Способ одновременной обработки воды электрическим и магнитным полями и устройство для его осуществления

Изобретение относится к химии, к очистке воды и может быть использовано в хозяйственно-бытовой деятельности. Техническим результатом является расширение качественных и количественных показателей активируемой воды. Это достигается одновременной обработкой воды электрическим и магнитным полями. Устройство для обработки воды содержит два колебательных контура, расположенных так, что индуктивность первого контура расположена между обкладками конденсатора второго контура, а индуктивность второго контура расположена между обкладками конденсатора первого контура 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к медицинскому оборудованию для оздоровительно-лечебных и водных процедур, очистки воды, а также может быть использовано в хозяйственно-бытовой деятельности.

В технике широко известен способ обработки воды электрическим полем, см., например, патент России №2051114, заявку №95102469 и др. Известно, что действие на организм сначала анолита - анодно обработанной воды (мертвой воды с рН 2,5-5,0 ед), имеющего кислотную среду, оказывает мощное дезинфицирующее и стерилизующее действие, а потом катионита - катодно обработанной воды (живой воды с рН 9,0-11,0 ед), имеющего щелочную среду и являющегося мощным биостимулятором, благотворно действует на здоровье человека, усиливает его защитные механизмы. При принятии активируемой воды внутрь излечиваются множество болезней, при этом сама активируемая вода для организма человека является абсолютно безвредной. Указанные свойства активируемой воды значительно расширятся и качественно увеличиваются при одновременной обработке электрическим и магнитным полями.

При проведении патентного поиска одновременное действие на воду электрического и магнитного полей не обнаружено, однако в природе, где концентрируются водяные атмосферные образования, происходит действие на них как электрического, так и магнитного полей Земли. В результате этого действия дождевая вода обладает улучшенными характеристиками в сравнении с обыкновенной водой.

Целями изобретения является повышение качества и производительности воды в результате воздействия электрического и магнитного полей.

Одновременное воздействие электрическими и магнитными полями на воду производится с помощью двух колебательных контуров L1C1 и L2C2 (см. Фиг.1, Фиг.2), Конденсаторные обкладки контуров являются электродами (анодами и катодами), а их индуктивности размещены между электродами, причем между обкладками конденсатора первого контура расположена индуктивность второго контура и наоборот между обкладками второго контура расположена индуктивность первого контура. На Фиг.2 видно, сдвиг выпрямленного питающего импульсного напряжения между контурами на 90 градусов приводит к одновременному излучению электрического и магнитного полей. Для одинаковой направленности векторов напряженностей электрического и магнитного полей каждая обмотка катушки индуктивностей имеет форму цилиндра и представляет собой плоскостную катушку, намотанную по поверхности развертки этого цилиндра, причем с целью устранения экранизации электрического поля суммарная площадь, определяемая расстояниями между витками или группой витков этой катушки, должна равняться площади меньшей обкладки конденсатора. Для осуществления одинаковой направленности векторов напряженностей электрического и магнитного полей необходимо выполнение условия резонансной работы колебательных контуров, которое заключается в соблюдении равенства колебаний собственных частот контуров с частотой питающего напряжения. Дополнительной изоляцией индуктивностей является ионообменная диафрагма 2, пропускная способность которой может быть значительно увеличена, т.к. ионообменный процесс поддерживается магнитным полем. С целью предотвращения попадания в воду ионов тяжелых металлов конденсаторные обкладки изолированы диэлектриком с диэлектрической проницаемостью не ниже диэлектрической проницаемости воды. Два LC контура также могут работать в режимах резонанса напряжений или токов.

На Фиг.2 изображено устройство непрерывного приготовления живой (катодная область), мертвой (анодная область), магнитной воды. Устройство состоит из цилиндрического корпуса 1, в котором находятся обкладки конденсаторов С1-, С2-, являющиеся катодами. Вторые обкладки конденсаторов С1+, С2+, являющиеся анодами, расположены в цилиндрической поверхности 3, коаксиально расположенной внутри корпуса 1. Между поверхностями 1 и 3 расположена ионообменная диафрагма 2, содержащая индуктивности L1 и L2 и разделяющая межэлектродное пространство на катодную и анодную зоны. Для одновременного воздействия на воду электрического и магнитного полей напряжения, подаваемые на контуры, должны быть сдвинуты на 90 градусов. При отключении напряжения, создающего магнитное поле, получаем живую и мертвую воду и наоборот при отключении пластин конденсаторов получаем воду обработанную только магнитным полем.

