Устройство для измерения скорости потока текучей среды



Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды
Устройство для измерения скорости потока текучей среды

 


Владельцы патента RU 2544256:

Деревягин Александр Михайлович (RU)

Настоящее изобретение относится к области измерения параметров потока текучей среды, протекающей по трубопроводу. Измерительное устройство для измерения скорости потока текучей среды, протекающей в трубопроводе в основном направлении потока, содержащее соединенный с трубопроводом отклоняющий узел, выполненный с возможностью отклонения потока текучей среды от оси основного направления потока трубопровода и направления потока в измерительный участок, при этом отклоняющий узел представляет собой герметичный резервуар, имеющий входную часть, соединенную с входным трубопроводом, выходную часть, соединенную с выходным трубопроводом, и отклоняющую часть, соединенную с входной частью и выходной частью, и содержащий трубчатый элемент, расположенный, по меньшей мере частично, в отклоняющей части и выходной части, причем трубчатый элемент имеет измерительный участок, снабженный средствами измерения скорости потока текучей среды, и соединительный участок, соединяющий трубчатый элемент с выходным трубопроводом, причем отношение площади поперечного сечения каждой из входной части, выходной части и отклоняющей части к площади поперечного сечения трубопровода составляет от 1:1 до 4:1. Технический результат - исключение использования геометрически сложных элементов отклоняющего узла, возможность устранения влияния низкочастотных периодических колебаний. 22 з.п. ф-лы, 12 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к области измерения параметров потока текучей среды, протекающей по трубопроводу. В частности, изобретение может использоваться для измерения скорости потока текучих сред, таких как нефть, газ, вода или их комбинации.

УРОВЕНЬ ТЕХНИКИ

Из уровня техники известны устройства для измерения скорости текучих сред.

Известным из уровня техники решениям присущи недостатки, вызванные наличием турбулентного потока в зоне измерения, в результате чего точность измерений снижается.

Для уменьшения влияния турбулентности потока в зоне измерения рекомендуется монтировать расходомер на прямолинейных участках без изменения сечения на протяжении 5…10 диаметров трубы до и после расходомера. Однако наличие таких больших прямолинейных участков требует значительных материальных затрат и отведения дополнительного пространства для обустройства таких прямолинейных участков. Более того, точность поддержания прямолинейности на всем этом участке также должна быть соблюдена. На трубопроводах малых диаметров прямолинейность в большинстве случаев обеспечивается автоматически. Но с увеличением диаметра трубопровода соблюсти и проконтролировать необходимую прямолинейность становится все труднее. Также на точность измерений расходомера влияют низкочастотные периодические колебания, связанные с колебаниями гидростатического напора, например колебания, обусловленные наличием перекачивающей станции.

Наиболее близким аналогом заявленного изобретения является техническое решение согласно RU 2011109911, где предложено ультразвуковое измерительное устройство для измерения скорости потока текучей среды, текущей в трубопроводе в основном направлении потока, причем ультразвуковое измерительное устройство имеет область ультразвуковых измерений, по меньшей мере, с одной парой ультразвуковых преобразователей, блок обработки данных для определения скорости потока по разности времени прохождения ультразвука, излученного и принятого по потоку и против потока, и отклоняющий узел, посредством которого текучая среда может быть отклонена от основного направления потока и подана в область ультразвуковых измерений, отличающееся тем, что отклоняющий узел образует петлю.

В решении RU 2011109911 для исключения влияния турбулентности на определение параметров потока в качестве средства для устранения турбулентности предложена конструкция расходомера с отклоняющим узлом в виде петли. Поток текучей среды, проходя по петле, которая является гладкой и не имеет резких изменений в направлении или сужений, принимает однородные характеристики профиля потока, в результате чего помехи, вызванные турбулентностью, устраняются, а точность измерений повышается.

Однако в решении RU 2011109911 на всех стадиях производства должна быть соблюдена высокая геометрическая точность исполнения деталей отклоняющего узла в виде петли. Более того, предложенная конструкция расходомера не позволяет исключить влияние низкочастотных периодических колебаний, связанных с колебаниями гидростатического напора, например, от работы насоса.

