Компенсационный маятниковый акселерометр

Изобретение относится к датчикам первичной информации (приборам) для измерения линейного ускорения. Сущность изобретения заключается в том, что в компенсационном маятниковом акселерометре, в котором магнитоэлектрический датчик момента представляет собой две магнитные системы, состоящие из постоянных магнитов, закрепленных с торцевой части в магнитопроводы в виде обода, катушка датчика момента напылена на верхней и нижней поверхностях единой пластины монокристаллического кремния маятникового чувствительного элемента, измерительный узел выполнен в виде компактного пакета, склеенного в не менее чем в четырех местах контакта пазов на плоских изолирующих платах и платиках единой пластины монокристаллического кремния маятникового чувствительного элемента, подача и вывод электрического сигнала на элементы измерительного узла от элементов электроники осуществляется с помощью токопроводящих контактов, выполненных в виде штырей, крепление элементов магнитных систем, измерительного узла и элементов электроники осуществляется с помощью направленных навстречу друг другу пар винтов, закрепленных в общей трубке с внутренней резьбой, при этом в основаниях головок которых расположены уплотняющие прокладки, элементы электроники и термодатчик расположены в отдельном отсеке, который изолируется крышкой, а в месте контакта элементов магнитной системы и платы электроники расположена изолирующая прокладка, кроме того, в защитном кожухе предусмотрено отверстие для осуществления вакуумирования внутреннего пространства прибора. Технический результат - повышение точности измерения. 3 ил.

 

Настоящее изобретение относится к датчикам первичной информации (приборам) для измерения линейного ускорения.

Компенсационный микромеханический акселерометр включает в себя чувствительный элемент, содержащий маятниковый пластинчатый чувствительный элемент, который удерживается в нейтральном положении за счет магнитоэлектрической обратной связи.

Известен компенсационный маятниковый акселерометр (авторское свидетельство СССР №1679395, 1991 г.), содержащий корпус, в котором размещены маятниковый узел, содержащий выполненные из единой пластины монокристаллического кремния маятниковый пластинчатый чувствительный элемент, опорную рамку с базирующими платиками, предназначенными для формирования зазора для перемещения маятникового пластинчатого чувствительного элемента, упругий подвес, посредством которого маятниковый пластинчатый чувствительный элемент связан с опорной рамкой, магнитоэлектрический датчик момента, содержащий две магнитные системы, соосно размещенные по обе стороны от маятникового узла, каждая из которых содержит постоянный магнит, кольцевой ферромагнитный магнитопровод и центральный ферромагнитный магнитопровод, образующие между собой кольцевой зазор, две катушки, размещенные с обеих сторон маятникового пластинчатого чувствительного элемента, промежуточные плоские изолирующие кольца, соосно размещенные по обе стороны от маятникового узла между маятниковым узлом и торцевыми поверхностями магнитных систем магнитоэлектрического датчика момента, образованными кольцевыми ферромагнитными магнитопроводами, емкостной датчик угла перемещения маятникового пластинчатого чувствительного элемента, подвижным электродом которого является маятниковый пластинчатый чувствительный элемент, а неподвижные электроды которого расположены на промежуточных плоских изолирующих кольцах на сторонах, обращенных к маятниковому пластинчатому чувствительному элементу, компенсационный усилитель, вход которого соединен с емкостным датчиком угла, а выход через токоподводы с катушками, генератор напряжения возбуждения емкостного датчика угла перемещения, подключенный к электродам емкостного датчика угла.

Выполнение подвеса пластинки маятника в виде плоских упругих перемычек, соединяющих пластинку маятника с опорной рамкой, в случае возникновения по технологическим причинам относительного смещения центра масс маятника (пластинки маятника с укрепленными на ней катушками) и точки приложения сил компенсационного датчика не позволяет обеспечить работоспособность акселерометра при больших ускорениях. Вследствие деформации упругих перемычек под действием момента пары сил пластинка маятника получаем большие угловые перемещения и начинает касания изолирующих пластин.