Работа устройства заключается в том, что при входе воды (показано стрелками) она, проходя через зоны действия электрического и магнитного полей, омагничивается, активируется и в виде католита и анолита выходит через свои отверстия.

При одновременной обработке воды электрическим и магнитным полями появляется ее способность ускорять коагуляцию, т.е. слияние и осаждение тонких взвесей и мути, находящихся в воде инородных включений (см. опубликованную заявку №95102469, где дана сноска по книге М.П. Федотьев и др. «Прикладная электрохимия», «Химия», Ленинградское отделение, 1967 г., стр.442, пятикамерный электродиализатор), это устройство для отделения твердых продуктов, взвешенных в растворе, от электролитов при действии на воду электрическим полем. Ускорение коагуляции при действии на воду магнитным полем см., например, в Интернете по адресам: http://svarog-uv.ru/magnit.htm http://twt.mpei.ac.ru/ochkov/MO/art EV/ http://www.rosteplo.ru/ и т.д. Физически явление коагуляции можно объяснить тем, что находящиеся в воде примеси представляют собой микроконденсаторы с различной по отношению к воде диэлектрической проницаемостью. При действии на них электрического и магнитного полей они поляризуются. При действии поляризованных включений с полями, ими вызванными, возникает сила вытеснения загрязнений из воды, аналогичная движению электронов по проводам. Ввиду того, что электрические и магнитные поля как постоянные, так и переменные (в нашем случае выпрямленное импульсное) имеют одну и ту же природу, то при их совместном или поочередном действии за одно и то же время коагуляция значительно усиливается, а потому при отстаивании обработанной воды или пропускании ее через фильтр получаем идеально очищенную воду без вредных примесей и имеющую усиленные оздоровительные и лечебные эффекты.

При воздействии на воду изменяющихся электрического и магнитного полей ее молекулы совершают колебательные движения, которые усиливаются при резонансных режимах. Кроме того, они приводят к отделению молекул воды от грязевых микровключений и дезинфицируют воду. Указанные свойства позволяют разработать стиральную машину нового поколения.

1. Способ одновременной обработки воды электрическим и магнитным полями, включающий обработку воды электрическим полем, отличающийся тем, что обработку воды производят одновременно электрическим и магнитным полями, причем их векторы напряженностей при одновременной обработке совпадают.

2. Устройство, отличающееся тем, что содержит два колебательных контура, расположенных так, что индуктивность первого контура расположена между обкладками конденсатора второго контура, а индуктивность второго контура расположена между обкладками конденсатора первого контура, причем подаваемые на контуры выпрямленные импульсные напряжения имеют частоту, равную частоте собственных колебаний контуров, и сдвинуты по фазе на угол 90 градусов, при этом индуктивности представляют собой плоскостные катушки, имеющие междувитковые зазоры, а плоскости катушек параллельны обкладкам конденсаторов.



 

Похожие патенты:

Изобретение относится к очистным сооружениям. Установка содержит заборный фильтр, всасывающий трубопровод, обратный клапан, насосный агрегат, эжектор, камеру флотации с фильтром и слоем фильтрующей загрузки.

Изобретение относится к способу борьбы с микроорганизмами в водной системе. Способ включает обработку водной системы эффективным количеством соединения формулы I, где водная система имеет величину pH 6,9 или выше.

Изобретение относится к биоцидам. Биоцидный состав для борьбы с микроорганизмами в водной или водосодержащей системе включает в себя: 2,2-диброммалонамид и биоцидное соединение на альдегидной основе, выбранное из группы, состоящей из глутаральдегида, трис(гидроксиметил)нитрометана, 4,4-диметилоксазолидина, 7-этил бициклооксазолидина, 1-(3-хлораллил)-3,5,7-триаза-1-азониаадамантан хлорида и 1,3,5-триэтилгексагидро-s-триазина.
Изобретение относится к области биотехнологии. Предложен способ очистки сточных вод.