С целью преодоления вышеуказанных недостатков предложено измерительное устройство для измерения скорости потока текучей среды, протекающей в трубопроводе в основном направлении потока, содержащее соединенный с трубопроводом отклоняющий узел, выполненный с возможностью отклонения потока текучей среды от оси основного направления потока трубопровода и направления потока в измерительный участок, при этом отклоняющий узел представляет собой герметичный резервуар, имеющий входную часть, соединенную с входным трубопроводом, выходную часть, соединенную с выходным трубопроводом, и отклоняющую часть, соединенную с входной частью и выходной частью, и содержащий трубчатый элемент, расположенный, по меньшей части частично, в отклоняющей части и выходной части, причем трубчатый элемент имеет измерительный участок, снабженный средствами измерения скорости потока текучей среды, и соединительный участок, соединяющий трубчатый элемент с выходным трубопроводом, причем отношение площади поперечного сечения каждой из входной части, выходной части и отклоняющей части к площади поперечного сечения трубопровода составляет от 1:1 до 4:1.

Заявленное решение позволяет исключить использование геометрически сложных элементов отклоняющего узла, а также благодаря наличию герметичного резервуара позволит устранить влияние низкочастотных периодических колебаний, связанных с колебаниями гидростатического напора. Более того, предложенное решение позволит отказаться от использования длинных прямолинейных участков и, соответственно, снизит материальные затраты и уменьшит необходимое пространство для обустройства прямолинейных участков.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Измерительное устройство для измерения скорости потока текучей среды, протекающей в трубопроводе в основном направлении потока, содержащее соединенный с трубопроводом отклоняющий узел, выполненный с возможностью отклонения потока текучей среды от оси основного направления потока трубопровода и направления потока в измерительный участок, при этом отклоняющий узел представляет собой герметичный резервуар, имеющий входную часть, соединенную с входным трубопроводом, выходную часть, соединенную с выходным трубопроводом, и отклоняющую часть, соединенную с входной частью и выходной частью, и содержащий трубчатый элемент, расположенный, по меньшей части частично, в отклоняющей части и выходной части, причем трубчатый элемент имеет измерительный участок, снабженный средствами измерения скорости потока текучей среды, и соединительный участок, соединяющий трубчатый элемент с выходным трубопроводом, причем отношение площади поперечного сечения каждой из входной части, выходной части и отклоняющей части к площади поперечного сечения трубопровода составляет от 1:1 до 4:1.

При этом входная часть содержит входное отверстие, соединенное с входным трубопроводом.

При этом выходная часть содержит выходное отверстие, соединенное с выходным трубопроводом.

При этом герметичный резервуар выполнен в форме многогранника, тела вращения или их комбинации.

Причем герметичный резервуар выполнен с возможностью отклонения потока текучей среды от оси основного направления потока на угол от 10° до 170° и предпочтительно на угол 90°.

В соответствии с одним вариантом осуществления входное отверстие и выходное отверстие находятся на противоположных сторонах резервуара относительно оси основного направления потока, предпочтительно входное отверстие и выходное отверстие находятся на одной оси с осью основного направления потока.

Поперечное сечение трубчатого элемента может иметь форму, выбранную из группы, содержащей: круг, овал, квадрат, прямоугольник, многоугольник, криволинейную форму или их комбинацию.

При этом трубчатый элемент имеет криволинейную форму в продольном направлении.

В соответствии с вариантами выполнения трубчатый элемент может иметь площадь поперечного сечения, по существу равную площади поперечного сечения трубопровода, или трубчатый элемент может иметь площадь поперечного сечения больше, чем площадь поперечного сечения трубопровода или меньше, чем площадь поперечного сечения трубопровода.

В одном варианте осуществления измерительный участок трубчатого элемента находится под углом от 10° до 170° к соединительному участку трубчатого элемента.

Один конец трубчатого элемента, к которому примыкает измерительный участок, является открытым, а другой конец на соединительном участке через выходное отверстие резервуара соединен с трубопроводом, при этом измерительный участок трубчатого элемента проходит параллельно боковым стенкам резервуара и находится под углом предпочтительно 90° к соединительному участку трубчатого элемента.

Измерительный участок трубчатого элемента может быть длиннее, чем соединительный участок или короче, чем соединительный участок.

Длина измерительного участка может быть равна длине соединительного участка.

Поток текучей среды может быть потоком, содержащим газ, нефть, воду или их комбинации.

Герметичный резервуар может быть дополнительно снабжен по меньшей мере одним успокоителем потока.

Причем в измерительном устройстве входная часть представляет собой соосный трубопроводу входной патрубок резервуара, соединенный с входным трубопроводом, выходная часть представляет собой соосный трубопроводу выходной патрубок резервуара, соединенный с выходным трубопроводом, а отклоняющая часть выполнена в виде расположенной между входным патрубком резервуара и выходным патрубком резервуара цилиндрообразной выступающей части, имеющей закрытый конец.

