают требуемое время, затем инструмент охлаждают на воздухе, в масле или горячих средах с последующим охлаждением на воздухе или в масле. После охлаждения инструмент подвергают многократному отпуску на температуру 560°C с выдержкой 1 час в селитровой ванне и охлаждением на воздухе после каждого отпуска.

Пример термической обработки протяжки длиной 300 мм с максимальным диаметром режущей части 20 мм из стали Р6М5 по предлагаемому способу.

Посредством нихромовой проволоки и клещей загружают протяжку в соляную ванну подогрева с температурой 810±10°C вертикально, выдерживают при этой температуре 7 минут, затем переносят протяжку в хлорбариевую ванну для окончательного нагрева. Загружают протяжку в соль вертикально. Температуру окончательного нагрева под закалку определяют следующим образом. Обычная температура закалки для стали Р6М5 согласно прототипу (стр.429, табл.104) составляет 1220°C. По предлагаемому способу температура закалки на 30-50°C ниже. Выбираем среднюю температуру 40°C. Окончательная температура нагрева под закалку 1220-40=1180°C. Таким образом, температура в хлорбариевой ванне должна поддерживаться в диапазоне 1180±5°C.

Выдерживают протяжку при температуре 1180±5°C в течение 3 минут, затем переносят протяжку в селитровую ванну с температурой 480-560°C для охлаждения. Загружают протяжку в селитровую ванну вертикально. Выдерживают протяжку в селитре в течение 8-10 минут. Затем извлекают протяжку из селитровой ванны и охлаждают на воздухе. После выгрузки протяжки из селитры незамедлительно производят правку протяжки ударом, используя явление сверхпластичности быстрорежущей стали в интервале мартенситного превращения. По завершении правки и охлаждения протяжку подвергают трехкратному отпуску в селитровой ванне с температурой 560±5°C с выдержкой при каждом отпуске 1 час и охлаждением на воздухе.

Температура закалки протяжки 1180°C обеспечивает балл зерна не крупнее 12 и максимально возможные значения прочности и вязкости, что важно, поскольку в протяжках кроме прочих возникают очень жесткие растягивающие напряжения. Незначительное снижение красностойкости не оказывает никакого влияния на стойкость, т.к. протяжка эксплуатируется с умеренными скоростями резания.

Кроме того, следует отметить, что закалка длинномерного режущего инструмента с пониженной температурой положительным образом влияет на сохранение размеров в процессе закалки, что облегчает их правку.

Пример термической обработки метчиков М4 из быстрорежущей стали Р18 по предлагаемому способу.

Закалку метчиков производят местно, для этого используют клещи, губки которых теплоизолируют, например, асбестом. Зажимают партию метчиков в клещах за хвостовики, загружают инструмент в соляную ванну подогрева с температурой 830±5°C таким образом, чтобы режущая часть метчиков была полностью погружена в расплав соли. Выдерживают инструмент в ванне подогрева в течение 3 минут, затем его переносят в хлорбариевую ванну с температурой 1235±5°C для окончательного местного нагрева и выдерживают в ней в течение 1,5 минут. Температуру окончательного нагрева определяют следующим образом. Обычная температура закалки для стали Р18 согласно прототипу (стр.429, табл.104) составляет 1280°C. По предлагаемому способу температура закалки на 30-50°C ниже, выбираем температуру 1235°C. Таким образом, температура хлорбариевой ванны должны поддерживаться в диапазоне 1235±5°C. По завершении выдержки метчиков в ванне окончательного нагрева их охлаждают на воздухе. После закалки инструмент подвергают 2-кратному отпуску в селитровой ванне с температурой 560±5°C и выдерживают при каждом отпуске 1 час и охлаждением на воздухе.

Предложенный способ термической обработки режущего инструмента обеспечивает практически максимальные значения прочности и вязкости при несущественном снижении красностойкости, а значит, повышение его стойкости, в том числе за счет резкого сокращения поломок в процессе эксплуатации мелкого инструмента. Кроме того, в большинстве случаев термической обработки режущего инструмента по предложенному способу существует возможность ограничения количества отпусков после закалки, поскольку закалка с пониженной температурой уменьшает процентное содержание аустенита в структуре закаленной стали.

При пониженной температуре закалки уменьшаются внутренние напряжения, что благотворно сказывается на сохранении линейных и угловых размеров режущего инструмента.

Способ термической обработки режущего инструмента из быстрорежущей стали, изготовленного из прутка диаметром не более 25 мм, включающий предварительный подогрев инструмента в соляной ванне, окончательный нагрев в хлорбариевой ванне и охлаждение с последующим многократным отпуском, отличающийся тем, что окончательный нагрев инструмента ведут до температуры, которая на 30-50°C ниже установленной температуры закалки для быстрорежущей стали, с обеспечением после охлаждения зерна не крупнее 12 баллов, а многократный отпуск проводят до достижения твердости стали не ниже 56 HRC.



 

Похожие патенты:
Изобретение относится к области металлообработки и может найти применение в машиностроении. Техническим результатом изобретения является улучшение эксплуатационных характеристик оправок за счет значительного повышения их жёсткостных и демпфирующих параметров.