Изобретение относится к электровихревой обработке воды с регулированием ее окислительно-восстановительных свойств и может найти применение в промышленности, медицине, микроэлектронике, лазерной технике, при орошении сельскохозяйственных культур в системах капельного орошения.

Изобретение относится к системам УФ-обеззараживания сточных и питьевых вод. Система УФ-обеззараживания содержит УФ-излучатели, размещенные в симметричных относительно продольной оси (3) трубчатых оболочках (42), устройство для бесконтактной очистки трубчатых оболочек (42), включающее по меньшей мере одно очищающее кольцо (1), охватывающее трубчатую оболочку (42), и по меньшей мере один привод (35, 46) перемещения очищающего кольца (1) в направлении оси (3).

Способ очистки сточных вод от фенолов и нефтепродуктов может найти применение для очистки различных вод, в том числе сточных вод нефтехимических и нефтеперерабатывающих производств.

Изобретение относится к устройству для уменьшения момента и/или скорости турбулентной жидкости, например, в осветлителе. Может использоваться при осаждении или отделении суспендированных твердых частиц от жидкости, например, в городских системах водоочистки, очистке сока сахарного тростника или целлюлозно-бумажном производстве.

Изобретение относится к способу борьбы с микроорганизмами в водной системе. Предлагаемый способ включает обработку водной системы эффективным количеством соединения формулы I, причем водная система содержит восстановитель в количестве по меньшей мере 10 ч/млн.

Изобретение относится к устройствам для активации жидких водных сред электрохимическим способом и предназначено для приготовления в производственных условиях двух типов воды: щелочной и кислой.

Изобретение относится к устройствам кристаллизационной очистки воды. Устройство получения легкой воды включает две перекрываемые емкости, расположенные одна в другой и образующие межъемкостное пространство, канал, расположенный во внутренней емкости и связывающий ее объем через запорный орган с атмосферой. Устройство дополнительно оснащено стойками. Внутренняя емкость содержит регулируемую по высоте полую перегородку с отверстиями, имеющую входной и выходной каналы. Изобретение позволяет повысить качество питьевой воды. 4 ил.

Изобретение предназначено для обработки воды. Увлажнительно-осушительная система содержит источник жидкости, содержащий испаряемый компонент; увлажнитель, содержащий отверстия для газа-носителя и жидкости; камеру, в которой жидкость, вводимая из входного отверстия для жидкости, контактирует с газом-носителем, содержащим конденсируемую текучую среду в паровой фазе, вводимым из входного отверстия для газа-носителя в направлении противотока, и в которой часть жидкости испаряется в газ-носитель; паровой конденсатор смешивания с пузырьковой колонной, содержащий по меньшей мере первую ступень и вторую ступень. Входное отверстие для газа-носителя первой ступени находится в гидравлическом соединении с выходным отверстием для газа-носителя увлажнителя. Выходное отверстие для газа-носителя первой ступени находится в гидравлическом соединении с входным отверстием для газа-носителя второй ступени. Выходное отверстие для газа-носителя второй ступени находится в гидравлическом соединении с входным отверстием газа-носителя увлажнителя. Технический результат: повышение экономической эффективности. 8 з.п. ф-лы, 5 ил.