Причем в измерительном устройстве входной патрубок, выходной патрубок и цилиндрообразная выступающая часть имеют одинаковую площадь поперечного сечения.

Причем в измерительном устройстве расстояние между точкой присоединения входного трубопровода к входному патрубку и точкой присоединения выходного трубопровода к выходному патрубку равно от 2 до 4 диаметров трубопровода.

КРАТКОЕ ОПИСАНИЕ ФИГУР

Фиг.1 - вариант осуществления отклоняющего узла с герметичным резервуаром, установленным под углом 90°.

Фиг.2 - вариант осуществления отклоняющего узла с герметичным резервуаром, установленным под углом, отличным от 90°.

Фиг.3 - вариант осуществления отклоняющего узла с герметичным резервуаром, в котором входное отверстие и выходное отверстие герметичного резервуара расположены на противоположных сторонах резервуара, причем входное отверстие расположено выше выходного отверстия.

Фиг.4 - вариант осуществления отклоняющего узла с герметичным резервуаром, установленным под углом 90° к оси трубопровода, и в котором измерительный участок не параллелен боковым стенкам резервуара и находится под углом к соединительному участку, отличным от 90°.

На Фиг.5 представлен вариант осуществления, в соответствии с которым длина измерительного участка больше, чем длина соединительного участка, причем ось трубчатого элемента смещена относительно центральной оси герметичного резервуара.

На Фиг.6 представлен вариант осуществления, в соответствии с которым длина измерительного участка короче, чем длина соединительного участка.

На Фиг.7 представлен вариант осуществления, в соответствии с которым длина измерительного участка по существу равна длине соединительного участка.

На Фиг.8 представлен вариант осуществления, в котором трубчатый элемент (107) имеет площадь поперечного сечения, по существу равную площади поперечного сечения трубопровода (101).

На Фиг.9 представлен вариант осуществления, в котором трубчатый элемент (107) имеет площадь поперечного сечения больше площади поперечного сечения трубопровода (101).

На Фиг.10 представлен вариант осуществления, в котором трубчатый элемент (107) имеет площадь поперечного сечения меньше площади поперечного сечения трубопровода (101).

В соответствии с вариантом осуществления, предложенным на Фиг.11, герметичный резервуар (104) дополнительно снабжен успокоителем потока (111).

На Фиг.12 представлен вариант осуществления, в котором входная часть (105) представляет собой соосный трубопроводу входной патрубок резервуара, соединенный с входным трубопроводом (101), выходная часть (106) представляет собой соосный трубопроводу выходной патрубок резервуара, соединенный с выходным трубопроводом (111), а отклоняющая часть выполнена в виде расположенной между входным патрубком резервуара и выходным патрубком резервуара цилиндрообразной выступающей части (115), имеющей закрытый конец.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

На Фиг.1 представлено измерительное устройство (100) для измерения скорости потока текучей среды, протекающей в трубопроводе (101), (111) в основном направлении потока, показанном стрелкой. Измерительное устройство содержит соединенный с трубопроводом отклоняющий узел (102), выполненный с возможностью отклонения текучей среды от оси основного направления потока трубопровода и направления потока в измерительный участок (103). Предпочтительно отклоняющий узел установлен под углом 90° к оси основного направления потока.

На Фиг.2 представлен вариант осуществления, в котором отклоняющий узел (102) установлен под углом к оси основного направления потока, текущего по трубопроводу (101), (111), что позволит отклонять поток на угол от 10° до 170°.

Со ссылкой на Фиг.1 отклоняющий узел представляет собой герметичный резервуар (104), установленный по потоку текучей среды. Герметичный резервуар может быть выполнен в виде многогранника или в виде любого тела вращения, предпочтительно герметичный резервуар может представлять собой удлиненный цилиндр, торцевые стороны которого имеют поверхность тела вращения, в частности являются частью шара. Герметичный резервуар может состоять из нескольких частей, например, может представлять собой комбинацию многогранника и тела вращения, соединенных между собой резьбой или болтовым соединением.

Герметичный резервуар можно получить любым известным из уровня техники способом, например сваркой, ковкой или штамповкой из стального листа. Более того, герметичный резервуар может быть также выполнен из любого подходящего материала, выдерживающего давление текучей среды и имеющего достаточную коррозионную стойкость, например, он может быть выполнен из полимерного или композитного материала.

Отношение между линейным размером поперечного сечения трубопровода, в частности диаметром трубопровода, и высотой герметичного резервуара составляет от 1:2 до 1:20, предпочтительно 1:10.

