Нановолокнистый полимерный материал



Нановолокнистый полимерный материал
Нановолокнистый полимерный материал

 


Владельцы патента RU 2543377:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственные университет тонких химических технологий имени М.В. Ломоносова" (МИТХТ им. М.В. Ломоносова) (RU)

Изобретение относится к нетканым полимерным нановолокнистым материалам на основе полигидроксибутирата, применяющимся для фильтрации различных сред, выращивания живых клеток, создания пористых матриц для контролируемого высвобождения лекарственных препаратов. Нетканый полимерный нановолокнистый материал получен из формовочного раствора на основе полигидроксибутирата, состав которого содержит нанокристаллический кремний в количестве 0,1-1,5 мас.%, и технологическая добавка, представляющая собой соль тетрабутиламмония йодида, растворенного в смеси хлороформа и муравьиной кислоты в концентрации 1 г/л. Полученный полимерный нетканый композиционный материал обладает повышенной прочностью и стойкостью к УФ-излучению. 2 табл.

 

Настоящее изобретение относится к нетканым полимерным нановолокнистым материалам на основе полигидроксибутирата и наноразмерных частиц минерального вещества, применяющихся для фильтрации различных сред, выращивания живых клеток, создания пористых матриц для контролируемого высвобождения лекарственных препаратов и др.

Известны полимерные нетканые материалы на основе полигидроксибутирата или его сополимеров, или его смесей с полилактидами и их сополимерами [О.Н. Kwon, I.S. Lee, Y. -G. Ко, W. Meng, K. -H. Jung, I. -K. Kang, Y. Ito / Electrospinning of microbial polyester for cell culture / Biomed. Mater. 2 (2007) S52-S58], [H. Kenar, G.Т. Kose, V. Hasirci / Design of a 3D aligned myocardial tissue construct from biodegradable polyesters / J Mater Sci: Mater Med (2010) 21:989-997], [O. Suwantong, S. Waleetomcheepsawat, N. Sanchavanakit, P. Pavasant, P. Cheepsunthorn, T. Bunaprasert, P. Supaphol. / In vitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber mats / International Journal of Biological Macromolecules 40 (2007) 217-223], [J.S. Choi, S. W. Lee, L. Jeong, S. -H. Bae, B.C. Min, J.H. Youk, W.H. Park / Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) / International Journal of Biological Macromolecules 34 (2004) 249-256].

Недостатками известных композиций являются низкие физико-механические характеристики: относительное удлинение и разрывная длина, что накладывает значительные ограничения на их применение.

Наиболее близким по технической сущности к предлагаемому изобретению является нетканый полимерный материал на основе полигидроксибутирата, полученного из формовочного раствора, содержащего в качестве технологической добавки соль тетрабутиламмоний йодид, а в качестве эксплутационной добавки - диоксид титана двух наноразмерных модификаций [О.В. Староверова, А.А. Ольхов, С.В. Власов, Г.М. Кузьмичева, Е.Н. Доморощина, Ю.Н. Филатов / Ультратонкие волокна на основе биополимера полигидроксибутирата (ПГБ), модифицированные наноразмерными модификациями диоксида титана. / Вестник МИТХТ, 2011, т. VI, №6, с. 120-127].

Недостатком данных композиционных материалов является недостаточно высокие показатели разрывной длины и относительного удлинения.

Техническим результатом заявленного изобретения является повышение разрывной длины и относительного удлинения.

Указанный технический результат достигается тем, что формовочный раствор, из которого получают нетканый полимерный материал на основе полигидроксибутирата, включает нанокристаллический кремний в количестве 0,1-1,5 масс. % (вместо диоксида титана).

Характеристики нанокристаллическогго кремния, использующегося в данном изобретении, приведены в следующем патенте [Патент RU 2429189 С1 «Полимерная нанокомпозиция для защиты от УФ-излучения»/ Ищенко А.А., Ольхов А.А., Гольдштрах М.А., опубл. 20.09.2011, Бюл. №26].

Примеры реализации данного изобретения сведены в таблице 1 и 2.

