Способ защиты ядерного реактора от тепловой нагрузки расплавленной активной зоны и устройство для его осуществления


 


Владельцы патента RU 2543056:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ") (RU)

Изобретение относится к ядерной энергетике и может быть использовано для уменьшения последствий тяжелых аварий с расплавлением активной зоны. Техническим результатом заявляемого решения является уменьшение интенсивности тепловой нагрузки (уменьшение эффекта «фокусировки» тепловой нагрузки) и ее более равномерное распределение по внутренней поверхности стенки корпуса реактора при формирования бассейна расплава в его нижней части при тяжелой аварии. В нижней части корпуса реактора располагают тугоплавкие элементы с теплопроводностью меньше теплопроводности расплавленной стали и плотностью, примерно равной плотности расплавленной стали. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к ядерной энергетике и может быть использовано для уменьшения последствий тяжелых аварий с расплавлением активной зоны (АЗ).

Известны системы ограничения последствий аварий на атомной электростанции, содержащие в подреакторном помещении улавливающие емкости с охлаждающей жидкостью (патент РФ №2030801, опубл. 10.03.2005 г.)

Недостатком известных устройств является то, что системы защиты срабатывают после того, как произойдет разрушение корпуса реактора и кориум попадает в подреакторное пространство, что увеличивает риск выхода радиоактивных материалов в окружающую среду. Возможность охлаждения кориума внутри корпуса реактора является основной задачей внутриреакторного удержания расплава внутри корпуса (т.н. стратегия «IVR - In-Vessel retention») в общей стратегии управления тяжелыми авариями.

Наиболее близким по технической сущности является устройство пассивной защиты ядерного реактора (патент РФ №2055408, опубл. 27.02.96 г.), содержащее размещенный в боксе вертикальный цилиндрический корпус реактора с монолитным днищем и устройство для заполнения бокса жидкостью, при этом центральная часть внешней поверхности днища выполнена в виде круглого конуса с обращенной в бокс закругленной вершиной, у которого ось совпадает с продольной осью симметрии корпуса, боковая поверхность сопряжена с периферийной частью внешней поверхности днища, угол между осью и образующей составляет не более 65°, нижняя часть внешней поверхности корпуса реактора помещена в бокс с охлаждающей жидкостью.

Недостатком известного способа является потеря надежности систем защиты от расплавления корпуса, обусловленная тем, что в процессе охлаждения корпуса реактора происходит вынос охлаждающей воды из подреакторного помещения. В результате нарушения режима теплосъема с внешней поверхности стенки корпуса реактора происходит расплавление активной зоны, что приводит к нагреву и разрушению стенки корпуса реактора. Возможность внешнего охлаждения стенки корпуса реактора при тяжелой аварии ограничивается величиной критического теплового потока (КТП). При тепловой нагрузке на корпус реактора со стороны расплава, превышающей КТП, происходит сквозное проплавление корпуса и его разрушение, сопровождающееся выходом расплавленного кориума за его пределы и контакту с водой. При контакте расплавленного кориума с водой происходит генерация водорода, а также увеличивается вероятность парового взрыва.

Кроме того, при удержании расплава внутри корпуса реактора происходит его расслоение (стратификация расплава) вследствие различных плотностей жидких компонентов расплава. При этом наименее плотным оказывается расплав стальных компонентов (стальные конструктивные элементы АЗ и внутрикорпусные конструкции), который накапливается в верхней части кориума, образуя стальной слой различной толщины. Этот слой при меньшей плотности обладает существенно большей теплопроводностью, по сравнению с основным бассейном тепловыделяющего расплава, состоящего из оксидных составляющих (оксиды циркония и урана) с более высокой плотностью (~10÷43 т/м3) по сравнению со стальным слоем (~8 т/м3).