Кроме того, указанный маятниковый акселерометр не позволяет измерять большие ускорения. Для измерения большого ускорения магнитные системы должны быть выполнены с кольцевым магнитом для обеспечения большой магнитной индукции в кольцевых зазорах магнитных систем и, следовательно, меньших токов в компенсационном датчике момента. Но в этом случае кольцевые магниты из-за наличия стяжки будут находиться в напряженном состоянии. В результат не обеспечивается временная стабильность намагниченности и следовательно временная стабильность масштабного коэффициента акселерометра.

Наиболее близким к предлагаемому техническому решению является устройство по патенту RU 2291450 С1, 26.05.2005, G01P 15/13. Компенсационный маятниковый акселерометр содержит корпус, в котором размещены маятниковый узел, содержащий выполненные из единой пластины монокристаллического кремния мая тиковый пластинчатый чувствительный элемент, опорную рамку с базирующими платиками и упругий подвес, магнитоэлектрический датчик момента, промежуточные плоские изолирующие кольца, соосно размещенные по обе стороны от маятникового узла, емкостной датчик угла перемещения маятникового пластинчатого чувствительного элемента, подвижным электродом которого является маятниковый пластинчатый чувствительный элемент, а неподвижные электроды расположены на промежуточных плоских изолирующих кольцах, компенсационный усилитель, генератор напряжения возбуждения емкостного датчика угла перемещения, подключенный к электродам емкостного датчика угла. Согласно изобретению средство для сборки и крепления маятникового узла, магнитоэлектрического датчика момента и промежуточных изолирующих колец к корпусу акселерометра выполнено из немагнитного материала, упругий подвес содержит два соосных крестообразных элемента, продольная ось каждого из которых ориентирована под углом 45° к кристаллографическому направлению <110>, причем одна из образующих плоскостей крестообразною элемента параллельна торцевой плоскости (001) маятникового узла, а другая образующая плоскость перпендикулярна торцевой плоскости (001) маятникового узла.

Недостатком известного устройства является выполнение катушек магнитоэлектрического датчика обратной связи в виде отдельных элементов из проволоки, что негативно влияет на массогабаритные характеристики изобретения.

Крепление элементов маятникового чувствительного элемента (полых чашеобразных деталей) в единую сборочную единицу осуществляется с помощью болтового соединения с использованием болта нестандартной формы, что неизменно ужесточает требования к их конструкции и изготовлению. Также следует отметить, что данное конструктивное решение ограничивает авторов и заставляет вносить в состав конструкции отдельную корпусную деталь, на которой впоследствии с помощью винтового соединения закрепляется описываемая сборочная единица. В совокупности данные конструктивные решения усложняют конструкцию прибора в целом и увеличивают габариты.

В составе данной конструкции не предусмотрено отдельною места (отсека) для расположения электроники предварительного усиления сигнала, что ухудшает качественные параметры полезной составляющей выходного сигнала акселерометра. Сложно установить предполагаемое месторасположение компенсационного предусилителя (предположительно на обратной стороне маятникового пластинчатого элемента), описываемого авторами. Расположение электронных компонентов на маятниковом пластинчатом элементе может вносить дополнительные помехи (наводки) в работу емкостного датчика и температурную погрешность, т.к. во время своего функционированию будут источником дополнительного тепла.

Сборочная единица, состоящая из маятникового пластинчатого чувствительного элемента и двух плоских изолирующих плат, осуществляется по трем точкам, в результате чего, на практике, возникающие в процессе работы прибора в диапазоне рабочих температур внутренние напряжения в теле пластинчатого чувствительного элемента компенсируются не достаточно эффективно, что приводит к появлению напряжения в упругом подвесе и вносит ошибку в работу прибора. Также следует отметить, что выполнение плоских изолирующих плат с большим центральным отверстием (проходит катушка магнитоэлектрического датчика обратной связи) не позволяет в полной мере использовать возможности емкостного датчика угла (ограничение по площади напыления электродов).

Коммутация электродов электростатического датчика угла, расположенных на подвижной части пластинчатого маятникового элемента, с помощью токоподводов в виде проводов снижает надежность функционирования прибора в целом.

Выполнение составных частей магнитной системы (постоянных магнитов) в виде кольца увеличиваем массовые характеристики прибора.

Задачей настоящего изобретении является.

Технической задачей настоящего изобретения является создание компенсационного маятникового акселерометра, конструктивное выполнение которого позволит повысить точность измерения ускорения и обеспечит измерение больших ускорений.