Изобретение относится к инструментальному производству, а именно изготовлению металлорежущего инструмента с применением наплавки. Способ изготовления наплавленного режущего инструмента включает механическую и термическую обработку корпуса, наплавку быстрорежущей сталью рабочего слоя, его поверхностное пластическое деформирование и высокотемпературный отпуск.
Изобретение относится к области термической обработки быстрорежущих сталей и может быть использовано преимущественно для термической обработки длинномерного инструмента и инструмента сплошной формы.
Изобретение относится к области машиностроения. Техническим результатом изобретения является обеспечение характеристик пластичности, вязкости, прочности материала литых штампов после упрочняющей термической обработки не ниже соответствующих характеристик инструмента, изготовленного из кованых заготовок.
Изобретение относится к области машиностроения и может быть использовано для термической обработки штампов из полутеплостойких и теплостойких сталей повышенной вязкости, к примеру 5ХНМ и 4Х5МФС, а также пресс-форм из стали 4Х5МФС.
Изобретение относится к области машиностроения и металлургии. Для повышения твердости и увеличения глубины прокаливаемости осуществляют предварительную обработку путем нагрева изделия выше критической точки стали, из которой изготовлено это изделие, выдержки и последующего охлаждения на воздухе, причем в процессе охлаждения к изделию прикладывают ударно-импульсные колебания с частотой нанесения ударов от 30 до 10000 герц, а затем проводят закалку.

Изобретение относится к области машиностроения, в частности к обработке лазером при изготовлении и ремонте различных машин и механизмов. Для повышения физико-механических свойств инструментальных и конструкционных материалов осуществляют лазерную обработку изделий с использованием лазера импульсного действия при полезной энергии импульса 60-500 Дж, плотности мощности импульса 1,2·1010-4,3·1011 Вт/м2, длине волны 1,064·10-6 м, продолжительности импульса 0,8·10-3 с, диаметре луча 1,2·10-3-2,5·10-3 м и расстоянии от места облучения до упрочняемой поверхности 12-30 мм.

Изобретение относится к области машиностроения, в частности к инструментальному производству, для упрочнения режущего инструмента с напаянной твердосплавной пластиной.

Изобретение относится к области металлургии, а именно к стали, используемой для изготовления деталей режущих инструментов. Сталь содержит, в мас.%: от 0,28 до 0,5 С, от 0,10 до 1,5 Si, от 1,0 до 2,0 Mn, максимум 0,2 S, от 1,5 до 4 Cr, от 3,0 до 5 Ni, от 0,7 до 1,0 Mo, от 0,6 до 1,0 V, от следовых количеств до общего максимального содержания 0,4% мас.

Изобретение относится к области металлургии и может быть использовано в машиностроении для производства дешевого инструмента, в частности выглаживателей для деталей из цветных металлов.

Изобретение является способом и относится к технологии модификации поверхностных слоев изделий из металлических материалов. Изобретение может быть использовано для модификации поверхности металлообрабатывающего инструмента и деталей машин в инструментальной, сельскохозяйственной, автомобильной, металлургической промышленности и др.

Изобретение относится к литейному производству. Для повышения качества защиты стальных отливок от обезуглероживания, в частности минимизации толщины обезуглероженного слоя, отливки помещают в контейнер и засыпают их карбюризатором, в качестве которого используют смесь древесного угля и отработанной парафино-стеариновой модельной композиции в соотношении (2,3-2,5):1, а количество карбюризатора составляет 20-25% объема садки.

Изобретение относится к способу контроля охлаждения движущейся полосы (в) в охлаждающей секции линии непрерывной обработки и к охлаждающей секции непрерывной обработки полосы.
Изобретение относится к области металлообработки и может найти применение в машиностроении. Техническим результатом изобретения является улучшение эксплуатационных характеристик оправок за счет значительного повышения их жёсткостных и демпфирующих параметров.

Изобретение относится к способу лазерного упрочнения плоской заготовки и может быть использовано для формирования поверхностных слоев материалов путем термообработки.

Изобретение относится к термической поверхностной обработке чугуна и стали, в частности к методам упрочнения с помощью электрической дуги. Для повышения износостойкости деталей машин и различного режущего инструмента осуществляют нагрев изделия электрической дугой переменного тока с прямоугольной формой импульсов, при этом регулируют тепловложение дуги путем изменения силы или частоты тока в положительной и отрицательной полуволнах тока с изменением их продолжительности, что позволяет в каждом конкретном случае в зависимости от изделия получить желаемую глубину закаленного слоя с нужной шириной закаленной полосы при максимальной производительности.

Изобретение относится к области металлургии. Для повышения сопротивления усталости способ изготовления нержавеющей мартенситной стали содержит этап электрошлаковой переплавки слитка упомянутой стали, а затем этап охлаждения упомянутого слитка.

Изобретение относится к области металлургии, в частности способу изготовления горячекатаной стальной ленты толщиной 2-12 мм из низколегированной стали с содержанием углерода 0,04-0,08 вес.% и содержащем также ниобий и титан.
Изобретение относится к способам защиты поверхности деталей во время их термической обработки. Способ защиты поверхности металлических деталей при нагреве в печах включает помещение деталей в емкость, засыпку их стружкой, закрывание емкости крышкой и нагрев.
Изобретение относится к области термической обработки быстрорежущих сталей и может быть использовано преимущественно для термической обработки длинномерного инструмента и инструмента сплошной формы.

Изобретение относится к области машиностроения, в частности к технологии упрочнения резьбовых изделий с трапецеидальной резьбой, и может быть использовано для упрочнения резьбы в изделиях, работающих при повышенных нагрузках. Для обеспечения упрочнения трепецеидальной резьбы, повышения производительности и качества процесса осуществляют нагрев участка резьбы с помощью источника нагрева в виде лазера, формирование пятна лазерного луча на дне резьбовой канавки по ее центру, перемещение лазерного луча относительно продольной оси при вращении изделия при величине перемещения лазерного луча, равной величине шага резьбы за один оборот вращения, при этом формирование пятна лазерного луча осуществляют сканирующим лазерным лучом с частотой его сканирования 200÷600 Гц вдоль оси вращения и амплитуде сканирования, равной 0,6÷0,8 шага резьбы. 1 ил.
Наверх