Вследствие того, что стальной слой расплава находится над оксидной тепловыделяющей частью расплава, значительная часть тепла, выделяемая в оксидной части бассейна расплава, передается в стальной слой, толщина которого может варьироваться от нескольких (~5÷10 см) до десятков (30÷70 см) сантиметров. При этом, отвод тепла от стального слоя происходит как с верхней своей поверхности путем излучения, так и по его боковой поверхности, контактирующей со стенкой корпуса реактора. Доля тепла, уходящая с верхней поверхности стального слоя расплава за счет излучения, на внутрикорпусные элементы АЗ, может быть значительно ниже той части тепла, которая передается по боковой поверхности стального слоя в стенку корпуса реактора путем теплопроводности, вследствие того, что на верхнюю часть стального слоя расплава передается путем излучением тепло от высокотемпературных (~2400÷3000°C) элементов конструкции разрушенной АЗ. Вследствие того, что площадь поверхности стального слоя, контактирующего с оксидной частью расплава (характерные диаметры ~3÷5 м), значительно превышает площадь его боковой поверхности, то основная доля тепла, передаваемая в стальной слой от тепловыделяющей оксидной части расплава, передается путем теплопроводности в стенку корпуса реактора, что приводит к эффекту «фокусировки» тепловой нагрузки (Theofanous, T.G., Liu, C., Additon, S., Angelini, S., Kymalanen, O., Salmassi, T., In-vessel coolability and retention of a core melt, DOE/ID-10460, Vols. 1 and 2, October 1996, and Nucl. Eng. Des., Vol.169, 1-48, 1997. Theofanous, T.G. and Syri, S., The coolability limits of a reactor pressure vessel lower head, Nucl. Eng. And Des., Vol.169, 59-76, 1997), характеризующегося тем, что на стенку корпуса реактора воздействует тепловой поток высокой интенсивности, превышающий в некоторых случаях значение КТП, которое определяет возможность теплосъема тепловой нагрузки с внешней поверхности стенки корпуса реактора при его охлаждении.

В силу высокой температуры оксидной ванны расплава (~2000÷3000°C) и ее размеров по глубине (~0.7÷1.5 м), в расплаве формируются достаточно интенсивные течения (естественная конвекция), сопровождающиеся переносом тепла к верхней части расплава оксидов и к нижней поверхности стального слоя расплава. В последнем, вследствие естественной конвекции, также происходит интенсивный перенос тепла внутри слоя (интенсивное перемешивание).

Технической задачей, на решение которой направлено изобретение, является уменьшение риска разрушения корпуса реактора и последствий тяжелых аварий на атомных электростанциях путем удержания расплавленной активной зоны внутри корпуса реактора.

Техническим результатом заявляемого решения является уменьшение интенсивности тепловой нагрузки (уменьшение эффекта «фокусировки» тепловой нагрузки) и ее более равномерное распределение по внутренней поверхности стенки корпуса реактора при формировании бассейна расплава в его нижней части при тяжелой аварии.

Указанный технический результат достигается тем, что в известном способе защиты ядерного реактора от тепловой нагрузки расплавленной активной зоны, расположенной в нижней части корпуса реактора, до образования расплавленной активной зоны внутрь корпуса реактора помещают тугоплавкие элементы с теплопроводностью меньше теплопроводности расплавленной стали и плотностью, сопоставимой с плотностью прослойки расплавленной стали в верхней части кориума.

Кроме того, известное устройство защиты ядерного реактора от тепловой нагрузки расплавленной активной зоны, расположенной в нижней части корпуса реактора, снабжено контейнерами с тугоплавкими элементами, закрепленными в нижней части корпуса до образования расплавленной активной зоны, при этом выбирают тугоплавкие элементы с теплопроводностью меньше теплопроводности расплавленной стали и плотностью, сопоставимой с плотностью прослойки расплавленной стали в верхней части кориума.

Сущность изобретения поясняется чертежом, на котором представлен фрагмент корпуса реактора с расплавленной активной зоной и расслоением кориума по плотности.

Устройство защиты ядерного реактора от тепловой нагрузки расплавленной активной зоны содержит следующие элементы. В корпусе 1 ядерного реактора с расплавленной активной зоной и расслоением кориума по плотности, в нижней части бассейна расплава активной зоны находятся более плотные окислы 2, например, урана и циркония, а в верхней части расплава - слой 3 - расплавленных стальных конструктивных элементов активной зоны, с внутренней стороны к днищу корпуса 1 реактора прикреплены контейнеры с тугоплавкими элементами 5 с плотностью, примерно равной плотности прослойки расплавленной стали в верхней части кориума.

Способ защиты ядерного реактора от тепловой нагрузки расплавленной активной зоны реализуется следующим образом.