Поставленная задача решена путем создания компенсационного маятникового акселерометра, включающего корпус, в котором размещены маятниковый узел, содержащий выполненные из единой пластины монокристаллического кремния маятниковый чувствительный элемент, опорную рамку с базирующими платиками, предназначенными для формирования зазора для перемещения маятникового чувствительного элемента, упругий подвес, посредством которого маятниковый чувствительный элемент связан с опорной рамкой; магнитоэлектрический датчик момента, содержащий две магнитные системы, соосно размещенные по обе стороны от маятникового узла, каждая из которых содержит постоянный магнит, ферромагнитные магнитопроводы, две катушки, размещенные с обеих сторон маятникового чувствительного элемента; емкостной датчик угла перемещения маятникового чувствительного элемента, подвижным электродом которого является маятниковый чувствительный элемент, а неподвижные электроды которого расположены на промежуточных плоских изолирующих платах на сторонах, обращенных к маятниковому чувствительному элементу; крепления маятникового узла, содержащие два винтовых соединения, симметрично размещенных по окружности, магнитоэлектрический датчик момента представляет собой две магнитные системы, состоящие из постоянных магнитов, закрепленных с торцевой части в магнитопроводы в виде обода, катушка датчика момента напылена на верхней и нижней поверхностях единой пластины монокристаллического кремния маятникового чувствительного элемента, измерительный узел выполнен в виде компактного пакета, склеенного в не менее чем в четырех местах контакта пазов на плоских изолирующих платах и платиках единой пластины монокристаллического кремния маятникового чувствительного элемента, подача и вывод электрического сигнала на элементы измерительного узла от элементов электроники осуществляем с помощью токопроводящих контактов, выполненных в виде штырей, крепление элементов магнитных систем, измерительного узла и элементов электроники осуществляется с помощью направленных навстречу друг другу пар винтов, закрепленных в общей трубке с внутренней резьбой, при этом в основаниях головок которых расположены уплотняющие прокладки, элементы электроники и термодатчик расположены в отдельном отсеке, который изолируется крышкой, а в месте контакта элементов магнитной системы и платы электроники расположена изолирующая прокладка, кроме того в защитном кожухе предусмотрено отверстие для осуществления вакуумирования внутреннего пространства прибора.

В дальнейшем изобретение поясняется чертежами, на которых:

Фиг.1 изображает компенсационный маятниковый акселерометр (продольный разрез) согласно изобретению;

Фиг.2 изображает компенсационный маятниковый акселерометр (поперечный разрез) согласно изобретению;

Фиг.3 изображает маятниковый узел компенсационного маятникового акселерометра согласно изобретению.

Описание позиции на чертежах:

поз.1 - нижний корпус

поз.2 - верхний корпус

поз.3 - трубка

поз.4 - крепежные винты

поз.5 - уплотняющие прокладки

поз.6 - защитный кожух

поз.7 - отверстие для вакуумирования

поз.8 - крышка

поз.9 - постоянные магниты

поз.10 - обод

поз.11 - плоские изолирующие платы

поз.12 - пластинчатый маятниковый элемент

поз.13 - плата электроники предварительного усилителя сигнала

поз.14 - изолирующая прокладка

поз.15 - отсек электроники

поз.16 - токопроводящие контакты

поз.17 - катушка термодатчика

поз.18 - монтажные пазики

поз.19 - монтажные платики

поз.20 - катушка, изготовленная напылением

поз.21 - обкладки емкостного датчика угла, изготовленные напылением

поз.22 - металлизированные отверстия для соединения дорожек катушек

поз.23 - металлизированные отверстия для соединения подвижных обкладок емкостного датчика угла

поз.24 - отверстия для трубок поз.3.

Описание воплощения изобретения

Компенсационный маятниковый акселерометр (Фиг.1) содержит нижний корпус 1 и верхний корпус 2, защитный кожух 6 с отверстием для вакуумирования 7 и крышку 8. Магнитные системы прибора состоят из постоянных магнитов 9, закрепленных с торцевой части в магнитопроводы в виде ободов 10.