Методика измерения физико-механических свойств нетканых полимерных нановолокнистых материалов.

Измерения механических свойств материалов (изделий) выполняют на разрывной машине РМ-3-1 по ТУ 25.061065-72 или РМ-30-1 по ТУ 25.061066-76 или другая, отвечающая следующим требованиям:

- относительная погрешность измерения силы не должна превышать 1%; абсолютная погрешность измерения удлинения для машин с предельной нагрузкой до 300 Н включительно - 0,5 мм;

- центрирование элементарной пробы относительно оси приложенного усилия;

- плавность увеличения нагрузки, без ударов, толчков и пульсаций; фиксацию показаний разрывной нагрузки и абсолютного удлинения элементарной пробы материала;

- скорость перемещения нижнего зажима должна быть переменной с плавной регулировкой и отключением ее при любом установочном значении и не должна превышать 5%;

- расстояние между зажимами должно быть регулируемым и обеспечивать установку длины 50±1 и 100±1 мм.

Нижний зажим к разрывной машине. Ширина зажима должна быть 50±0,5 мм. Нижний зажим должен обеспечить предварительное натяжение элементарной пробы материала с усилием 0,10±0,01 Н. Жесткий шаблон длиной 60,0±0,1 мм, шириной 15,00±0,05 мм и толщиной не более 1 мм.

При измерении используют метод наложения на элементарную пробу материала разрушающего усилия F с фиксированием его и измерением разрывной длины L и относительного удлинения s. Величину разрушающего усилия выражают в Н, разрывную длину - в км и относительное удлинение - в процентах.

При выполнении измерений механических свойств фильтрующих материалов и изделий из них соблюдают следующие условия.

Подготовку и измерения механических свойств элементарных проб производят в специально отведенном помещении, изолированном от проникновения вредно действующих на оборудование паров и газов при температуре 20±10°С и давлении 760±30 мм рт.ст. Влажность воздуха в помещении не должна превышать 90%.

При изготовлении элементарных проб не допускается загрязнение или разрушение пробы с потерей ее массы, влияющей на измерения.

Элементарные пробы из материала при измерении должны иметь ширину 15,0±0,5 мм длину между зажимами 50,0±0,5 мм.

Скорость движения нижнего зажима устанавливалась 25±5 мм/мин.

Измерения проводились по трем пробам, вырезанным из каждого образца волокнистого материала. После измерения механических свойств образцы взвешивались на аналитических весах.

Поскольку измерения проводились на машине, подключенной к компьютеру, то все значения в процессе измерения сразу в цифровом виде откладывались на кривой нагрузка-удлинение.

Разрывная длина рассчитывалась как:

L=(F·l0/g·m0)·10-3м, где

L - разрывная длина пробы; F - разрушающее усилие, Н; m0 - масса разорванной элементарной пробы, г; l0 - начальная длина образца, м.

Разрывная длина и относительное удлинение рассчитывались по методике МИ-ЛА-4-01 для волокнистых фильтрующих материалов ФП.

где ТБАИ - тетрабутиламмоний йодид; ПГБ - полигидроксибутират; ХФМ/МК - смесь хлороформа и муравьиной кислоты; η-TiO2, TiO2 (анатаз) - модификации наноразмерного диоксида титана; nSi - нанокристаллический кремний.

Методика определения стойкости к УФ- излучению

Кинетика УФ - старения - с использованием камеры искусственной погоды Feutron 1001 (Германия). Облучение осуществляли ртутной лампой высокого давления (мощность 375 Вт, расстояние до образцов - 30 см).

где ТБАИ - соль тетрабутиламмоний йодид; ПГБ - полигидроксибутират; ХФМ/МК - смесь хлороформа и муравьиной кислоты; η-TiO2, TiO2 (анатаз) - модификации наноразмерного диоксида титана; nSi - нанокристаллический кремний.

Предлагаемый нетканый полимерный нановолокнистый материал позволяет увеличить разрывную длину на 50-83,5%, что увеличивает прочность материала на 50-70%.

