Способ изготовления минеральной плиты и минеральная плита

Изобретение относится к области строительства, а именно к способу изготовления минеральных плит для внутренней отделки помещений, в особенности минеральных плит для подвесных потолков, а также к структуре самих минеральных плит. Уменьшение энергозатрат на изготовление минеральных плит и возможность получения плит с улучшенными качественными характеристиками достигается тем, что в способе изготовления минеральной плиты, в котором смешивают и осуществляют гомогенизацию в сырьевом баке исходной сырьевой водной суспензии, содержащей минеральные волокна, наполнитель, связующие вещества, подают и распределяют полученную исходную сырьевую водную суспензию на движущемся сетчатом конвейере, обезвоживают исходную сырьевую водную суспензию с использованием самотечного гравитационного дренажа и вакуумного дренажа с получением основного мокрого мата, сушат и формуют основной мокрый мат, осуществляют дополнительную обработку основного мата и наносят дополнительные покрытия на поверхность высушенного основного мата, смешивают и осуществляют гомогенизацию в сырьевом баке исходной сырьевой водной суспензии, включающей минеральные волокна в количестве 30-80%, наполнитель, содержащий вспученный перлит в количестве 5-40%, глину в количестве 5-30% и при необходимости карбонат кальция в количестве не более 20%, связующие вещества, включающие крахмал в количестве 2-11% и при необходимости целлюлозное связующее в виде бумаги в количестве не более 10% от общей массы сухих твердых веществ плиты, смешивают и осуществляют гомогенизацию в дополнительном сырьевом баке дополнительной сырьевой водной суспензии, содержащей жидкое стекло в количестве 0,5-15% и/или термореактивное связующее в количестве 0,5-10% и при необходимости глину в количестве не более 25% из расчета общего содержания глины в минеральной плите 5-30% и/или крахмал в количестве не более 9% из расчета общего содержания крахмала в минеральной плите 2-11%, наносят подготовленную дополнительную водную суспензию в виде пены при помощи генератора пены на основной мокрый мат при обезвоживании исходной сырьевой водной суспензии с использованием вакуумного дренажа. При этом в минеральной плите локальные концентрации введенных в виде пены компонентов постепенно уменьшаются по толщине плиты в направлении от лицевой к тыльной стороне плиты, а локальная плотность плиты постепенно уменьшается по толщине плиты в направлении от тыльной к лицевой стороне плиты и ее величина на тыльной стороне плиты не более чем в 1,2 раза превышает ее значение на лицевой стороне плиты. 2 н. п. ф-лы, 3 ил., 1 табл.

 

Данное изобретение относится к области строительства, а именно к способу изготовления минеральных плит для внутренней отделки помещений, в особенности минеральных плит для подвесных потолков, а также к структуре самих минеральных плит.

В настоящее время для производства минеральных плит (панелей), в частности для производства подвесных потолков из минеральных плит, используются технологии "мокрого" формования.

Известен способ изготовления минеральной плиты, в котором смешивают и осуществляют гомогенизацию в сырьевом баке исходной сырьевой водной суспензии, содержащей минеральные волокна, наполнитель, связующие вещества, подают и распределяют полученную исходную сырьевую водную суспензию на движущемся сетчатом конвейере, обезвоживают исходную сырьевую водную суспензию с использованием самотечного гравитационного дренажа и вакуумного дренажа с получением основного мокрого мата, сушат и формуют основной мокрый мат, осуществляют дополнительную обработку основного мата и наносят дополнительные покрытия на поверхность высушенного основного мата (см. патент РФ на изобретение №2482084, МПК E04B 1/84, публ. 2013 г.). К недостаткам известного способа можно отнести необходимость больших энергозатрат на удаление воды из исходной сырьевой водной суспензии и сушку мокрого мата, а также недостаточные качественные характеристики получаемых минеральных плит.

Наиболее близким по технической сущности к предлагаемому является способ изготовления минеральной плиты, в котором смешивают и осуществляют гомогенизацию в сырьевом баке исходной сырьевой водной суспензии, содержащей минеральные волокна, наполнитель, связующие вещества, подают и распределяют полученную исходную сырьевую водную суспензию на движущемся сетчатом конвейере, обезвоживают исходную сырьевую водную суспензию с использованием самотечного гравитационного дренажа и вакуумного дренажа с получением основного мокрого мата, сушат и формуют основной мокрый мат, осуществляют дополнительную обработку основного мата и наносят дополнительные покрытия на поверхность высушенного основного мата (см. патент РФ на изобретение №2475602, МПК E04B 1/82, публ. 2013 г.). К недостаткам известного способа можно отнести большие энергозатраты при изготовлении минеральных плит, обусловленные большими затратами энергии на удаление воды из исходной сырьевой водной суспензии, и сушку мокрого мата, а также недостаточные качественные характеристики получаемых минеральных плит.

Известна также минеральная плита, содержащая основной мат, включающий минеральные волокна, наполнитель, связующие вещества, на котором нанесены дополнительные покрытия (см. патент РФ на изобретение №2482084, МПК E04B 1/84, публ. 2013 г.). К недостаткам известной минеральной плиты можно отнести недостаточные качественные характеристики получаемых минеральных плит, в частности недостаточные прочность, огнестойкость, влагостойкость, высокую микробиологическую активность.