Изобретение относятся к технике разделения жидких продуктов дистилляцией и может быть использовано в пищевой, эфиромасличной, химической и других областях промышленности при разделении многокомпонентных смесей перегонкой и концентрировании растворов выпариванием. Устройство содержит теплоизолированный бак-испаритель с исходной жидкостью, источник тепла, сосуд для сбора конденсата, насос для подачи исходной жидкости в соединенный с баком-испарителем бак-накопитель, пароотводящую трубу, изготовленную из материала с высокой теплопроводностью, расположенную внутри двух водонепроницаемых, теплоизолированных, последовательно соединенных кожухов, через которые в направлении, противоположном движению пара и конденсата в бак-накопитель поступает исходная жидкость, проходя через автоматический воздухоотводчик и регулятор уровня в бак-накопитель. Насос настроен на поддержание постоянного давления через собственную систему автоматики. Первый кожух связан с верхней частью второго кожуха и расположен горизонтально с небольшим уклоном в сторону второго кожуха для улучшения стока дистиллята. В расположенный вертикально второй кожух через нижнюю его часть насосом под постоянным давлением нагнетается исходная жидкость. Свободный конец пароотводящей трубы располагается ниже уровня дистиллята в сосуде для сбора конденсата. Технический результат: снижение энергозатрат на получение дистиллята. 1 ил.
Изобретение может быть использовано в микробиологии и сельском хозяйстве при очистке водных цеолитовых растворов. Для осуществления способа очистки приготовленный водный цеолитовый раствор попеременно дважды подвергают замораживанию, затем оттаиванию при комнатной температуре с последующим сливом или сифонированием надосадочной жидкости в другую емкость на первом этапе, и обязательном сифонировании по прошествии не менее 12 часов на втором этапе. Способ позволяет эффективно получать цеолитовые растворы, свободные от взвешенных частиц, использование которых в микробиологии при изготовлении питательных сред и в сельском хозяйстве для полива обеспечивает ростостимулирующий эффект. 2 пр.

Изобретение может быть использовано при обезвреживании жидких углеводородсодержащих отходов, образующихся на предприятиях подготовки и транспортировки газа. Для осуществления способа проводят обработку жидких углеводородсодержащих отходов в водном растворе в аэробных условиях биопрепаратом, содержащим углеводородокисляющие микроорганизмы, из расчета 1 кг биопрепарата на 10 кг углеводородов. Объемное соотношение отходов к воде составляет от 1:4 до 1:50. Затем в смесь вводят макроэлементы - соли азота, фосфора, калия, магния и микроэлементы - соли железа, марганца, меди, цинка, перемешивают смесь с подачей воздуха при температуре от 28°C до 36°C и pH от 4 до 7. Вместе с воздухом подают 0,5-2,0 об.% кислорода. Обезвреживание проводят в присутствии полифункционального катализатора состава, мас.%: оксид марганца 22-26; оксид молибдена 4-7; оксид хрома 4-5; оксид никеля 3-5, полиэтилен высокого давления в качестве носителя - остальное. После завершения процесса осуществляют слив продукта обезвреживания, при этом оставляют в рабочей емкости не менее 25% объема рабочей суспензии с последующем повторением всего цикла обезвреживания без добавления биопрепарата. В предпочтительном варианте загрузку катализатора осуществляют из расчета 2-10% от рабочего объема емкости. Технический результат - интенсификация процесса биологического обезвреживания жидких углеводородсодержащих отходов за счет увеличения скорости биохимических процессов. 1 з.п. ф-лы, 1 табл.

Изобретение относится к производству питьевой воды и может быть использовано при подготовке воды глубоководных водоемов. Способ получения глубинной байкальской питьевой воды включает забор воды из озера Байкал посредством водозаборника, транспортировку воды к насосной станции по глубинному водоводу, фильтрацию и стерилизацию. В глубинную воду в водоводе вводят воду с озоном в начале водовода в районе водозаборника. Изобретение позволяет упростить процесс получения качественно стерилизованной глубинной питьевой воды. 2 ил.

Изобретение относится к пищевой промышленности, в частности к улучшению качества питьевой воды. Состав для улучшения качества воды придает воде антиоксидантные свойства и представляет собой смесь дигидрокверцетина и глюкозы, взятых в соотношении 1:1 в концентрации по 1 мг/мл. Предлагаемое изобретение обеспечивает получение воды с повышенным антиоксидантным действием на организм человека. 1 табл., 2 ил.