Нетканый полимерный нановолокнистый материал на основе полигидроксибутирата, полученный из формовочного раствора, содержащего в качестве технологической добавки соль тетрабутиламмоний йодид, растворенную в смеси хлороформа и муравьиной кислоты в концентрации 1 г/л, отличающийся тем, что формовочный раствор включает нанокристаллический кремний в количестве 0,1-1,5 мас.%.



 

Похожие патенты:
Изобретение относится к химии и технологии полимеров и касается способов получения термостойкого нанокомпозитного полиэтилентерефталатного волокна, которое может найти применение в текстильной промышленности, в строительстве, а также в других отраслях промышленности.
Изобретение относится к области технологии формования регенерированного терилена из полиэфирных отходов, в частности к способу получения териленового волокна из полиэфирных отходов.
Изобретение относится к технологии получения синтетических нитей с высокими хемостойкостью и гидрофобностью и низким коэффициентом трения. Способ заключается в формовании нитей из расплава полимера, нанесении авиважного препарата, ориентационном вытягивании и термофиксации.
Изобретение относится к технологии получения синтетических нитей с высокими хемостойкостью и гидрофобностью и низким коэффициентом трения и может быть использовано в химической промышленности.

Изобретение относится к частице, включающей композицию, содержащую матрицу и радикальный пероксидный или азо-инициатор, а также относится к обрезиненным продуктам, покрышкам, протекторам покрышек и ремням, содержащим системы частица - эластомер.

Изобретение относится к технологии получения высококачественных смешанных пряж, образованных из элементарных нитей с различными степенями усадки из сложных полиэфиров, характеризующихся хорошим цветовым тоном и отсутствием ворсования и может быть применено в текстильной промышленности.

Изобретение относится к технологии получения волокон из сложных полиэфиров с модифицированным поперечным сечением, характеризующихся удовлетворительным цветовым тоном и превосходной формуемостью, и может быть применено в текстильной промышленности.

Изобретение относится к биодеградируемой полимерной композиции, включающей полимолочную кислоту, полигликолевую кислоту и ускоритель разложения сложного эфира из неорганического дисперсного вещества, который ускоряет гидролиз данного полигликоля.

Изобретение относится к композиции на основе полимера, включающей сложный полиэфир и циклический карбодиимид. Предложена композиция на основе полимера для формованных изделий, включающая сложный полиэфир (компонент А), концевая группа которого модифицирована, и соединение, включающее циклическую структуру только с одной карбодиимидной группой, первый атом азота и второй атом азота которой связаны вместе с помощью связующей группы в циклической структуре (компонент В).

Настоящее изобретение относится к биоразлагаемому смешанному алифатически-ароматическому сложному полиэфиру, пригодному для экструзионного покрытия, содержащему звенья, образованные из по меньшей мере дикарбоновой кислоты и по меньшей мере диола, с длинноцепочечными разветвлениями, и, по существу, свободному от геля, характеризующемуся вязкостью при сдвиге от 800 до 1600 Па*с, константой термостойкости менее чем 1,5*10-4, прочностью расплава от 2 до 4,5 г и относительным удлинением при разрыве более 30.

Изобретение относится к полимерным смесям, включающим один или несколько полимеров, например, полимолочную кислоту и полиэтилентерефталат. .
Изобретение относится к саморазрушающейся полимерной композиции, которая предназначена для получения деструктирующих под воздействием факторов окружающей среды материалов и изделий.

Изобретение относится к биодеградируемым биосовместимым нанокомпозиционным полимерным материалам и используется в медицине для изготовления шовной нити, имплантатов, тары для хранения и перевозки крови и др.
Изобретение относится к применению функционализованных кислотными группами твердых смол на основе сополимеров винилацетата в качестве добавки для снижения усадки ненасыщенной полиэфирной смолы.

Изобретение относится к способам высушивания или концентрирования растворов полимеров. .

Изобретение относится к получению геля на основе биоразрушаемых полимеров. .
Изобретение относится к химической промышленности, в частности, к производству резиновых смесей, предназначенных для использования в производстве резинотехнических изделий.
Наверх