Способ очистки сточных вод от фенолов и нефтепродуктов



Способ очистки сточных вод от фенолов и нефтепродуктов
Способ очистки сточных вод от фенолов и нефтепродуктов
Способ очистки сточных вод от фенолов и нефтепродуктов
Способ очистки сточных вод от фенолов и нефтепродуктов
Способ очистки сточных вод от фенолов и нефтепродуктов

 


Владельцы патента RU 2543185:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств. Основными операциями способа являются введение в исходную очищаемую воду коагулянта, флотация, создание водогазовой смеси, обработка высоковольтными импульсными разрядами, доокисление фенолов и нефтепродуктов. Последней операцией является доочистка на песчано-угольных фильтрах. Для обработки воды используют квазиобъемные разряды, которые подают с частотой 400-1000 имп./с периодически пачками при соотношении длительности пачки импульсов к периоду повторения пачек 0,1-0,5, что повышает эффективность способа, снижает энергозатраты. 3 ил., 2 табл., 1 пр.

 

Изобретение относится к способам водоочистки с обработкой очищаемой воды высоковольтными импульсными разрядами и может найти применение для очистки сточных вод от фенолов и нефтепродуктов.

Известен способ очистки промышленных сточных вод от органических веществ [SU №389030, М.кл.2 С02С 5/00, опубл. 25.06.1977, Бюл. №23] путем воздействия на эти воды импульсными электрическими разрядами, осуществляемыми в газопаровой фазе, которая содержит кислород за счет подачи кислородосодержащего газа в зону разряда через полые электроды.

Основным недостатком этого способа является низкая степень очистки, так, после операции обработки воды электрическими импульсными разрядами концентрация фенола составляет 3,0 мг/дм3, а нефтепродуктов 1,2 мг/дм3 при удельных энергозатратах 2,0 кДж/дм3, а при использовании предложенного способа после такой операции концентрация фенола - 3,0 мг/дм3, а нефтепродуктов всего 0,24 мг/дм3 при удельных энергозатратах 1,4 кДж/дм3.

Частично устранить эти недостатки позволяет выбранный за прототип способ очистки сточных вод нефтехимических и нефтеперерабатывающих производств от растворенных фенолов и нефтепродуктов путем обработки импульсными высоковольтными разрядами с одновременной подачей в межэлектродное пространство диспергированного воздуха через полый заземленный электрод реактора, при этом используют разряды с удельной энергией 7÷15 кДж/дм3, после чего сточные воды подвергают флотации, биологической очистке и сорбции на песчано-угольных фильтрах, а перед обработкой разрядами в сточные воды дозируют реагент-коагулятор [RU №2099290, МПК6 С02F1/48, опубл. 20.12.1997].

Основными недостатками этого способа являются сравнительно низкая степень очистки сточных вод на конечной стадии от фенола и высокие энергозатраты.

Основными техническими результатами предложенного способа являются повышение степени очистки сточных вод после выполнения последней операции (доочистки на песчано-угольных фильтрах) на 30% и снижение оптимальных удельных энергозатрат в 1,8 раза. Дополнительным техническим результатом является то, что после обработки воды высоковольтными импульсными разрядами концентрация нефтепродуктов в воде в 4 раза ниже, чем при использовании способа-прототипа, что существенно снижает нагрузку на песчано-угольные фильтры, соответственно увеличивая срок службы этих фильтров.

Указанный технический результат достигается тем, что в способе очистки сточных вод от фенолов и нефтепродуктов, включающем введение в сточные воды коагулянта, обработку высоковольтными импульсными разрядами и доочистку на песчано-угольных фильтрах, а также флотацию, согласно предложенному решению перед обработкой воды высоковольтными импульсными разрядами осуществляют флотацию и создают водогазовую смесь путем диспергирования воды в воздухе, а после обработки водогазовой смеси разрядами перед доочисткой на песчано-угольных фильтрах воду выдерживают для доокисления фенолов и нефтепродуктов, причем для обработки воды используют квазиобъемные разряды, которые подают с частотой 400-1000 имп./с периодически пачками при соотношении длительности пачки импульсов к периоду повторения пачек 0,1-0,5.

Пример конкретного выполнения предложенного способа проиллюстрирован тремя чертежами. На фиг.1 представлена электроразрядная установка, используемая в способе для обработки воды высоковольтными импульсными разрядами, на фиг. 2 показана пооперационная схема предложенного способа, на фиг. 3 приведена осциллограмма, полученная с помощью осциллографа Tektronix TDS2014, дополненная размерностью осей координат, на которой показаны t - длительность пачки импульсов, а также T - период повторения пачек импульсов. Из-за большой частоты следования и малой длительности импульсы в пачках на фиг. 3 сливаются в сплошные прямоугольники. Основные результаты, полученные при реализации способа, сведены в приведенные ниже таблицы. Материалы таблицы 1 показывают зависимость концентрации фенолов и нефтепродуктов в сточных водах от частоты (t/T=0,2), материалы таблицы 2 - зависимость концентрации в сточных водах фенолов и нефтепродуктов от соотношения t/T (при частоте 800 имп./с) без доочистки на песчано-угольных фильтрах.