Измерительный узел выполнен в виде компактного пакета и состоит из плоских изолирующих плат 11 и пластинчатого маятникового элемента 12. В отсеке для электроники 15 устанавливается узел электроники, состоящий из платы электроники предварительного усилителя сигнала 13 и изолирующей прокладка 14. Коммутация электрических сигналов между измерительным узлом и узлом электроники осуществляется с помощью токопроводящих контактов 16, выполненных в виде штырей.

Сборка верхнего корпуса 2, измерительного узла, нижнего корпуса 1 и узла электроники осуществляется с помощью двух пар крепежных винтов 4 с уплотняющими прокладками 5, которые обеспечивают фиксацию между элементами посредством трубок 3 с внутренней резьбой.

В нижний корпус 1, со стороны отсека электроники, устанавливается катушка термодатчика 17.

Сборка измерительного узла осуществляется склеиванием плоских изолирующих плат 11 в местах расположения монтажных пазиков 18 с пластинчатым маятниковым элементом 12 в местах расположения платиков 19. При этом монтажные пазики 18 располагаются на стороне, контактирующей с пластинчатым маятниковым элементом 12, не менее чем в четырех местах. Монтажные платики 19 располагаются с обеих сторон пластинчатого маятникового элемента 12 не менее чем в четырех местах на каждой из сторон.

На поверхности пластинчатого маятникового элемента 12 с обеих сторон располагаются катушки 20, выполненные методом напыления. Катушки 20 совместно с магнитной системой образуют магнитоэлектрический датчик момента. Коммутация между катушками 20, расположенными на различных сторонах пластинчатого маятникового элемента 12, осуществляется с помощью металлизированных отверстий 22. Также на обеих поверхностях пластинчатого маятникового элемента 12 располагаются подвижные электроды емкостного датчика угла 21. Неподвижные обкладки располагаются зеркально электродам 21 на плоских изолирующих платах 11 на сторонах расположения монтажных пазиков 19. Коммутация между подвижными электродами емкостного датчика угла 21, расположенными на различных сторонах пластинчатого маятникового элемента 12, осуществляется с помощью металлизированных отверстий 23. В теле пластинчатого маятникового элемента 12 и плоских изолирующих плат 11 сформированы отверстия 24 для трубок 3.

Работа маятникового компенсационного акселерометра осуществляется следующим образом.

При наличии ускорения по измерительной оси А-А маятниковый пластинчатый чувствительный элемент 12 отклоняется под действием инерционного момента. Угловое перемещение маятникового пластинчатого чувствительного элемента 12 изменяет величины электрических емкостей емкостного датчика угла за счет перемещения подвижных электродов 21. Изменение емкостей датчика угла преобразуется электроникой предварительного усилителя сигнала 13 в постоянный ток, который после преобразования и усиления подается в катушки 20 магнитоэлектрического датчика момента. При протекании тока по катушкам 20 формируется компенсационный момент, воздействующий на маятниковый пластинчатый чувствительный элемент 12 и возвращающий его в исходное положение. Постоянный ток, протекающий по катушкам 20 магнитоэлектрического датчика момента, является выходным сигналом компенсационного маятникового акселеромефа.

Совокупность содержащихся в материалах заявки предложений по новой конструкции акселерометра способна обеспечить измерение больших ускорений. Одновременно новые предложения обеспечивают улучшение точностных характеристик прибора по сравнению с известными образцами.