При тяжелой аварии ядерного реактора с расплавлением активной зоны ядерное топливо, а также расплав элементов конструкции A3 и элементов внутриреакторных конструкций реактора перемещаются в нижнюю часть корпуса реактора под действием силы тяжести. Вследствие значительного остаточного энерговыделения во фрагментах топлива (диоксид урана) происходит дальнейшее плавление переместившихся в нижнюю часть корпуса элементов конструкций, приводящее к формированию бассейна расплава и дальнейшему его расслоению вследствие различной плотности стальных (железо, никель, хром и их соединения) и оксидных (оксиды урана, циркония и др.) составляющих расплава.

Наиболее плотные компоненты (оксиды 2 урана и циркония) опускаются вниз, а менее плотные (расплав стальных компонентов) поднимаются вверх и образуют слой 3 с более высокой теплопроводностью, чем у оксидных сотавляющих расплава. Этот слой поглощает тепло, выделяемое в нижней, оксидной, части бассейна расплава, и отводит его к боковым стенкам корпуса реактора. Образуется эффект «фокусировки» (или «тепловой линзы»), приводящий в случае, если тепловой поток, действующий на внутреннюю стенку корпуса, превысит значение критического теплового потока на внешней охлаждаемой стенке корпуса реактора, к поясному оплавлению корпуса и его разрушению. Именно на снижение плотности теплового потока, действующего на внутреннюю стенку корпуса реактора со стороны расплава, и направлено предлагаемое техническое решение.

Ванна расплава воздействует на контейнеры 4, содержащие тугоплавкие и имеющие низкую теплопроводность (меньше теплопроводности расплавленной стали) элементы 5 с плотностью примерно равной плотности прослойки расплавленной стали в верхней части кориума и прикрепленные с внутренней стороны к днищу корпуса реактора. Оболочка контейнеров 4 выполнена из стали и под действием тепловыделения кориума плавится, освобождая находящиеся внутри элементы 5. В силу того, что тугоплавкие элементы 5 имеют плотность, сопоставимую с плотностью стального слоя расплава и величина которой ниже плотности оксидной части расплава, тугоплавкие элементы 5 всплывают и распределяются в объеме слоя стального расплава 3, образуя гетерогенную структуру, состоящую из расплава стали, имеющей высокую теплопроводность, и тверды включений с более низкой теплопроводностью. Такая структура имеет более низкую осредненную по объему теплопроводность по сравнению с гомогенным стальным слоем расплава, что приводит к перераспределению (уменьшению) количества теплоты и, как следствие, интенсивности тепловой нагрузки, передаваемой к стенке корпуса реактора расплавом стали, Кроме этого перенос теплоты за счет естественной конвекции в стальном слое расплава будет менее интенсивным в случае гетерогенной структуры последнего. Два этих эффекта позволят снизить эффект «фокусировки» тепла на стенку корпуса реактора до тех значений, когда будет возможно обеспечить устойчивый отвод тепла на внешней поверхности стенки корпуса реактора за счет использования внешнего охлаждения корпуса и снизить температуру корпуса реактора до значений, позволяющих сохранить его целостность.

Таким образом, распределение в слое стального расплава кориума, образующегося в корпусных реакторах при тяжелых авариях, тугоплавких элементов с выбранными теплопроводностью и плотностью, сопоставимой с плотностью стального слоя расплава, приводит к снижению осредненной теплопроводности стального слоя расплава и снижению интенсивности переноса теплоты к стенке корпуса реактора за счет естественной конвекции в стальном слое расплава, что в свою очередь приводит к снижению величины тепловой нагрузки, уменьшению эффекта «фокусировки» теплового потока на стенке корпуса реактора и сохранению целостности корпуса реактора при тяжелых авариях.

1. Способ защиты ядерного реактора от тепловой нагрузки расплавленной активной зоны, расположенной в нижней части корпуса реактора, отличающийся тем, что до образования расплавленной активной зоны внутрь корпуса реактора помещают тугоплавкие элементы с теплопроводностью меньше теплопроводности расплавленной стали и плотностью, сопоставимой с плотностью прослойки расплавленной стали в верхней части кориума.