В герметичном резервуаре предусмотрена входная часть (105), имеющая входное отверстие (114), через которое текучая среда из входного трубопровода (101) поступает в герметичный резервуар для последующего измерения скорости потока. Входное отверстие соединяется с входным трубопроводом (101) посредством фитингов и фланцев, имеющих болтовое соединение для облегчения замены неисправного отклоняющего узла, например из-за выхода из строя измерительной аппаратуры. Возможно также любое другое соединение, известное из уровня техники. Герметичный резервуар снабжен выходной частью (106), имеющей выходное отверстие (114), через которое текучая среда, прошедшая через измерительный участок (103) и проходящий через выходную часть (106) резервуара соединительный участок (108) трубчатого элемента, выходит из герметичного резервуара и поступает в выходной трубопровод (111). Измерительный участок (107) и соединительный участок (108) могут быть выполнены как единое целое.

Отношение площади поперечного сечения каждой из входной части, выходной части и отклоняющей части к площади поперечного сечения трубопровода составляет от 1:1 до 4:1, предпочтительно от 1,5:1 до 3:1.

Предпочтительно входное отверстие (113) и выходное отверстие (114) находятся на одной оси, параллельной или совпадающей с осью основного направления потока, как это показано на Фиг.1.

На Фиг.3 представлен вариант осуществления, в котором входное отверстие (113) и выходное отверстие (114) могут располагаться на противоположных сторонах герметичного резервуара относительно оси основного потока, например, входное отверстие может находиться ниже или выше оси основного потока.

Как показано на Фиг.1, внутри герметичного резервуара установлен трубчатый элемент (107), имеющий открытый конец (110), через который текучая среда, поступающая из входного трубопровода (101) в герметичный резервуар (104), направляется для измерения в измерительный участок (103) и затем через соединительный участок (108) трубчатого элемента (107) и выходное отверстие (114) направляется в выходной трубопровод (111). Измерительный участок (103) трубчатого элемента снабжен средствами измерения (109), которые предназначены для измерения параметров текучей среды, например, в качестве средств измерения может выступать по меньшей мере один ультразвуковой приемопередатчик. Трубчатый элемент может иметь любую форму сечения, например квадрат, овал, круг, многоугольник, а также может иметь сечение криволинейной формы, а также любую их комбинацию. Трубчатый элемент в продольном направлении может быть криволинейным. Трубчатый элемент имеет площадь поперечного сечения больше или меньше площади поперечного сечения трубопровода. Предпочтительно трубчатый элемент имеет площадь поперечного сечения, по существу равную площади поперечного сечения трубопровода.

Один конец (110) трубчатого элемента, к которому примыкает измерительный участок (103), является открытым, а другой конец на соединительном участке соединен с выходным отверстием (114) и далее с выходным трубопроводом (111), при этом измерительный участок (103) трубчатого элемента предпочтительно проходит параллельно боковым стенкам резервуара и находится под углом предпочтительно 90° к соединительному участку трубчатого элемента. В такой конфигурации текучая среда поступает во входную часть резервуара через входное отверстие, поворачивает в пространство между трубчатым элементом и стенкой герметичного резервуара и поступает в открытый конец (110) трубчатого элемента, а затем через соединительный участок трубчатого элемента и выходное отверстие (114) поступает в выходной трубопровод (111) и продолжает движение в основном направлении потока текучей среды.

Измерительный участок (103) может быть расположен под углом от 10° до 170° к соединительному участку (108). На Фиг.4 представлен вариант осуществления, в соответствии с которым измерительный участок (103) расположен под углом, отличным от 90°, к соединительному участку (108).

В варианте осуществления, показанном на Фиг.5, длина измерительного участка больше, чем длина соединительного участка и трубчатый элемент установлен так, что ось трубчатого элемента смещена относительно центральной оси герметичного резервуара. В другом варианте осуществления на Фиг.6 длина измерительного участка меньше, чем длина соединительного участка. В варианте осуществления на Фиг.7 длина измерительного участка по существу равна длине соединительного участка.

На Фиг.8 представлен вариант осуществления, в котором трубчатый элемент (107) имеет площадь поперечного сечения, по существу равную площади поперечного сечения трубопровода (101), (111).

На Фиг.9 представлен вариант осуществления, в котором трубчатый элемент (107) имеет площадь поперечного сечения больше площади поперечного сечения трубопровода (101), (111).

На Фиг.10 представлен вариант осуществления, в котором трубчатый элемент (107) имеет площадь поперечного сечения меньше площади поперечного сечения трубопровода (101), (111).