Наиболее близкой по технической сущности к предлагаемой является минеральная плита, содержащая основной мат, включающий минеральные волокна, наполнитель, связующие вещества, на котором нанесены дополнительные покрытия (см. патент РФ на изобретение №2475602, МПК E04B 1/82, публ. 2013 г.). К недостаткам известной минеральной плиты можно отнести недостаточные качественные характеристики получаемых минеральных плит, в частности недостаточные прочность, огнестойкость, влагостойкость, высокую микробиологическую активность.

Предлагаемое техническое решение в части способа изготовления минеральной плиты направлено на решение задачи, состоящей в уменьшении энергозатрат на изготовление минеральных плит, а также в повышении качественных характеристик получаемых минеральных плит и в части структуры минеральных плит, состоящей в повышении качественных характеристик получаемых минеральных плит при возможном снижении энергозатрат на их изготовление.

Данная задача или указанный технический результат в части способа достигается тем, что в способе изготовления минеральной плиты, в котором смешивают и осуществляют гомогенизацию в сырьевом баке исходной сырьевой водной суспензии, содержащей минеральные волокна, наполнитель, связующие вещества, подают и распределяют полученную исходную сырьевую водную суспензию на движущемся сетчатом конвейере, обезвоживают исходную сырьевую водную суспензию с использованием самотечного гравитационного дренажа и вакуумного дренажа с получением основного мокрого мата, сушат и формуют основной мокрый мат, осуществляют дополнительную обработку основного мата и наносят дополнительные покрытия на поверхность высушенного основного мата,

- смешивают и осуществляют гомогенизацию в дополнительном сырьевом баке дополнительной сырьевой водной суспензии, содержащей жидкое стекло в количестве 0,5-15% и/или термореактивное связующее в количестве 0,5-10% и при необходимости глину в количестве не более 25% из расчета общего содержания глины в минеральной плите 5-30% и/или крахмал в количестве не более 9% из расчета общего содержания крахмала в минеральной плите 2-11%, наносят подготовленную дополнительную водную суспензию в виде пены при помощи генератора пены на основной мокрый мат при обезвоживании исходной сырьевой водной суспензии с использованием вакуумного дренажа.

Данная задача или указанный технический результат в части минеральной плиты достигается тем, что в минеральной плите, содержащей основной мат, включающий минеральные волокна, наполнитель, связующие вещества, на котором нанесены дополнительные покрытия, минеральные волокна составляют 30-80%, в качестве наполнителя содержится вспученный перлит - 5-40%, глина - 5-30% и при необходимости карбонат кальция в количестве не более 20%, связующие вещества, включающие жидкое стекло в количестве 0,5-15% и/или термореактивное связующее в количестве 0,5-10%, крахмал в количестве 2-11% и при необходимости целлюлозное связующее в виде бумаги в количестве не более 10% от общей массы сухих твердых веществ плиты, причем жидкое стекло и/или термореактивное связующее и при необходимости часть глины в количестве не более 25% из расчета общего содержания глины в минеральной плите 5-30% и/или часть крахмала в количестве не более 9% из расчета общего содержания крахмала в минеральной плите 2-11% введены в основной мат в виде пены с использованием вакуумного дренажа, при этом локальные концентрации введенных в виде пены компонентов постепенно уменьшаются по толщине плиты в направлении от лицевой к тыльной стороне плиты, а локальная плотность плиты постепенно уменьшается по толщине плиты в направлении от тыльной к лицевой стороне плиты и ее величина на тыльной стороне плиты не более чем в 1,2 раза превышает ее значение на лицевой стороне плиты.

Содержание в исходной сырьевой водной суспензии и, соответственно, в самой минеральной плите минеральных волокон в количестве 30-80% от общей массы сухих твердых веществ плиты обусловлено тем, что при количестве минеральных волокон меньше 30% из-за большого количества наполнителей формовка и удержание сырьевой смеси будут очень плохими и при этом не обеспечивается достаточная прочность и жесткость материала во влажном состоянии во время формования плиты, а при количестве более 80% не обеспечиваются необходимые механические характеристики и огнестойкость из-за возможности наличия в составе плиты малого содержания огнестойких компонентов (в частности глины).

Наличие в исходной сырьевой водной суспензии и, соответственно, в самой минеральной плите вспученного перлита в количестве 5-40% от общей массы сухих твердых веществ плиты обусловлено тем, что при количестве вспученного перлита меньше 5% в минеральной плите не обеспечивается достаточной прочности, а сама плита имеет высокую объемную плотность, а при количестве более 40%, как показали наши экспериментальные и аналитические исследования, практически все свободное пространство структуры плиты из-за его малой объемной плотности заполнено вспученным перлитом, что не позволяет сформировать структуру с необходимым количеством дополнительных компонентов и, соответственно, получить плиту с хорошими качественными характеристиками. Кроме того, при количестве вспученного перлита более 40% требуются большие энергозатраты на сушку мокрого перлита.

Содержание в минеральной плите глины в количестве 5-30% от общей массы сухих твердых веществ плиты обусловлено тем, что при количестве глины меньше 5% минеральная плита не обладает достаточной огнестойкостью, а при количестве более 30% плиты не обеспечиваются необходимые механические характеристики, и плиты будут иметь высокую объемную плотность и себестоимость.

Наличие в исходной сырьевой водной суспензии и, соответственно, в самой минеральной плите карбоната кальция в количестве не более 20% от общей массы сухих твердых веществ плиты обусловлено тем, что при количестве карбоната кальция, который используется в качестве дешевой замены глины, более 20% минеральная плита не обладает необходимыми механическими характеристиками и огнестойкостью.

