Способ получения кристаллов фторидов щелочноземельных металлов


 


Владельцы патента RU 2543876:

Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (МИНПРОМТОРГ РОССИИ) (RU)

Изобретение относится к области технологии оптических кристаллических материалов, используемых в качестве оптической среды повышенной радиационной стойкости, предназначенной для передачи фотонного излучения с различной частотой и мощностью оптических сигналов. Кристаллы фторидов щелочноземельных металлов получают из расплавленной шихты, содержащей примесь фторида натрия или калия и дополнительно добавку фторида лантана при весовом соотношении между добавкой фторида лантана и примесью фторида щелочного металла 0,2-0,3 и концентрации фторида лантана не более 1 мол.%. Технический результат - повышение пропускания щелочноземельных фторидов около границы вакуумной ультрафиолетовой (ВУФ) области спектра как в обычных условиях эксплуатации, так и в полях ионизирующих излучений высокой плотности, а также радиационной стойкости кристаллов. 6 пр.

 

Изобретение относится к области технологии оптических кристаллических материалов, используемых в качестве оптической среды повышенной радиационной стойкости для передачи фотонного излучения с различной частотой и мощностью оптических сигналов.

Широким набором свойств, привлекательных для разработчика оптических приборов в качестве лазерного материала, обладают фториды щелочноземельных металлов со структурой флюорита, которые традиционно получают путем выращивания монокристаллов высокого качества с присадкой фторида свинца. Хорошо известны такие монокристаллы на основе фторидов щелочных, щелочноземельных и редкоземельных металлов (Степанов И.В., Феофилов П.П. Искусственный флюорит. Сб. «Рост кристаллов», 1957, М.: Изд. АН СССР, с. 229; Справочник по лазерам. / Под ред. А.М. Прохорова, в 2-х томах. - М.: «Советское Радио», 1978, т.1, 504 с: с. 261, 267, 271, 273-278, 297-299, 307, 310-313).

Недостаток способа выращивания кристаллов фторидов щелочноземельных металлов, использованного в цитированных работах, состоит в том, что радиационно-стойкие кристаллы нельзя получить из шихты, в которой обычно присутствует незначительная (на уровне сотых и тысячных долей молярных процентов) примесь фторидов щелочных металлов, а именно фторида натрия или фторида калия.

Как известно (Архангельская В.А., Рейтеров В.М., Трофимова Л.М. Примесное поглощение кристаллов щелочноземельных фторидов в вакуумной ультрафиолетовой области спектра. Журнал прикладной спектроскопии, 1980, т.32, вып.1, с. 104-105) границы фундаментального поглощения кристаллов фторидов кальция, стронция и бария находятся около 122, 128 и 135 нм. Наличие примесей фторидов щелочных металлов вызывает резкое снижение значения коэффициента пропускания в вакуумной ультрафиолетовой области (ВУФ) области спектра ≤250 нм и таким образом влечет за собой резкое ухудшение оптического качества кристалла. Например, даже при незначительной концентрации фторида натрия 3·10-3 мол.% в кристалле фторида кальция коэффициент поглощения на длине волны 125 нм увеличивается в два раза. При увеличении концентрации фторида натрия на порядок сдвиг ВУФ границы поглощения в длинноволновую область спектра еще более велик. Для длины волны 130 нм дифференциальный коэффициент поглощения становится равным 3,7 см-1, то есть кристалл практически полностью становится непрозрачным и это значение длины волны можно считать границей области пропускания, которая таким образом сдвигается в более длинноволновый диапазон спектра.

Это явление объясняют (Архангельская В.А., Рейтеров В.М., Трофимова Л.М., Щеулин А.С. Оптические свойства кристаллов типа флюорита с МА-центрами окраски. Журнал прикладной спектроскопии, 1982, т.37, вып.4) образованием в кристалле фторида щелочноземельного металла анионных вакансий, ассоциированных с ионом примеси - ионом щелочного металла.

Близким к предлагаемому изобретению по технической сущности является способ получения кристаллов фторидов щелочноземельных металлов из расплавленной шихты, в которой содержится фторид иттрия (Архангельская В.А., Рейтеров В.М., Трофимова Л.М. Примесное поглощение кристаллов щелочноземельных фторидов в вакуумной ультрафиолетовой области спектра. Журнал прикладной спектроскопии, 1980, т.32, вып.1, с. 106).