Компенсационный маятниковый акселерометр, включающий корпус, в котором размещены маятниковый узел, содержащий выполненные из единой пластины монокристаллического кремния маятниковый чувствительный элемент, опорную рамку с базирующими платиками, предназначенными для формирования зазора для перемещения маятникового чувствительного элемента, упругий подвес, посредством которого маятниковый чувствительный элемент связан с опорной рамкой; магнитоэлектрический датчик момента, содержащий две магнитные системы, соосно размещенные по обе стороны от маятникового узла, каждая из которых содержит постоянный магнит, ферромагнитные магнитопроводы, две катушки, размещенные с обеих сторон маятникового чувствительного элемента; емкостной датчик угла перемещения маятникового чувствительного элемента, подвижным электродом которого является маятниковый чувствительный элемент, а неподвижные электроды которого расположены на промежуточных плоских изолирующих платах на сторонах, обращенных к маятниковому чувствительному элементу; крепления маятникового узла, содержащие два винтовых соединения, симметрично размещенных по окружности, отличающийся тем, что магнитоэлектрический датчик момента представляет собой две магнитные системы, состоящие из постоянных магнитов, закрепленных с торцевой части в магнитопроводы в виде обода, катушка датчика момента напылена на верхней и нижней поверхностях единой пластины монокристаллического кремния маятникового чувствительного элемента, измерительный узел выполнен в виде компактного пакета, склеенного в не менее чем в четырех местах контакта пазов на плоских изолирующих платах и платиках единой пластины монокристаллического кремния маятникового чувствительного элемента, подача и вывод электрического сигнала на элементы измерительного узла от элементов электроники осуществляется с помощью токопроводящих контактов, выполненных в виде штырей, крепление элементов магнитных систем, измерительного узла и элементов электроники осуществляется с помощью направленных навстречу друг другу пар винтов, закрепленных в общей трубке с внутренней резьбой, при этом в основаниях головок которых расположены уплотняющие прокладки, элементы электроники и термодатчик расположены в отдельном отсеке, который изолируется крышкой, а в месте контакта элементов магнитной системы и платы электроники расположена изолирующая прокладка, кроме того, в защитном кожухе предусмотрено отверстие для осуществления вакуумирования внутреннего пространства прибора.



 

Похожие патенты:

Компенсационный акселерометр предназначен для применения в системах стабилизации и навигации. Устройство содержит чувствительный элемент, датчик положения, выход которого соединен с входом усилителя со стабильным коэффициентом усиления, магнитоэлектрический силовой преобразователь, включенный в отрицательную обратную связь.

Изобретение относится к устройствам для измерения ускорений и может быть использовано в системах стабилизации и навигации. Сущность: устройство содержит чувствительный элемент (1), датчик положения (2), выход которого соединен с входом усилителя (4) со стабильным коэффициентом усиления, магнитоэлектрический силовой преобразователь (15), включенный в отрицательную обратную связь.

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения ускорений в системах коррекции дальности полета реактивных снарядов.

Акселерометр предназначен для применения в качестве чувствительного элемента в системах стабилизации и навигации. Изобретение может найти применение в приборах измерения механических величин компенсационного типа.

Изобретение относится к системам навигации и может применяться в приборах измерения механических величин компенсационного типа. Техническим результатом изобретения является повышение точности измерения.

Изобретение относится к области измерительной техники, а именно к измерительным преобразователям линейного ускорения. Компенсационный акселерометр содержит корпус со стойкой, первую пластину из монокристаллического кремния, вторую пластину с двумя неподвижными электродами дифференциального емкостного преобразователя положения, третью пластину, магнитоэлектрический силовой преобразователь с постоянным магнитом, усилитель, причем последовательно по длине стойки от основания стойки установлены постоянный магнит, вторая пластина, первая пластина и третья пластина.

Изобретение относится к измерительной технике и предназначено для использования в приборах компенсационного типа с дискретным выходом в системах стабилизации, навигации и наведения.

Изобретение относится к измерительной технике и предназначено для использования в приборах компенсационного типа с дискретным выходом в системах стабилизации, навигации и наведения.

Изобретение относится к измерительной технике и может применяться в микромеханических компенсационных акселерометрах. Чувствительный элемент содержит инерционную массу, упругие элементы, катушку обратной связи, проводящие дорожки для электрической связи катушек обратной связи со схемой управления, стеклянные обкладки, внешнюю рамку, с расположенными на ней площадками крепления к стеклянным обкладкам.

Изобретение относится к области точного приборостроения, в частности к приборам измерения параметров движения летательных аппаратов, и может быть использовано при изготовлении маятниковых компенсационных акселерометров, предназначенных для измерения значительных линейных ускорений.