Содержание в исходной сырьевой водной суспензии и, соответственно, в самой минеральной плите целлюлозного связующего в количестве не более 10% от общей массы сухих твердых веществ плиты обусловлено тем, что при количестве целлюлозного связующего более 10% минеральная плита не обладает достаточной огнестойкостью и устойчивостью к биологическому воздействию окружающей среды.

Наличие в минеральной плите крахмала в количестве 2-11% обусловлено тем, что при количестве крахмала меньше 2% не обеспечивается достаточная прочность и жесткость материала во влажном состоянии во время формования плиты, что не позволяет получить плиты с необходимыми механическими характеристиками, а при количестве более 11% минеральная плита не обладает достаточной огнестойкостью и устойчивостью к биологическому воздействию окружающей среды.

Содержание в минеральной плите жидкого стекла в количестве 0,5-15% и/или термореактивного связующего, в качестве которого может быть использован Acrodur 950L, в количестве 0,5-10% от общей массы сухих твердых веществ плиты обусловлено тем, что при количестве жидкого стекла меньше 0,5% минеральная плита не обладает достаточной устойчивостью к биологическому воздействию окружающей среды и не имеет необходимых механических характеристик. Наличие термореактивного связующего, в качестве которого может быть использован Acrodur 950L, в количестве 0,5-10% от общей массы сухих твердых веществ плиты обусловлено тем, что при количестве термореактивного связующего меньше 0,5% минеральная плита не обладает достаточной влагостойкостью и не имеет необходимых механических характеристик, количестве более 10% плита не обеспечивается необходимой огнестойкости и плита имеет большую себестоимость.

Осуществление смешивания и гомогенизации в дополнительном сырьевом баке дополнительной сырьевой водной суспензии, содержащей жидкое стекло в количестве 0,5-15% и/или термореактивное связующее в количестве 0,5-10% и при необходимости глину в количестве не более 25% из расчета общего содержания глины в минеральной плите 5-30% и/или крахмал в количестве не более 9% из расчета общего содержания крахмала в минеральной плите 2-11%, с последующим нанесением подготовленной дополнительной водной суспензии в виде пены при помощи генератора пены на основной мокрый мат при обезвоживании исходной сырьевой водной суспензии с использованием вакуумного дренажа позволяет при формировании мокрого основного мата использовать материалы, такие, например, как жидкое стекло, которые не могут оптимально коагулировать и флоккулировать при их смешении и коагуляции в составе исходной сырьевой водной суспензии. Это позволяет улучшить качественные характеристики минеральных плит за счет возможности внесения таких материалов в структуру минеральной плиты.

Кроме того, наличие указанных выше признаков обеспечивает снижение энергозатрат на изготовление минеральных плит за счет уменьшения затрат энергии на удаление воды из сырьевой водной суспензии и сушку мокрого мата, так как при этом имеется возможность использовать в исходной сырьевой водной суспензии существенно меньшее количество воды по сравнению с количеством воды, необходимым для качественного смешения и гомогенизации всех компонентов, входящих в состав минеральной плиты. То есть часть компонентов, входящих в состав минеральной плиты, наносится на сетчатый конвейер в составе исходной сырьевой водной суспензии, а часть уже на основной мат в виде пены при обезвоживании исходной сырьевой водной суспензии с использованием вакуумного дренажа в составе дополнительной сырьевой водной суспензии. Для водной суспензии, достаточной для формирования пены, необходимо существенно меньше воды, чем для получения в сырьевом баке однородной водной суспензии того же качественного и количественного состава путем смешения и гомогенизации. Соответственно, и суммарное количество воды, необходимое для получения исходной сырьевой водной суспензии с частью компонентов, и необходимое для получения дополнительной сырьевой водной суспензии с другой частью компонентов в виде пены будет меньше по сравнению с количеством воды, необходимым для получения в сырьевом баке однородной водной суспензии, содержащей обе части компонентов. При этом очевидно, что при наличии меньшего количества воды и удаление ее из сырьевой водной суспензии, и сушка мокрого мата потребуют меньших затрат энергии.

Пена имеет развитую поверхность и при ее нанесении на лицевую поверхность основного мата при помощи генератора пены на основной мокрый мат при обезвоживании исходной сырьевой водной суспензии с использованием вакуумного дренажа имеет место равномерное распределение дополнительной сырьевой водной суспензии по поверхности основного мата и, соответственно, равномерное по площади проникновение компонентов этой суспензии в глубину основного мата, которое интенсифицируется вакуумным дренажом, при том, что концентрации введенных в виде пены компонентов постепенно уменьшаются по толщине плиты в направлении от лицевой к тыльной стороне плиты. Это позволяет уменьшить или компенсировать величину неблагоприятного для качества (прочность, огнестойкость, изолирующие свойства) увеличения плотности минеральной плиты по ее толщине от лицевой к тыльной стороне, которое имеет место при самотечном гравитационном дренаже и вакуумном дренажа любого мокрого основного мата за счет оттока различных компонентов по толщине плиты в этом направлении (по аналогии с образованием осадка в емкости с водой). Оптимальным, как показали наши экспериментальные исследования, является постепенное уменьшение локальной плотности плиты по ее толщине в направлении от тыльной к лицевой стороне плиты таким образом, чтобы ее величина на тыльной стороне плиты не более чем в 1,2 раза превышала ее значение на лицевой стороне плиты, что достаточно просто достигается, например, подбором величины вакуума при вакуумном дренаже. При уменьшении локальной плотности плиты по ее толщине в направлении от тыльной к лицевой стороне плиты таким образом, что ее величина на тыльной стороне плиты более чем в 1,2 раза, плита не имеет достаточной прочности, ее локальные качественные характеристики (огнестойкость, влагостойкость, устойчивость к биологическому воздействию окружающей среды и т.п.) изменяются по толщине плиты таким образом, что в итоге имеет место ухудшение качества минеральной плиты в целом.