2. Устройство защиты ядерного реактора от тепловой нагрузки расплавленной активной зоны, расположенной в нижней части корпуса реактора, отличающееся тем, что оно снабжено контейнерами с тугоплавкими элементами, закрепленными в нижней части корпуса до образования расплавленной активной зоны, при этом выбирают тугоплавкие элементы с теплопроводностью меньше теплопроводности расплавленной стали и плотностью, сопоставимой с плотностью прослойки расплавленной стали в верхней части кориума.



 

Похожие патенты:

Изобретение относится к ядерной энергетике, в частности к устройствам пассивной защиты ядерных реакторов на быстрых нейтронах. Устройство пассивной защиты содержит два стержня, при этом один частично вставлен в другой.

Изобретение относится к атомной энергетике. .

Изобретение относится к области энергетики, а именно к повышению безопасности эксплуатации атомных электростанций. .

Изобретение относится к системам локализации аварии на АЭС для улавливания компонентов активной зоны ядерного реактора и их обломков из разрушенного корпуса. .

Изобретение относится к ядерным реакторам водо-водяного типа, а именно к проектированию ловушек для удерживания расплава активной зоны из поврежденного ядерного реактора.

Изобретение относится к конструкции подземных атомных теплоэлектростанций шахтного исполнения (ПАСШИ) и предназначено для использования в атомной энергетике. .

Изобретение относится к ядерной технике и может быть использовано в реакторных установках с жидкометаллическим охлаждением. .

Изобретение относится к ядерной технике и может быть использовано в реакторных установках с жидкометаллическим охлаждением. .

Изобретение относится к ядерной технике и может быть использовано в реакторных установках с жидкометаллическим охлаждением. .

Изобретение относится к области энергетики, а именно к объектам, требующим отвод нагретого воздуха от работающих в помещении устройств, и может быть использовано на атомных электростанциях для выработки дополнительной электроэнергии.

Изобретение относится к ядерной энергетике, а именно к конструкции контактного аппарата для каталитического сжигания водорода на атомной электростанции. В устройстве днище внутреннего корпуса, для подвода по трубопроводу газовой смеси, вплотную соединено с днищем наружного корпуса, для минимальной возможности образования концентрационного предела взрыва смеси водорода с воздухом. Обогрев наружного корпуса выполнен электронагревателями по всей его длине вместе с днищем и патрубком подачи газовой смеси. Корпус с его нагревателем и патрубок с трубопроводом подвода газовой смеси окружены теплоизоляцией для защиты от охлаждения и надежного запуска контактного аппарата. На корпусе установлена дополнительная термопара, измеряющая его температуру, для надежности системы управления температурным процессом и режимом сжигания водорода. Количество нагревателей, выбранных с запасом по мощности, разбито на группы с возможностью продолжения работы контактного аппарата в случае выхода из строя одной группы. Технический результат - снижение возможности образования концентрации взрыва смеси водорода с воздухом. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способу и устройству для сброса давления атомной электростанции (2), содержащей защитную оболочку (4) для вмещения носителей радиоактивности и выпуск (10, 10') для сбросного потока. Поток направляется с помощью сбросного трубопровода (12, 12'), снабженного фильтрационной системой, из защитной оболочки (4) в атмосферу. Фильтрационная система содержит фильтрационную камеру (16) с сорбционным фильтром (18). Сбросный поток сначала направляется в участок (70) высокого давления, затем подвергается уменьшению давления в дроссельном приспособлении (72), затем по меньшей мере частично направляется через фильтрационную камеру (16) с сорбционным фильтром (18) и, наконец, выпускается в атмосферу. Сбросный поток, в котором с помощью дроссельного приспособления (72) снижено давление, непосредственно перед его вхождением в фильтрационную камеру (16) направляют через участок (80) перегрева. Технический результат - эффективное удержание носителей радиоактивности, содержащихся в сбросном потоке, в частности йодосодержащих органических соединений. 3 н. и 33 з.п. ф-лы, 5 ил.