Изобретение относится к способу очистки реакционной воды в процессе производства углеводородов, при котором реакционную воду от типичного процесса синтеза углеводородов подают в противоточную отпарную колонну сверху, а углеводородсодержащий газ подают снизу в противоточную отпарную колонну в направлении противоположном подаче реакционной воды, отводят снизу противоточной отпарой колонны очищенную воду. При этом полученную парогазовую смесь с выхода с верха противоточной отпарой колонны подают на стандартный процесс получения синтез газа. Причем в противоточной отпарой колонне располагают насадку, по своей фракционирующей способности эквивалентную не менее чем двум-трем равновесным термодинамическим стадиям, и тем, что углеводородсодержащий газ формируют из смеси конвертируемого газа и хотя бы части отходящего водородосодержащего газа, вырабатываемого из отходящих газов синтеза углеводородов. Кроме того, в противоточную отпарную колонну устанавливают ребойлер, нагревающий противоточную отпарную колонну снизу. Также реакционную воду и углеводородсодержащий газ подают под давлением 1-5 МПа, причем полученную парогазовую смесь с выхода с верха противоточной отпарой колонны дополнительно перегревают для устранения капельной жидкости ,уносимой с колонны. Использование настоящего способа позволяет повысить эффективность очистки реакционной воды при одновременном расширении возможностей утилизации продуктов, применяемых при очистке воды, и вторичное использование углеводородов реакционной воды в процессе получения синтез-газа. 3 з.п. ф-лы, 1 пр., 2 ил.

Изобретение относится к системам утилизации. Система утилизации мокрых углеродсодержащих отходов содержит топку, теплообменник и золоуловитель, топка выполнена кипящего слоя и содержит сводчатый корпус из огнеупорного материала с колосником, расположенным на расстоянии 1/3 высоты корпуса от нижней его части, на котором расположена сопловая решетка, причем суммарная площадь сопловых отверстий составляет порядка 30÷50% от площади колосниковой решетки, а в нижней части корпуса топки установлен шнековый разгрузчик, причем на колосниковой решетке расположен инертный носитель в виде крупнозернистого кварцевого песка, а внутри корпуса котла расположены водонагревательные трубы, соединенные с теплопотребителем, при этом в сопла подается теплоноситель от дутьевого вентилятора, соединенного теплопроводом с выходом высокотемпературного воздухонагревателя теплообменного аппарата, а в боковой стенке котла установлено вихревое сопло-горелка, работающее от газообразного топлива, например биогаза, поступающего из биореактора, при этом отходы подаются от пневмозагрузочного устройства через распылительное устройство, выполненное с тангенциальным подводом теплоносителя, а дымоход расположен в одной из боковых стенок котла и соединен теплопроводом с теплообменным аппаратом, выход которого соединен с золоуловителем, содержащим входной патрубок, корпус, выходной патрубок, бункер, оросительные и распылительные сопла, в качестве которых используются центробежные форсунки для распыливания жидкости, каждая из которых содержит корпус с камерой завихрения и сопло, корпус выполнен в виде штуцера с отверстием для подвода жидкости из магистрали и жестко соединенной с ним цилиндрической, соосной гильзой с внешней резьбой, а соосно корпусу, в его нижней части подсоединено посредством гильзы с внутренней резьбой сопло, выполненное в виде центробежного завихрителя второй ступени в виде цилиндрической полости с, по крайней мере тремя, тангенциальными вводами в виде цилиндрических отверстий, при этом гильза является частью сопла и установлена коаксиально и соосно по отношению к центробежному завихрителю второй ступени, который в верхней части снабжен цилиндрической частью, переходящей в коническую часть, образующую кольцевой конический зазор с корпусом, а над центробежным завихрителем второй ступени установлена вихревая цилиндрическая камера, являющаяся первой ступенью завихрителя жидкости, выполненная в виде соосно размещенного в ней штока с закрепленной на нем винтовой пластиной, при этом шток закреплен на трех стержнях, подсоединенных к конической камере, соединяющей завихрители первой и второй ступеней, при этом центробежный завихритель установлен в корпусе с образованием кольцевой цилиндрической камеры для подвода жидкости к тангенциальным вводам центробежного завихрителя, цилиндрическая полость которого соединена с выходной конической камерой сопла. Технический результат - повышение эффективности энергоресурсосбережения и очистки дымовых газов. 1 ил.
Изобретение относится к аэрации и может быть использовано при очистке сточных и промышленных вод. Способ ввода воздуха в флотомашину включает эжекционный ввод воздуха и последующую его диспергацию. Воздух последовательно вводится эжектированием и диспергируется посредством колокола, снабженного перегородками с перфорированными отверстиями диаметром около 3 мм, расположенными в шахматном порядке. Изобретение позволяет обеспечить необходимый для флотации размер пузырьков. 3 пр.
Наверх