Что касается осуществления смешивания и гомогенизации в дополнительном сырьевом баке дополнительной сырьевой водной суспензии, содержащей при необходимости глину в количестве не более 25% из расчета общего содержания глины в минеральной плите 5-30% и/или крахмал в количестве не более 9% из расчета общего содержания крахмала в минеральной плите 2-11%, с последующим нанесением подготовленной дополнительной водной суспензии в виде пены при помощи генератора пены на основной мокрый мат при обезвоживании исходной сырьевой водной суспензии с использованием вакуумного дренажа, такое распределение этих компонентов в исходной и дополнительной сырьевой водной суспензиях обусловлено тем, что при содержании глины в количестве более 25% из расчета общего содержания глины в минеральной плите 5-30% и/или крахмала в количестве более 9% из расчета общего содержания крахмала в минеральной плите 2-11% не удается получить оптимальное распределение локальных концентраций данных компонентов по толщине плиты или для получения такого оптимального распределения требуются большие энергозатраты.

На фиг.1 представлена блок-схема установки для осуществления предлагаемого способа изготовления минеральной плиты; на фиг.2 - блок обезвоживания и формовки основного мокрого мата; на фиг.3 - структура минеральной плиты и распределение локальных концентраций компонентов и плотности по толщине минеральной плиты.

Установка для осуществления предлагаемого способа изготовления минеральной плиты содержит блок 1 подготовки минерального волокна, сырьем для которого является базальт, известняк или доломит, например, известным центробежно-дутьевым способом путем подачи струи расплава сырья на вращающийся диск центрифуги. Соответственно, блок 1 имеет известное аппаратурное оформление, необходимое для реализации указанного способа. Также установка содержит сырьевой бак 2 исходной сырьевой водной суспензии, в который подается минеральное волокно и другие компоненты 3, для смешения и гомогенизации исходной сырьевой водной суспензии. В качестве сырьевого бака 2 может быть использована система баков, один из которых является накопительным, а другой раздаточным для подачи водной суспензии непосредственно в производственную линию. Установка включает в себя блок 4 обезвоживания и формовки основного мокрого мата, блок 5 сушки и блок 6 дополнительной обработки основного мата и нанесения дополнительных покрытий на поверхность высушенного основного мата. Блок 4 обезвоживания и формовки основного мокрого мата, представленный на фиг.2, содержит сетчатый конвейер 7, под которым установлен вакуумный короб 8, связанный с вакуумным вентилятором 9. Также блок 4 снабжен генератором 10 пены, на вход которого подается воздух и из дополнительного сырьевого бака 11 - дополнительная сырьевая водная суспензия, полученная при смешении и гомогенизации в нем компонентов 12, подаваемых в генератор пены 10. В непосредственной близости от сетчатого конвейера размещен скребок 13 для формирования равномерного слоя пены по поверхности основного мата. Блок 6 дополнительной обработки основного мата и нанесения дополнительных покрытий на поверхность высушенного основного мата включает в себя известные устройства для разрезания основного мата и плит, шлифовки, грунтовки, перфорирования и покраски плит, а также различные другие известные устройства, обычно используемые в технологических линиях изготовления минеральных плит.

Предлагаемый способ изготовления минеральной плиты осуществляется следующим образом.