Изобретение относится к измерительной технике, представляет собой компенсационный акселерометр и предназначено для использования в качестве измерительного преобразователя линейных ускорений. Акселерометр содержит корпус, первую пластину из монокристаллического кремния с подвижной и неподвижной частями и соединяющими их упругими перемычками по оси подвеса, дифференциальный емкостный преобразователь положения с двумя неподвижными электродами на второй пластине, третью пластину, магнитоэлектрический силовой преобразователь с постоянным магнитом и компенсационной катушкой, установленной на двух подставках на подвижной части, груз на подвижной части, усилитель. Для минимизации угловой деформации подвижной части первой пластины при температурных воздействиях на ней в области расположения установленных симметрично относительно оси подвеса подставок выполнены прорези. Техническим результатом является повышение точности измерения ускорения. 4 з.п. ф-лы, 5 ил.

Изобретение может найти применение в приборах измерения механических величин компенсационного типа. Компенсационный акселерометр содержит чувствительный элемент, датчик угла, фазовый детектор отрицательной обратной связи, интегрирующий усилитель. Генератор опорного напряжения соединен как с входом датчика угла, так и с входом фазового детектора отрицательной обратной связи. Выход компаратора соединен последовательно по информационным входам с входом датчика момента через преобразователь уровня, пару ждущих синхронных генераторов, реверсивный двоичный счетчик, суммирующий двоичный счетчик, выход которого соединен с одним из входов схемы сравнения, пороговый элемент, электронный ключ, генератор тока, соединенный с входом электронного ключа. Генератор вспомогательной частоты соединен с входами компаратора, пары ждущих синхронных генераторов, суммирующего двоичного счетчика и реверсивного двоичного счетчика. Один из выходов фазового детектора отрицательной обратной связи соединен с входом датчика момента через фильтр. На вход компаратора введена стабилизирующая цепь, содержащая два контура, вход которой соединен с выходом фазового детектора отрицательной обратной связи. Выход реверсивного двоичного счетчика является цифровым выходом компенсационного акселерометра. Технический результат заключается в возможности измерения ускорений, при этом компенсационный акселерометр работает в автоколебательном режиме, с астатизмом и с расширенной полосой пропускания и значительным быстродействием. 3 ил.

Изобретение относится к средствам измерения линейных ускорений. Сущность: акселерометр содержит корпус (1), в котором размещены маятниковый пластинчатый чувствительный элемент (МЧЭ) (2), упругий подвес, посредством которого МЧЭ связан с корпусом (1); магнитоэлектрический датчик (3) момента, фотоэлектрический датчик (6) угла перемещения, компенсационный усилитель (10). Упругий подвес состоит из двух соосно расположенных металлических растяжек (7) с прямоугольным поперечным сечением, закрепленных в МЧЭ (2) и в корпусе (1), и устройства (8) крепления растяжек (7). Металлические растяжки (7) являются токопроводами к выводам катушек (5) магнитоэлектрического датчика (3) момента. При этом обе растяжки (7) установлены так, что их большая сторона сечения параллельна продольной оси катушек магнитоэлектрического датчика (3) момента. Технический результат: увеличение динамического диапазона измерений, обеспечение малой величины и высокой стабильности смещения нуля прибора, обеспечение надежности в условиях механических воздействий. 3 з.п. ф-лы, 6 ил.

Изобретение относится к области приборостроения, а именно - к инерционным датчикам порогового действия, осуществляющим регистрацию и запоминание в автономном режиме (без источника электропитания) информации о достижении ускорением заданных предельных уровней. Датчик предельных ускорений содержит корпус с установленным в нем инерционным телом, предварительно поджатым к упору упругим элементом, установленным с возможностью перехода из одного устойчивого положения в другое путем прощелкивания. Упругий элемент выполнен в виде гибкой тарельчатой пружины с краевыми гофрами, имеющей на участке рабочего хода отрицательную жесткость, при этом в центральном отверстии тарельчатой пружины установлено инерционное тело сферической формы. Технический результат: повышение точности срабатывания датчика при действии ускорений, действующих вдоль и под углом к оси датчика, в том числе ударных импульсов произвольной формы, и повышение устойчивости в условиях вибронагружений. 2 ил.