Недостатком данного способа является то, что введение фторида иттрия даже в концентрациях на уровне 10-3 мол.% в шихту чистого фторида кальция вызывает появление полос поглощения на 134 и 154 нм с коэффициентом поглощения 1,1 и 3,0 см-1, соответственно, в ВУФ области спектра. При концентрации фторида иттрия 3·10-1 мол.% граница фундаментального поглощения вообще сдвигается в длинноволновую часть спектра до 170 нм.

Прототип. Наиболее близким к предлагаемому способу является изобретение «Способ получения кристаллов фторидов щелочноземельных металлов» (А.с. СССР №1037690, С30В 11/02; С30В 29/12 с приоритетом от 01.10.1980, опубл. 27.07.2000). Для повышения радиационной оптической устойчивости кристаллов процесс выращивания кристаллов фторидов щелочноземельных металлов ведут из шихты, в которой содержатся добавки фторида натрия или калия и фторида иттрия в соотношении 0,2-0,5 и ≤1 мол.% соответственно.

Недостатком способа по прототипу является наличие иттрия фторида в исходной шихте, который при заявленных высоких концентрациях резко снижает пропускание в ультрафиолетовой и около границы ВУФ области спектра (121,6 нм) и приводит к длинноволновому сдвигу фундаментальной полосы поглощения света в кристалле фторида щелочноземельного металла до значения 300 нм.

Задача данного изобретения - повышение пропускания щелочноземельных фторидов в ультрафиолетовой области спектра около границы ВУФ области как в обычных условиях эксплуатации, так и в полях ионизирующих излучений высокой плотности, а также повышение радиационной стойкости кристаллов.

По предлагаемому способу получения кристаллов фторидов щелочноземельных элементов из расплавленной шихты, содержащей обычную примесь - фторид щелочного металла (обычно - фторид натрия или калия), в отличие от прототипа, используют шихту с содержанием дополнительной добавки фторида лантана, при этом добавка фторида лантана по отношению к концентрации примеси фторида щелочного металла составляет соотношение 0.2-0,3 в молярном измерении, причем концентрация фторида лантана не должна превышать значение более 1 мол.%. Превышение концентрации фторида лантана более чем 1 мол.% приводит к появлению фазовой неоднородности кристалла фторида щелочноземельного металла, а тем самым, и к резкому снижению оптических характеристик.

Изменение соотношения концентраций примеси и добавки как в сторону уменьшения, так и в сторону увеличения указанного значения, снижает радиационную устойчивость полученных по заявляемому способу кристаллов.

Концентрацию фторида щелочного металла определяют методом аналитического контроля по известной методике. В подготовленную шихту вводят расчетное количество фторида лантана. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают полученную заготовку.

Пример №1. Исходное сырье - синтетический фторид кальция марки РУ, квалификации х.ч. по ТУ 6-09-01-572-79 производства ЗАО «УНИХИМ» (СПб). Концентрация фторида калия 3·10-3 мол.%. Вводят добавку фторида лантана в концентрации 1,5·10-3 мол.%, 1.0 мол.% (весовое соотношение 0,2). Добавляют раскислитель - фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса кристаллизации тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 1,0 см-1; после облучения дозой 108 РАД - 2,5 см-1. Для кристалла - образец сравнения без добавки фторида лантана - коэффициент поглощения на три порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм 3,0 см-1,

Пример №2. Исходное сырье - синтетический фторид кальция марки РУ, квалификации х.ч. по ТУ 6-09-01-572-79 производства ЗАО «УНИХИМ» (СПб). Концентрация фторида натрия 2,4·10-1 мол.%. Добавляют фторид лантана в концентрации 0,72·10-1 мол.% (весовое соотношение 0,3). Добавляют фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 1,5 см-1; после облучения дозой 108 РАД - 4,5 см-1. Для кристалла - образец сравнения без добавки фторида лантана - коэффициент поглощения на 2 порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм 3,0 см-1.

Пример №3. Исходный состав шихты - синтетический фторид бария. Концентрация фторида натрия 3·10-3 мол.%. Вводят добавку фторида лантана в концентрации 2,4·10-3 мол.%. Добавляют раскислитель - фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 0,8 см-1; после облучения дозой 108 РАД - 2,3 см-1. Для кристалла - образец сравнения без добавки фторида - лантана коэффициент поглощения более чем на три порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм составляет 3,0 см-1.