Исходное сырье для получения минерального волокна, например базальт, известняк или доломит, поступает в блок 1 подготовки минерального волокна, плавится в системе плавления (печи) и в результате использования известного центробежно-дутьевого способа путем подачи струи расплава сырья на вращающийся диск центрифуги на выходе блока 1 получается минеральное волокно. Затем минеральное волокно в количестве 30-80% от общей массы сухих твердых веществ плиты подается в сырьевой бак 2 исходной сырьевой водной суспензии, в который также поступают другие компоненты 3, а именно наполнитель, содержащий вспученный перлит в количестве 5-40%, глину в количестве 5-30% и при необходимости карбонат кальция в количестве не более 20%, связующие вещества, включающие крахмал в количестве 2-11% и при необходимости целлюлозное связующее в виде бумаги в количестве не более 10% от общей массы сухих твердых веществ плиты. В баке 2 осуществляется, например, при помощи мешалки смешивание и гомогенизация этих компонентов. При этом в дополнительный сырьевой бак 11 подаются компоненты 12, а именно жидкое стекло в количестве 0,5-15% и/или термореактивное связующее в количестве 0,5-10% и при необходимости глина в количестве не более 25% из расчета общего содержания глины в минеральной плите 5-30% (например, если в сырьевой бак 2 исходной сырьевой водной суспензии подается 10% глины, то в дополнительный сырьевой бак 11 может подаваться до 20% глины) и/или крахмал в количестве не более 9% из расчета общего содержания крахмала в минеральной плите 2-11% (например, если в сырьевой бак 2 исходной сырьевой водной суспензии подается 5% крахмала, то в дополнительный сырьевой бак 11 может подаваться до 6% крахмала), которые смешиваются и гомогенизируются в этом баке с получением на выходе дополнительной сырьевой водной суспензии, которая подается в генератор 10 пены. Исходная сырьевая водная суспензия, например, самотеком подается в блок 4 обезвоживания и формовки основного мокрого мата и распределяется на движущемся сетчатом конвейере 7. При этом в зону вакуумного дренажа сетчатого конвейера 7 в область начала вакуумного короба 8 из генератора 10 пены поступает в виде пены дополнительная сырьевая водная суспензия и равномерно скребками 13 распределяется по поверхности мокрого мата. При движении сетчатого конвейера происходит обычно в начале самотечное гравитационное обезвоживание, а затем вакуумное обезвоживание мокрого мата, при котором также имеет место проникновение компонентов дополнительной сырьевой водной суспензии в глубину основного мата, которое интенсифицируется вакуумным дренажом, при том, что концентрации введенных в виде пены компонентов постепенно уменьшаются по толщине плиты в направлении от лицевой к тыльной стороне плиты. При этом, например, подбором величины вакуума при вакуумном дренаже можно получить такое изменение локальной плотности плиты по ее толщине, чтобы ее величина на тыльной стороне плиты не более чем в 1,2 раза превышала ее значение на лицевой стороне плиты. На фиг.3 представлена структура минеральной плиты и распределение локальных концентраций компонентов и плотности по толщине минеральной плиты (основного мата).

Далее основной обезвоженный сырой мат поступает в блок 5 сушки, где происходит его дальнейшая формовка и сушка, и затем в блок 6 дополнительной обработки основного мата и нанесения дополнительных покрытий на поверхность высушенного основного мата, где осуществляется разрезание основного мата на плиты, шлифовка, грунтовка, перфорирование и покраска плит, а также могут быть реализованы различные другие известные способы обработки, обычно используемые в технологических линиях изготовления минеральных плит. В качестве дополнительных покрытий может быть выполнено покрытие одним слоем грунтовки с тыльной стороны и двумя слоями грунтовки и декоративной краски с лицевой стороны плиты, как показано на фиг.3.

Примеры реализации предлагаемого способа изготовления минеральной плиты представлены ниже.

ФОРМУЛЫ И ХАРАКТЕРИСТИКИ СТРУКТУРЫ МИНЕРАЛЬНЫХ ПЛИТ
Сырье Формула А Формула Б Формула В
% % %
ФОРМУЛЫ 1 Минеральное волокно 70,00 50,00 35,00
2 Перлит 5,00 25,00 40,00
3 Глина 10,00 10,00 10,00
4 Крахмал (сухой) 5,00 5,00 5,00
5 Бумага 4,00 4,00 4,00
6 Жидкое стекло 0,50 0,50 0,50
7 Карбонат кальция 5,00 5,00 5,00
8 Термореактивное связующее 0,50 0,50 0,50
Итого 100,00 100,00 100,00
Плотность (г/см3) 0,246 0,242 0,248
Коэффициент изменения плотности (d1/d2) 1,12 1,08 1,06
Коэффициент изменения концентрации пены (П1/П2) 1,19 1,11 1,07
Энергосбережение (%) 9,00 6,30 5,20
ХАРАКТЕРИСТИКИ Реакция на огонь* A2-s1, d0 A2-s1, d0 A2-s1, d0
EN 13501-1 EN 13501-1 EN 13501-1
Огнестойкость* до REI 60 до REI 60 до REI 60
EN 13501-2 EN 13501-2 EN 13501-2
Класс звукопоглощения* Class С Class C Class C
EN ISO 11654 EN ISO 11654 EN ISO 11654
Влагостойкость до 90% RH до 90% RH до 90% RH
* Европейский стандарт EN - стандарт, принятый CEN, CENELEC или ETSI с правом применения в качестве идентичного национального стандарта с отменой противоречащих национальных стандартов (European Committee for Standardization (CEN). Европейский Комитет по Стандартизации был основан в 1961 г. национальными органами по стандартизации Европейского Экономического Сообщества и странами Европейской ассоциации свободной торговли, CENELEC - Европейский комитет электротехнической стандартизации; ETSI - Европейский институт стандартизации телекоммуникаций.

Предлагаемое техническое решение позволяет уменьшить энергозатраты на изготовление минеральных плит и получить плиты с улучшенными качественными характеристиками.