Изобретение относится к области приборостроения и может найти применение в приборах измерения механических величин компенсационного типа. Заявлен компенсационный акселерометр, содержащий чувствительный элемент, датчик угла, выход которого соединен с входом усилителя, датчик момента, отрицательную обратную связь, фазовый детектор отрицательной интегрирующей обратной связи, вход которой соединен с выходом усилителя. Дополнительные входы датчика угла и фазового детектора отрицательной интегрирующей обратной связи соединены с выходом генератора опорного напряжения. Выход фазового детектора отрицательной интегрирующей обратной связи соединен с входом интегрирующего усилителя, выходы которого соединены с входами пары ждущих синхронных генераторов через управляемый релейный элемент и преобразователь уровня. Выходы пары ждущих синхронных генераторов соединены с входом двоичного умножителя через последовательно соединенные по информационным входам реверсивный двоичный счетчик, преобразователь дополнительного кода в прямой и схему собирания, и выход двоичного умножителя соединен через цифровой фильтр с одним из входов знакового переключателя, другой вход которого соединен с выходом реверсивного двоичного счетчика. Выход знакового переключателя соединен с входом датчика моментов через сумматор. Выход двоичного умножителя является дискретным выходом. Дополнительные входы пары ждущих синхронных генераторов, управляемого релейного элемента соединены с выходом схемы синхронизации. В отрицательную обратную связь введен блок управления динамической ошибкой, вход которого соединен с выходом фазового детектора отрицательной обратной связи через сглаживающий фильтр, а выход блока управления динамической ошибкой соединен с одним из входов сумматора через преобразователь напряжение-ток. Кроме того, выход управляемого релейного элемента соединен с входом аналогового фильтра с передаточной функцией (где Т - постоянная времени, s - оператор преобразования Лапласа) и выход аналогового фильтра является аналоговым выходом устройства. Технический результат - повышение точности и расширение полосы пропускания. 3 ил.

Способ обеспечения линейности масштабного коэффициента маятникового акселерометра компенсационного типа относится к измерительной технике. Способ основан на использовании цифровой обратной связи, реализуемой микроконтроллером, в котором программным способом реализован ШИМ; ШИМ формирует последовательность рабочих импульсов, длительность которых равна τраб(n⋅T0), а таймер микроконтроллера формирует два равных по величине вспомогательных импульса длительностью τвсп и две равные по величине паузы длительностью τпауз. В способе задается правило выбора длительности интервала рабочего импульса τраб(n⋅T0), длительности вспомогательных импульсов и пауз на «n»-м такте дискретизации, а также правило взаимного размещения на каждом «n»-м такте дискретизации рабочего, вспомогательных импульсов и пауз. В начале каждого «nТ0»-го такта дискретизации размещают первый вспомогательный импульс тока; к этому вспомогательному импульсу тока присоединяют рабочий импульс; через определенный промежуток времени на интервале Т0 размещают второй вспомогательный импульс, при этом знак первого вспомогательного импульса совпадает со знаком рабочего импульса, а знак второго вспомогательного импульса противоположен знаку рабочего импульса. Среднее значение тока Iср, поступающего в обмотку датчика момента, выражается через постоянную по величине амплитуду тока в импульсе Iа, длительность рабочего импульса τраб(nТ0) и период Т0 работы ШИМ, т.е. Iср=Iа⋅τраб(nТ0)/Т0. Произведение Iа⋅τраб(n⋅Т0) - это площадь идеального импульса прямоугольной формы, которая искажается переходными процессами на передних фронтах тока в обмотку датчика момента. Требуемая линейность преобразования может быть достигнута, если в течение периода ШИМ подавать два одинаковых вспомогательных импульса разной полярности, а к одному из них присоединять рабочий импульс длительности τраб(nT0), то переходные процессы не будут искажать площадь рабочего импульса Iа⋅τраб(nТ0), т.к. переходные процессы на передних фронтах импульсов взаимно компенсируются с определенной точностью, а величина среднего за период Т0 тока, поступающего в обмотку датчика момента, будет пропорциональна только длительности рабочего импульса, т.е. измеряемому линейному ускорению. Техническим результатом изобретения является обеспечение линейности масштабного коэффициента маятникового акселерометра компенсационного типа. 1 табл., 6 ил.