Основным элементом электроразрядной установки, приведенной на фиг. 1, является реактор 1, внутри которого размещена электродная система 2, электроды (на фиг. 1 не показаны) которой подключены к источнику импульсов высокого напряжения 3. В верхней части реактора 1 установлен узел создания водогазовой смеси 4. Реактор 1 расположен на баке 5, предназначенном для доокисления фенолов и нефтепродуктов.

Предложенный способ осуществляется в соответствии со схемой, приведенной на фиг.2, с использованием электроразрядной установки (фиг.1). В исходную (загрязненную) воду, концентрация нефтепродуктов и фенола в которой соответствует прототипу, вводят коагулянт (оксихлорид алюминия) в количестве 35 мг/дм3. С учетом того, что производительность установки составляет 1 м3/ч, расход оксихлорида алюминия равен 35 г/ч. Затем вода, в которую введен коагулянт, проходит стадию флотации, после чего она подается на вход узла создания водогазовой смеси 4. Водогазовая смесь поступает в реактор 1, где проходит через электродную систему 2 при включенном источнике импульсов высокого напряжения 3, создающего в электродной системе квазиобъемные разряды с частотой 400-1000 имп./с периодически пачками при соотношении длительности пачки импульсов к периоду повторения пачек 0,1-0,5 (фиг. 3). В рассматриваемом примере длительность пачки t составляет 40 с, а период повторения пачек T - 100 с. Следует заметить, что период повторения пачек T необходимо определять экспериментально в зависимости от концентрации загрязняющих веществ в воде. В многочисленных опытах период повторения пачек составлял 1÷20 минут. Параметры каждого высоковольтного импульса следующие: амплитуда напряжения 18 кВ, длительность импульса 300 нс. Результаты, полученные после обработки воды высоковольтными импульсными разрядами и доокисления фенолов и нефтепродуктов в баке 5, представлены в табл.1 и 2. Последующей, завершающей операцией способа является доочистка воды на песчано-угольных фильтрах. Результаты этой операции приведены в табл.1, из которой следует, что вода, загрязненная нефтепродуктами и фенолом до такой же степени, до какой была загрязнена вода, очищаемая по способу-прототипу, предложенным способом может быть очищена на конечной стадии от нефтепродуктов до концентрации <0,05 мг/дм3 при погрешности измерения анализатором жидкости «Флюорат-02-3М» - 0,05 мг/дм3, т.е. как и по прототипу, а от фенола до концентрации 0,007 мг/дм3, т.е. на 30% лучше, чем по прототипу. Важно то, что оптимальные удельные энергозатраты предложенного способа составляют 5,6 кДж/дм3, что в 1,8 раза ниже, чем по способу-прототипу (10 кДж/дм3). Как следует из формулы изобретения прототипа и табл.1 описания предложенного изобретения, средние энергозатраты способа-прототипа 11 кДж/дм3, а предложенного способа 4,9 кДж/дм3, т.е. средние энергозатраты способа-прототипа выше в 2,2 раза.

Кроме того, после обработки воды высоковольтными импульсными разрядами предложенным способом она содержит нефтепродуктов 0,06-0,14 мг/дм3, т.е. предложенный способ очищает воду от нефтепродуктов лучше способа-прототипа в 4 раза. Это многократно снижает нагрузку на песчано-угольные фильтры, соответственно увеличивая ресурс их работы.

Применение квазиобъемных разрядов позволяет снизить до минимума эрозию электродов электродной системы 2 (фиг.1).

Способ очистки сточных вод от фенолов и нефтепродуктов, включающий введение в сточные воды коагулянта, обработку высоковольтными импульсными разрядами и доочистку на песчано-угольных фильтрах, а также флотацию, отличающийся тем, что перед обработкой воды высоковольтными импульсными разрядами осуществляют флотацию и создают водогазовую смесь путем диспергирования воды в воздухе, а после обработки водогазовой смеси разрядами перед доочисткой на песчано-угольных фильтрах воду выдерживают для доокисления фенолов и нефтепродуктов, причем для обработки воды используют квазиобъемные разряды, которые подают с частотой 400-1000 имп./с периодически пачками при соотношении длительности пачки импульсов к периоду повторения пачек 0,1-0,5.