1. Способ изготовления минеральной плиты, в котором
- смешивают и осуществляют гомогенизацию в сырьевом баке исходной сырьевой водной суспензии, содержащей минеральные волокна, наполнитель, связующие вещества,
- подают и распределяют полученную исходную сырьевую водную суспензию на движущемся сетчатом конвейере,
- обезвоживают исходную сырьевую водную суспензию с использованием самотечного гравитационного дренажа и вакуумного дренажа с получением основного мокрого мата,
- сушат и формуют основной мокрый мат,
- осуществляют дополнительную обработку основного мата и наносят дополнительные покрытия на поверхность высушенного основного мата,
отличающийся тем, что
- смешивают и осуществляют гомогенизацию в сырьевом баке исходной сырьевой водной суспензии, включающей минеральные волокна в количестве 30-80%, наполнитель, содержащий вспученный перлит в количестве 5-40%, глину в количестве 5-30% и при необходимости карбонат кальция в количестве не более 20%, связующие вещества, включающие крахмал в количестве 2-11% и при необходимости целлюлозное связующее в виде бумаги в количестве не более 10% от общей массы сухих твердых веществ плиты,
- смешивают и осуществляют гомогенизацию в дополнительном сырьевом баке дополнительной сырьевой водной суспензии, содержащей жидкое стекло в количестве 0,5-15% и/или термореактивное связующее в количестве 0,5-10% и при необходимости глину в количестве не более 25% из расчета общего содержания глины в минеральной плите 5-30% и/или крахмал в количестве не более 9% из расчета общего содержания крахмала в минеральной плите 2-11%,
- наносят подготовленную дополнительную водную суспензию в виде пены при помощи генератора пены на основной мокрый мат при обезвоживании исходной сырьевой водной суспензии с использованием вакуумного дренажа.

2. Минеральная плита, содержащая основной мат, включающий минеральные волокна, наполнитель, связующие вещества, на котором нанесены дополнительные покрытия, отличающаяся тем, что минеральные волокна составляют 30-80%, в качестве наполнителя содержится вспученный перлит - 5-40%, глина - 5-30% и при необходимости карбонат кальция в количестве не более 20%, связующие вещества, включающие жидкое стекло в количестве 0,5-15% и/или термореактивное связующее в количестве 0,5-10%, крахмал в количестве 2-11% и при необходимости целлюлозное связующее в виде бумаги в количестве не более 10% от общей массы сухих твердых веществ плиты, причем жидкое стекло и/или термореактивное связующее и при необходимости часть глины в количестве не более 25% из расчета общего содержания глины в минеральной плите 5-30% и/или часть крахмала в количестве не более 9% из расчета общего содержания крахмала в минеральной плите 2-11% введены в основной мат в виде пены с использованием вакуумного дренажа, при этом локальные концентрации введенных в виде пены компонентов постепенно уменьшаются по толщине плиты в направлении от лицевой к тыльной стороне плиты, а локальная плотность плиты постепенно уменьшается по толщине плиты в направлении от тыльной к лицевой стороне плиты и ее величина на тыльной стороне плиты не более чем в 1,2 раза превышает ее значение на лицевой стороне плиты.



 

Похожие патенты:

Изобретение относится к строительству и может быть использовано для звукопоглощения в закрытых помещениях как составляющая часть конструкции подвесного потолка, так и в качестве свободно подвешиваемых звукопоглощающих кулис.

Изобретение относится к огнестойким строительным плитам и способу их производства, а именно к огнестойким плитам из ваты, полученной путем переплетения тонких металлических нитей из ненужных консервных банок, жести, железа, цветных металлов и т.д.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства при шумоглушении производственного оборудования методом звукопоглощения.

Изобретение относится к высокотемпературным теплоизоляционным покрытиям, используемым в сфере гражданского и промышленного строительства, машиностроения, авиастроения, космоса, железнодорожного транспорта и других отраслей промышленности.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. .

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. .

Изобретение относится к наземному строительству, а именно к способам проведения внеплановых и плановых поверок оборудования и аппаратуры испытательных акустических помещений.

Изобретение относится к области строительства, в частности к технологии и средствам соединения преимущественно теплоизоляционных панелей. .

Изобретение относится к области строительства. Технический результат - снижение уровня шума в жилых, общественных и производственных помещениях. Звукоизолирующая каркасно-обшивочная перегородка, выполненная из листовых обшивок из гипсокартонных или гипсоволокнистых листов, прикрепленных на каркасе из направляющего тонкостенного металлического профиля и стоечного профиля, причем стоечные профили установлены зеркально с равнопеременным шагом, при котором соотношение длин шагов составляет ( 1,5-2,5:1). 2 ил.

Настоящее изобретение относится к области строительства и касается мата из полимерных волокон, содержащих ацетоамид, и его применению. Мат содержит по меньшей мере 0,5 вес.% ацетамида формулы, в которой R1 и R2, одинаковые или разные, означают атом водорода, метильный радикал или этильный радикал. Мат дополнительно содержит ПАВ. Мат применяют в качестве покрытия поверхности тепло- и/или звукоизолирующих продуктов, в частности, на основе минеральной ваты, полистирола или органического или неорганического пеноматериала. Изобретение обеспечивает снижение количества формальдегида, присутствующего внутри зданий, в частности жилых, и в транспортных средствах. 4 н. и 9 з.п. ф-лы, 1 табл., 1 пр.
Настоящее изобретение относится к мату из полимерных волокон, способному улавливать формальдегид, который содержит по меньшей мере один дигидразид. Его объектом является также применение указанного мата, в частности, в качестве покрытия поверхности тепло- и/или звукоизолирующих продуктов, в частности, на основе минеральной ваты, полистирола или органического или неорганического пеноматериала. 4 н. и 11 з.п. ф-лы, 1 табл.