Пример №4. Исходный состав шихты - синтетический фторид стронция с примесью фторида натрия 3·10-3 мол.%. Вводят добавку фторида лантана в концентрации 2,4·10-3 мол.%. Добавляют раскислитель - фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 1,0 см-1; после облучения дозой 108 РАД - 2,4 см-1. Для кристалла - образец сравнения без добавки фторида лантана - коэффициент поглощения на той же длине волны - на три порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм 3,0 см-1, то есть больше в три раза даже на существенно большей длине волны по сравнению с приведенным выше значением для 1,0 см-1 на 125 нм.

Пример №5. Исходное сырье - синтетический фторид стронция производства ЗАО «УНИХИМ» (СПб). Концентрация фторида натрия 2,4·10-1 мол.%. Добавляют фторид лантана в концентрации 0,62·10-1 мол.% (весовое соотношение 0,3). Добавляют фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 1,6 см-1; после облучения дозой 108 РАД - 3,5 см-1. Для кристалла - образец сравнения без добавки фторида лантана - коэффициент поглощения на 2 порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм 4,0 см-1.

Пример №6. Исходное сырье - синтетический фторид бария производства ЗАО «УНИХИМ» (СПб). Концентрация фторида натрия 2,4·10-1 мол.%. Добавляют фторид лантана в концентрации 0,72·10-1 мол.% (весовое соотношение 0,2). Добавляют фторид свинца в количестве 0,5 мол.%. Шихту помещают в тигель, размещенный в вакуумной печи. После нагрева тигля и расплавления шихты путем опускания через градиентную температурную зону проводят кристаллизацию. По окончании процесса тигель поднимают в исходное положение и отжигают заготовку. Коэффициент поглощения на длине волны 125 нм до облучения 1,9 см-1; после облучения дозой 108 РАД - 5,5 см-1. Для кристалла - образец сравнения без добавки фторида лантана - коэффициент поглощения на 2 порядка больше. Для необлученного кристалла по прототипу - коэффициент поглощения на длине волны 154 нм 3,0 см-1.

Как видно из приведенных примеров, концентрация вводимых добавок находится в диапазоне от 0.2-0,3 мол.%. Все изготовленные кристаллы обладают характеристиками, решающими поставленную задачу изобретения.

Способ получения кристаллов фторидов щелочноземельных металлов из расплавленной шихты, содержащей примесь фторида натрия или калия, отличающийся тем, что используют шихту, содержащую дополнительно добавку фторида лантана при весовом соотношении между добавкой фторида лантана и примесью фторида щелочного металла 0,2-0,3 и концентрации фторида лантана не более 1 мол. %.



 

Похожие патенты:
Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, неохлаждаемых детекторов χ- и γ - излучений для ядерно-физических методов диагностики и контроля, а также изготовления волоконных световодов ИК-диапазона.
Изобретение относится к области получения материалов детекторов для регистрации ионизирующего излучения, которые могут быть использованы для инфракрасной оптики, лазерной техники, акустооптики.

Изобретение может быть использовано в медицинских томографах, при неразрушающем контроле в промышленности, для обеспечения безопасности при осмотре личного имущества, в физике высоких энергий.
Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, а именно кристаллов галогенидов серебра и таллия, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, а также для изготовления волоконных световодов ИК-диапазона.
Изобретение относится к области получения материалов прозрачных в инфракрасной области спектра, а именно кристаллов галогенидов серебра, которые могут быть использованы для изготовления оптических элементов прозрачных в области длин волн от 0,4 до 15 мкм, а также для изготовления волоконных световодов среднего ИК диапазона.

Изобретение относится к технологии получения оптических поликристаллических материалов, а именно фторидной керамики, имеющей наноразмерную структуру и усовершенствованные оптические, лазерные и генерационные характеристики.
Изобретение относится к технологии получения оптических поликристаллических материалов, а именно фторидной керамики, имеющей наноразмерную структуру и усовершенствованные оптические, лазерные и генерационные характеристики.