 

Похожие патенты:

Изобретение относится к вариантам способа разрушения коллоидной системы посредством электрохимического разложения эмульсий, а также к установкам для их реализации.

Изобретение относится к области переработки дистиллерной жидкости, образующейся в производстве кальцинированной соды по аммиачному методу. .

Изобретение относится к способам обработки промышленных сточных вод. .

Изобретение относится к охране окружающей среды и комплексным устройствам очистки промышленных сбросов и сточных вод. .
Изобретение относится к области очистки сточных вод, в частности сточных вод, образующихся на полигонах твердых бытовых отходов, от диспергированных, эмульгированных и растворенных органических и неорганических веществ.

Изобретение относится к области очистки и обеззараживания воды. .

Изобретение относится к области очистки воды и может быть использовано для очистки и активации водопроводной воды, в пищевой промышленности, в медицине, для опреснения морской воды и т.п.

Изобретение относится к процессам очистки нефтесодержащих вод, в частности промышленных сточных вод, ливневых и талых вод. .

Изобретение относится к области полевой фармацевтической техники и может быть использовано в лечебно-профилактических учреждениях, аптеках и фармацевтических лабораториях.

Изобретение относится к очистке промышленных сточных вод и может быть использовано в качестве локальных очистных сооружений различных областей производства. .

Изобретение относится к устройству для уменьшения момента и/или скорости турбулентной жидкости, например, в осветлителе. Может использоваться при осаждении или отделении суспендированных твердых частиц от жидкости, например, в городских системах водоочистки, очистке сока сахарного тростника или целлюлозно-бумажном производстве.

Изобретение относится к способу борьбы с микроорганизмами в водной системе. Предлагаемый способ включает обработку водной системы эффективным количеством соединения формулы I, причем водная система содержит восстановитель в количестве по меньшей мере 10 ч/млн.

Изобретение относится к устройствам для активации жидких водных сред электрохимическим способом и предназначено для приготовления в производственных условиях двух типов воды: щелочной и кислой.

Изобретение относится к методам многоступенчатой обработки промышленных и оборотных маточных вод от органических и азотсодержащих загрязнителей различного происхождения и может быть использовано на предприятиях химической промышленности, преимущественно в технологии очистки маточных вод синтеза токсичных и взрывоопасных соединений веществ, содержащих гидразин, азиды и этиловый спирт.

Изобретение относится к электрохимической очистке воды и может быть использовано для очистки питьевой воды для загородных дач, сельских домов, не имеющих подключения к водопроводу, но расположенных близко к небольшим открытым источникам стоячей пресной воды.

Изобретение относится к способам очистки сточных вод от катионного поверхностно-активного вещества тетрадецилтриметиламмоний бромида и может быть использовано на предприятиях легкой промышленности, машиностроения, нефтехимического и органического синтеза и переработки руд.

Изобретение предназначено для обработки и обеззараживания различных типов водных сред с целью их защиты от микроорганизмов, в частности охлаждающей воды градирен, теплообменного оборудования для предотвращения биологического обрастания теплопередающих поверхностей и других промышленных систем.

Изобретение относится к биоцидам. Биоцидная композиция включает 2,2-диброммалонамид и биоцид на основе изотиазолинона формулы I: где R и R1 независимо представляют собой водород, галоген или С1-С4 алкил или R и R1 вместе с атомами углерода, к которым они присоединены, образуют С4-С7 циклоалкильное кольцо или арильную группу и Y представляет собой Н, С1-С12 алкил, С3-С7 циклоалкил, арил или аралкил.

Изобретение относится к пищевой промышленности, в частности к обеззараживанию жидкостей (воды, молока и т.д.). Установка содержит рабочую емкость с входным и выходным патрубками, выполненную в виде цилиндрического экранного корпуса, внутри которого коаксиально установлены перфорированная резонаторная камера и ситовый экранный корпус.

Изобретение относится к очистительному устройству, приспособленному для осуществления способа фотохимического удаления ксенобиотиков, присутствующих в воде. Очистительное устройство содержит узел фотохимического реактора, имеющий по меньшей мере один вход для загрязненной воды и один выход для очищенной воды с обеспечением направления непрерывного потока воды от входа к выходу, и оборудован модулем источника излучения, обеспечивающим ультрафиолетовое излучение с длиной волны в интервале от 100 до 280 нм.

Изобретение относится к обработке воды и может быть использовано в промышленных системах охлаждения. Способ включает стадии хранения воды в контейнере (а); ее обработки (б); активации операций для поддержания воды в контейнере в пределах параметров качества воды (в) и поставки обработанной охлаждающей воды из контейнера в промышленный процесс (г).
Наверх