Изобретение относится к строительству и может быть использовано для виброизоляции, звукоизоляции в закрытых помещениях при установке и монтаже вентиляционных агрегатов, компрессоров, генераторов и другого оборудования. Конструкция пола на упругом основании содержит несущую плиту перекрытия, связанную со стеной, расположенное на несущей плите упругое основание, дополнительно содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, которые выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен и базовой несущей плите. Полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером. Также в полостях базовых плит межэтажного перекрытия расположены вибродемпфирующие вставки, выполненные в виде цилиндра из жесткого вибродемпфирующего материала, внутри которого осесимметрично и коаксиально расположен упругий сердечник. Вдоль оси сердечника жестко закреплены по всей длине полости демпфирующие диски. Крайние диски закреплены «заподлицо» с цилиндром из вибродемпфирующего материала, торцы которого, в свою очередь, расположены «заподлицо» с боковыми поверхностями базовой плиты. Промежуточные демпфирующие диски расположены равномерно с шагом, не превышающим внутренний диаметр цилиндра. Упругий сердечник выполнен комбинированным и состоящим из упругой части в виде стержня и демпфирующей части, выполненной в виде внешней коаксиальной оболочки из вибродемпфирующего материала, например полиуретана. Демпфирующие диски, жестко закрепленные по всей длине упругого сердечника вибродемпфирующей вставки, выполнены комбинированными и состоящими из упругой части в виде оппозитно закрепленных на упругом сердечнике дисков из жесткого вибродемпфирующего материала, и демпфирующей части, выполненной в виде диска из вибродемпфирующего материала, например полиуретана. Изобретение позволяет повысить вибропоглощающие и звукоизолирующие свойства пола. 1 з.п. ф-лы, 3 ил.

Изобретение относится к держателю изоляционного материала. Технический результат состоит в создании держателя изоляционного материала, снабженного резьбой для изоляционного материала, который может легче ввертываться в изоляционный материал. Держатель изоляционного материала, предназначенный для крепления плиты изоляционного материала к крепежному основанию, снабженный резьбой для изоляционного материала, которая может ввертываться в плиту изоляционного материала таким образом, что резьба для изоляционного материала нарезает в изоляционном материале ход резьбы. Держатель изоляционного материала снабжен крепежным элементом, предназначенным для крепления держателя изоляционного материала в крепежном основании. На резьбе для изоляционного материала расположено по меньшей мере одно ребро, которое проходит в окружном направлении. 8 з.п. ф-лы, 3 ил.

Настоящее изобретение касается устойчивых к высоким температурам пеноматериалов и их получения в результате превращения реакционных смесей из органических полиизоцианатов и органических полиэпоксидов путем добавления вспенивающих агентов и катализаторов, ускоряющих реакцию изоцианат/эпоксид, в окончательно вспененную, более не плавящуюся смолу на стадии С, а также их применения. Описаны устойчивые к высоким температурам пеноматериалы, которые получают в результате взаимодействия a) по меньшей мере одного органического полиизоцианата с b) по меньшей мере одним органическим соединением, содержащим по меньшей мере две эпоксидные группы, в таком количестве, которое соответствует эквивалентному соотношению изоцианатных групп и эпоксидных групп от 1,2:1 до 500:1, e) при необходимости в присутствии вспомогательных веществ и добавок, причем взаимодействие осуществляют в присутствии муравьиной кислоты в качестве вспенивающего агента и при необходимости других химических и/или физических вспенивающих агентов Т) и катализатора f), ускоряющего реакцию изоцианат/эпоксид. В изобретении раскрыты способы получения устойчивых к высоким температурам пеноматериалов путем взаимодействия описанного компонента a) с компонентами b), е), причем взаимодействие проводят в присутствии муравьиной кислоты в качестве вспенивающего агента и в присутствии d) стабилизатора из группы, состоящей из органических сложных эфиров сульфокислот, метил-йодида, диметилсульфата, ангидрида бензолсульфокислоты, хлорангидрида бензолсульфоксилоты, бензолсульфокислоты, триметилсилилтрифторметансульфоната, продукта взаимодействия бензолсульфокислоты с эпоксидами, а также их смесей, и при необходимости других химических и/или физических вспенивающих агентов Т) и катализатора f), ускоряющего реакцию изоцианат/эпоксид, со вспениванием. Также раскрыт способ получения устойчивых к высоким температурам пеноматериалов при помощи (i) смешивания компонентов a) и b), ii) реакции этой смеси с добавлением c) третичного амина в качестве катализатора до промежуточного продукта и (iii) прерывания реакции при достижении превращения не более 60% изоцианатных групп изоцианата а) путем добавления по меньшей мере эквивалентного количеству амина с) количества d) стабилизатора, так что получают промежуточную устойчивую смолу на стадии В с вязкостью в интервале от 1500 до 20000 мПа·с при 25°C, е) при необходимости в присутствии вспомогательных веществ и добавок, причем полученную на стадии (iii) смесь в результате добавления муравьиной кислоты в качестве вспенивающего агента и при необходимости других химических и/или физических вспенивающих агентов Т) и катализатора f), ускоряющего реакцию изоцианат/эпоксид, переводят во вспененное состояние. В изобретении также описано применение получаемых устойчивых к высоким температурам пеноматериалов и применение пенообразующих смесей в конце вспенивания до устойчивого к высокой температуре пеноматериала. Технический результат - получение устойчивых к высоким температурам пеноматериалов с очень хорошими механическими свойствами, которые могут быть получены простым способом, так что при промышленном производстве они могут изготавливаться за короткое время заполнения формы. 7 н. и 4 з.п. ф-лы, 3 табл., 10 пр.