Изобретение относится к новым неорганическим сцинтилляционным материалам, к новому сцинтиллятору кристаллического типа, особенно в форме монокристалла, и может быть использовано для регистрации ионизирующего излучения в виде электромагнитных волн низких энергий, гамма-излучения, рентгеновского излучения, космических лучей и частиц в фундаментальной физике, устройствах компьютерной томографии, РЕТ-томографах, в томографах нового поколения, гамма-спектрометрах, в карго-сканерах, в системах каротажа скважин, в системах радиационного контроля и др.
Изобретение относится к области изготовления оптических монокристаллов фторидов металлов, в частности к способу их вторичного отжига. .
Изобретение относится к области выращивания из расплава монокристаллов оптических фторидов щелочноземельных металлов путем их охлаждения при температурном градиенте с использованием затравочного кристалла.

Изобретение относится к технологии выращивания труб из монокристаллов тугоплавких оксидов металлов и их твердых растворов: сапфира, алюмо-магниевой шпинели, алюмо-иттриевого граната, и может быть использовано в различных областях науки и техники, где требуются высокопрочные, инертные и термостойкие трубы.
Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, неохлаждаемых детекторов χ- и γ - излучений для ядерно-физических методов диагностики и контроля, а также изготовления волоконных световодов ИК-диапазона.

Изобретение относится к технологии производства монокристаллов сапфира, используемых для изготовления синего или белого светодиодов. Устройство содержит печь 10, выполненную с возможностью нагрева и термоизоляции от окружающего воздуха для обеспечения температуры внутри печи, превышающей температуру плавления обломков сапфира; тигель 20, расположенный в печи таким образом, чтобы обеспечить расплавление обломков сапфира в тигле 20 и рост монокристалла в длину из затравочного кристалла 51 в тигле 20; нагреватель 30, расположенный снаружи тигля 20 для расплавления обломков сапфира; и охлаждающие средства 40, расположенные на нижней части тигля 20 для предотвращения полного расплавления затравочного кристалла 51, при этом нагреватель 30 выполнен в виде нескольких отдельных нагревателей, которые управляются независимо друг от друга отдельно установленными температурными датчиками, регуляторами мощности и блоками регулирования температуры таким образом, что он равномерно поддерживает температуру внутри тигля в горизонтальном направлении.
Изобретение относится к области получения материалов, прозрачных в инфракрасной области спектра, а именно кристаллов галогенидов серебра и таллия, которые могут быть использованы для изготовления оптических элементов, прозрачных в области длин волн от 0,4 до 25 мкм, а также для изготовления волоконных световодов ИК-диапазона.
Изобретение относится к области получения материалов прозрачных в инфракрасной области спектра, а именно кристаллов галогенидов серебра, которые могут быть использованы для изготовления оптических элементов прозрачных в области длин волн от 0,4 до 15 мкм, а также для изготовления волоконных световодов среднего ИК диапазона.
Изобретение относится к области выращивания из расплава монокристаллов оптических фторидов щелочноземельных металлов путем их охлаждения при температурном градиенте с использованием затравочного кристалла.

Изобретение относится к технологии материалов электронной техники, а именно к способам получения полупроводниковых кристаллов из расплавов для создания структурно-совершенных монокристаллических подложек, и может быть использовано при формировании эпитаксиальных структур и приготовлении рабочих тел электрооптических модуляторов, работающих в ИК-области спектра.

Изобретение относится к области материалов электронной техники и может найти применение при создании новых устройств фотоники, квантовой электроники и оптики УФ-диапазона спектра.

Изобретение относится к технологии выращивания кристаллов и может быть использовано при создании активированных кристаллических материалов с прогнозируемыми свойствами для нужд фотоники, квантовой электроники и оптики.

Изобретение относится к области материалов электронной техники и может найти применение при создании новых устройств фотоники, квантовой электроники и оптики УФ-диапазона спектра.
Изобретение относится к методам крепления затравки при получении монокристаллов полупроводниковых и металлических материалов из расплава. Для крепления затравки в горизонтальном стеклянном вакуумированном контейнере проводят расплавление большей части затравки со стороны, противоположной месту затравливания, и расплав кристаллизуют в контакте со стенками контейнера. За счет повышения надежности механического крепления затравки и улучшения ее теплового контакта со стенками контейнера увеличивается выход моноориентированного кристалла высокого качества. 1 пр.
Наверх