Изобретение относится к средствам обеспечения безопасной работы теплообменных контуров ядерных реакторов с жидкометаллическим теплоносителем. Устройство для выведения водорода из бескислородных газовых сред включает корпус 1, размещенную внутри него реакционную камеру 3, охватывающую распределительный трубопровод 2 и имеющую по меньшей мере одну перфорированную секцию 4, заполненную гранулами 5 из кислородсодержащего материала, трубопровод 7 подачи бескислородной газовой среды, содержащей водород, в реакционную камеру и трубопровод 8 подачи кислородсодержащей газовой среды в корпус для восстановления окислительных свойств кислородсодержащего материала, подсоединенные к входному патрубку 2, выходной трубопровод 9 для отвода обработанной газовой среды из реакционной камеры и систему переключения режимов работы, содержащую три запорных вентиля: первый 10 из которых установлен в трубопроводе 7 подачи водородсодержащей бескислородной газовой среды, второй 11 - в трубопроводе 8 подачи кислородсодержащей газовой среды и третий 12 - в выходном трубопроводе 9. Изобретение позволяет повысить эффективность удаления газообразного водорода из бескислородной водородсодержащей газовой среды в ядерных реакторах с жидкометаллическим теплоносителем. 14 з.п. ф-лы, 1 ил.

Изобретение относится к средствам противоаварийной защиты машинных залов тепловых и атомных электростанций. Установка для предотвращения горения и детонации водорода при работе турбогенератора с водородным охлаждением в составе оборудования электростанции содержит систему подачи воды с резервуарами, в качестве которых используются деаэраторы (1, 2) водяного контура электростанции, питающие трубопроводы (3, 4) с распределительными коллекторами (5, 6), на которых установлены распылители (9) парокапельных потоков. Установка содержит две камеры (10, 11) смешения водорода с парокапельной средой. Первая камера (10) установлена между опорным подшипником (14) электрического генератора (13) и турбиной (12). Вторая камера (11) установлена между противоположным опорным подшипником (19) и возбудителем (18) генератора. В верхней части корпуса каждой камеры (10, 11) выполнено вентиляционное отверстие. Распределительные коллекторы (5, 6) установлены в камерах (10, 11) соосно участкам (15, 20) вала турбогенератора со стороны опорных подшипников (14, 19). Выходные каналы распылителей (9) ориентированы под острым углом к оси симметрии вала турбогенератора, обеспечивая схождение парокапельных потоков. Технический результат - исключение при предотвращении аварийных ситуаций необратимых механических деформаций и обеспечение целостности узлов и элементов конструкции турбогенератора. 6 з.п. ф-лы, 4 ил.

Изобретение касается атомной электростанции (1). АЭС включает защитную оболочку (2), содержащую корпус (3) реактора под давлением, ступень (6, 6′) аэрозольной фильтрации, линию (8) сброса давления, посредством которой отфильтрованный в ступени (6, 6′) аэрозольной фильтрации объемный поток газа через проход в защитной оболочке (2) может выводиться в окружающую среду. АЭС далее включает в себя ступень (7, 7′) йодной фильтрации, посредством которой отфильтрованный в ступени (6, 6′) аэрозольной фильтрации объемный поток газа может фильтроваться перед выдачей в окружающую среду, причем ступень (7, 7′) йодной фильтрации также расположена внутри защитной оболочки (2). Предусмотрено, что ступень (6, 6′) аэрозольной фильтрации и ступень (7, 7′) йодной фильтрации соединены друг с другом таким образом, что перенаправление объемного потока газа, исходя из ступени (6, 6′) аэрозольной фильтрации в ступень (7, 7′) йодной фильтрации, осуществляется, по существу, на одинаковом уровне давления. Технический результат - повышение эффективности улавливания выброса АЭС. 2 н. и 10 з.п. ф-лы, 7 ил.

Изобретение относится к области управления и регулирования экологической безопасностью при авариях атомных реакторов на АЭС. Система состоит из блока контроля за аварийной ситуацией атомного реактора с датчиками температуры и давления и регулирующими клапанами; металлического кожуха безопасности, который обрамляет реактор, а своей верхней конусной частью соединяется через линию сброса и регулирующий клапан с насадочной колонной; насадочной колонны, заполненной керамическими кольцами Рашига; каскадного щелочного реактора; барабанных вакуум-фильтров. Технический результат - повышение надежности управления и регулирования экологической безопасностью выбросов высокотемпературных радиоактивных газов, водяного пара с дисперсным материалом и радиоактивной пылью при аварии атомного реактора за счет высокой автоматизации системы. 4 з.п. ф-лы, 1 ил.
Наверх