Изобретение относится к области производства строительных материалов, в частности к составному анкеру для изоляционного материала. Технический результат изобретения состоит в том, что составной анкер для изоляционного материала имеет высокую надежность и может быть недорого изготовлен. Составной анкер для изоляционного материала включает в себя анкерную часть, которая в области своего переднего конца имеет область закрепления для закрепления в просверленном отверстии и в области своего противоположного заднего конца радиально выступающий наружу буртик, и удерживающую часть для удержания листа изоляционного материала анкером для изоляционного материала, причем она имеет сквозной канал для установки по месту анкерной части, на заднем конце удерживающей части направляющее отверстие для введения анкерной части и расположенного на анкерной части буртика в сквозной канал и в области переднего конца удерживающей части, противоположного заднему концу удерживающей части, упорный элемент для введенного в сквозной канал буртика анкерной части. Кроме того, удерживающая часть имеет, по меньшей мере, фиксирующую защелку для остановки осевого перемещения буртика анкерной части по направлению от упорного элемента, которая радиально выступает в сквозной канал. 7 з.п. ф.-лы, 6 ил.

Изобретение относится к теплоизоляционному устройству, содержащему по меньшей мере одну панель (100), имеющую две стенки (110, 120), разделенные основной периферической распоркой (102) и образующие газонепроницаемую камеру (104) с низким вакуумом, и по меньшей мере две гибкие пленки (150, 160), расположенные внутри указанной камеры (104), локально прикрепленные к вторичным распоркам (140) в промежуточных точках между двумя стенками (110, 120) и совместно ограничивающие вторичные воздухонепроницаемые ячейки (158). При этом последовательное создание потенциалов выбранной полярности между стенками (110, 120) и гибкими пленками (150, 160) приводит к перемещению гибких пленок (150, 160) между первым положением теплоизоляции, в котором гибкие пленки (150, 160) отделены друг от друга, и вторым положением, в котором пленки (150, 160) находятся в контакте друг с другом по меньшей мере на значительной части своей поверхности. Изобретение позволяет повысить эффективность теплоизоляционного устройства и его эксплуатационную надежность. 9 з.п. ф-лы, 12 ил.

Изобретение относится к области строительства, в частности к стеновым панелям для возведения зданий, домов и подобных сооружений. Стеновая панель содержит бетонную плиту, две поперечины, два ребра, первую теплоизоляционную плиту, две вторые теплоизоляционные плиты, две третьи теплоизоляционные плиты, два П-образных элемента. Бетонная плита снабжена внешней поверхностью, внутренней поверхностью, двумя боковыми поверхностями, верхней поверхностью и нижней поверхностью. Внешняя поверхность и внутренняя поверхность выполнены в виде прямоугольников и имеют большую площадь по сравнению с другими поверхностями бетонной плиты. Боковые поверхности расположены на противоположных сторонах, верхняя поверхность расположена с противоположной стороны от нижней поверхности. Одна поперечина расположена на внешней поверхности по ее верхнему краю от одной боковой поверхности до другой, другая поперечина расположена на внешней поверхности по ее нижнему краю от одной боковой поверхности до другой. Ребра размещены на внешней поверхности параллельно боковым поверхностям от верхней поверхности до нижней поверхности. При этом ребра расположены с отступом от соответствующей каждому из них боковой поверхности. Поверхность каждого из ребер, противоположная внешней поверхности, расположена от внешней поверхности на большем расстоянии, чем поверхности поперечин, противоположные внешней поверхности. Первая теплоизоляционная плита расположена между ребрами заподлицо с поверхностями ребер, противоположными внешней поверхности. Вторые теплоизоляционные плиты расположены вдоль соответствующего каждой их них ребра и с нахлестом на первые теплоизоляционные плиты. Каждый П-образный элемент размещен вертикально таким образом, что он охватывает соответствующую ему вторую теплоизоляционную плиту со стороны, противоположной внешней поверхности. Третьи теплоизоляционные плиты расположены со сторон ребер, обращенных в сторону соответствующей боковой поверхности, между поперечинами, от внешней поверхности до поверхности большого ребра, противоположной внешней поверхности. Технический результат состоит в повышении теплоизоляционных свойств стыков соседних стеновых панелей и в расположении бетонной плиты в зоне положительных температур в случае, если предусмотрено отопление здания. 4 ил.

Изобретение относится к области строительства, а именно к технологии возведения слоистых наружных стен для жилых и гражданских зданий, и может быть использовано для наружной теплоизоляции зданий при ремонте или реконструкции старого жилого фонда.Технической задачей предлагаемого изобретения является создание такого способа наружной теплоизоляции зданий, чтобы, с одной стороны, существенно снизить теплотехническую неоднородность утеплителей стены здания и таким образом повысить энергоэффективность зданий, а с другой стороны, улучшить технологичность всей системы наружной теплоизоляции зданий.Поставленная задача решается тем, что в предлагаемом решении предварительно, до монтажа наружной стенки на ригели каркаса закрепляют монтажные полосы, затем к монтажным полосам, стойкам и ригелям крепят дополнительный слой плитного утеплителя, причем монтажные полосы устанавливают на всю высоту стены здания между стойками каркаса с шагом, равным размеру дополнительного слоя плитного утеплителя, а утеплитель монтируют горизонтальными рядами с перевязкой вертикальных швов и закрепляют его со стороны дополнительного слоя плитного утеплителя к монтажным полосам посредством саморезов и дистанцеров с заглушкой. 3 ил.
Наверх