Способ обеспечения линейности масштабного коэффициента маятникового широкодиапазонного акселерометра компенсационного типа относится к измерительной технике и может быть использован в области производства приборов для измерения линейного ускорения. В процессе наладки устанавливают акселерометр на центрифугу, задают последовательно ряд линейных ускорений в диапазоне измерения акселерометра, измеряют выходной сигнал акселерометра в зависимости от величины заданного линейного ускорения, корректируют параметры системы, обеспечивая линейность зависимости выходного сигнала от заданного линейного ускорения. Согласно изобретению после измерения последовательности значений зависимости выходной информации Qвых n от заданных линейных ускорений an=g⋅n, где n - значение перегрузки, определяют значения корректирующих коэффициентов Ккорр(n)=Qвых 1⋅n/Qвых n, где Qвых 1 - выходная информация при действии линейного ускорения a1=g, Qвых 1⋅n - значение выходной информации, которое должно было быть получено при условии линейности масштабного коэффициента; посредством внешнего компьютера выполняют аппроксимацию функции Ккорр(n), вводят в память микроконтроллера обратной связи акселерометра данные аппроксимирующего полинома, при эксплуатации акселерометра определяют микроконтроллером частичные отрезки полинома, к которым относятся измеренные акселерометром ускорения, определяют посредством микроконтроллера для измеренных ускорений корректирующие коэффициенты и выполняют корректировку микроконтроллером измеренной выходной информации путем ее умножения на соответствующие корректирующие коэффициенты. Технический результат изобретения – обеспечение линейности масштабного коэффициента широкодиапазонного маятникового акселерометра компенсационного типа. 5 ил.

Изобретение, компенсационный акселерометр, предназначено для применения в системах стабилизации и навигации. Компенсационный акселерометр дополнительно содержит интегрирующую отрицательную обратную связь, в которую введены низкочастотный фильтр, с выхода схемы ИСКЛЮЧАЮЩЕЕ ИЛИ на вход интегратора, и пороговый элемент с зоной неоднозначности, с выхода интегратора на один из входов магнитоэлектрического силового преобразователя через второй преобразователь напряжение-ток, кроме того, выход сглаживающего фильтра является аналоговым выходом, а выход с порогового элемента с зоной неоднозначности - дискретным выходом компенсационного акселерометра. Технический результат – повышение точности измерения и расширение полосы пропускания. 1 ил.

Группа изобретений относится к датчику с электростатическим маятниковым акселерометром и к способу управления таким датчиком. Акселерометрический датчик содержит по меньшей мере один электростатический маятниковый акселерометр, имеющий первый и второй неподвижные электроды, закрепленные на корпусе и соединенные со схемой возбуждения, и третий электрод, установленный на маятнике, соединенном с корпусом, с возможностью перемещения и связанный с детекторной схемой. Схема возбуждения имеет выход, соединенный с переключателем, связанным с первым и вторым электродами, при этом переключатель имеет первое положение соединения и второе положение соединения, чтобы селективно соединять со схемой возбуждения первый электрод и второй электрод, при этом схема возбуждения, переключатель и детекторная схема соединены со схемой управления, выполненной таким образом, чтобы первый и второй электроды возбуждались импульсами таким образом, чтобы удерживать маятник в заданном положении и определять ускорение, действующее на маятник. Технический результат – повышение точности определения ускорения. 2 н. 12 з.п. ф-лы, 4 ил.

Группа изобретений относится к датчику с электростатическим маятниковым акселерометром и к способу управления таким датчиком. Акселерометрический датчик содержит по меньшей мере один электростатический маятниковый акселерометр, имеющий первый и второй неподвижные электроды, закрепленные на корпусе и соединенные со схемой возбуждения, и третий электрод, установленный на маятнике, соединенном с корпусом, с возможностью перемещения и связанный с детекторной схемой. Схема возбуждения имеет выход, соединенный с переключателем, связанным с первым и вторым электродами, при этом переключатель имеет первое положение соединения и второе положение соединения, чтобы селективно соединять со схемой возбуждения первый электрод и второй электрод, при этом схема возбуждения, переключатель и детекторная схема соединены со схемой управления, выполненной таким образом, чтобы первый и второй электроды возбуждались импульсами таким образом, чтобы удерживать маятник в заданном положении и определять ускорение, действующее на маятник. Технический результат – повышение точности определения ускорения. 2 н. 12 з.п. ф-лы, 4 ил.
Наверх