В соответствии с вариантом осуществления, проиллюстрированным на Фиг.11, герметичный резервуар (104) дополнительно снабжен успокоителем потока (112), выполненным, например, из перфорированного листа, который обеспечивает разделение основного потока текучей среды, выходящего из входного отверстия, до поступления в измерительный участок на множество более мелких потоков. Такой успокоитель потока может иметь продольные щели либо отверстия либо может представлять собой установленные параллельно потоку пластинки. Успокоитель потока жидкости в значительной степени улучшает условия формирования струи. Он разделяет поток текучей среды, движущейся по каналу, на несколько частей и способствует гашению возмущений, возникающих в потоке при подходе к успокоителю, а также выравнивает продольные скорости и гасит энергию турбулентных возмущений. Дополнительно трубчатый элемент (107) может крепиться к стенкам герметичного резервуара посредством успокоителя потока (112), например, пайкой или сваркой либо любым другим способом, известным из уровня техники. Дополнительное крепление трубчатого элемента обеспечивает надежную фиксацию трубчатого элемента и соответственно снижает количество ошибок, вызванных колебаниями трубчатого элемента под воздействием потока текучей среды, и повышает точность измерения скорости потока текучей среды.

В соответствии с одним вариантом осуществления, проиллюстрированным на Фиг.12, герметичный резервуар содержит входную часть (105), представляющую собой соосный трубопроводу входной патрубок резервуара, соединенный с входным трубопроводом (101), выходную часть (106), представляющую собой соосный трубопроводу выходной патрубок резервуара, соединенный с выходным трубопроводом (111), и отклоняющую часть, выполненную в виде расположенной между входным патрубком резервуара и выходным патрубком резервуара цилиндрообразной выступающей части (115), имеющей закрытый конец.

Причем входной патрубок, выходной патрубок и цилиндрообразная выступающая часть (115) имеют одинаковую площадь S поперечного сечения.

При этом расстояние L между точкой присоединения входного трубопровода (101) к входному патрубку и точкой присоединения выходного трубопровода (111) к выходному патрубку равно от 2 до 4 диаметров d трубопровода (101), (111).

Герметичный резервуар может быть получен путем сварного соединения цилиндрообразной выступающей части (115), входного патрубка резервуара и выходного патрубка резервуара.

Герметичный резервуар может быть получен в виде единой детали, например, отливкой цилиндрообразной выступающей части (115), входного патрубка резервуара и выходного патрубка резервуара.

Цилиндрообразная выступающая часть (115), входной патрубок резервуара и выходной патрубок резервуара могут быть выполнены из одного материала или комбинации разных материалов.

В одном варианте осуществления входной патрубок, выходной патрубок, цилиндрообразная выступающая часть (115) могут быть соединены между собой под любым углом и к направлению потока.

В частности, герметичный резервуар согласно заявленному изобретению может быть изготовлен на основе трубчатого тройника, имеющего входную часть тройника, выходную часть тройника и боковой штуцер. Для формирования отклоняющей части герметичного резервуара дополнительный цилиндрообразный элемент, имеющий закрытый конец и открытый конец, соединяют с тройником, причем открытый конец соединяют с отверстием бокового штуцера тройника, а закрытый конец формирует закрытый конец отклоняющей части резервуара. При этом входная часть тройника используется в качестве входной части полученного таким образом герметичного резервуара, а выходная часть тройника - в качестве выходной части резервуара.

1. Измерительное устройство для измерения скорости потока текучей среды, протекающей в трубопроводе в основном направлении потока, содержащее соединенный с трубопроводом отклоняющий узел, выполненный с возможностью отклонения потока текучей среды от оси основного направления потока трубопровода и направления потока в измерительный участок, при этом отклоняющий узел представляет собой герметичный резервуар, имеющий входную часть, соединенную с входным трубопроводом, выходную часть, соединенную с выходным трубопроводом, и отклоняющую часть, соединенную с входной частью и выходной частью, и содержащий трубчатый элемент, расположенный, по меньшей мере частично, в отклоняющей части и выходной части, причем трубчатый элемент имеет измерительный участок, снабженный средствами измерения скорости потока текучей среды, и соединительный участок, соединяющий трубчатый элемент с выходным трубопроводом, причем соотношение площади поперечного сечения каждой из входной части, выходной части и отклоняющей части к площади поперечного сечения трубопровода составляет от 1:1 до 4:1.

2. Измерительное устройство по п.1, в котором входная часть содержит входное отверстие, соединенное с входным трубопроводом.

3. Измерительное устройство по п.1, в котором выходная часть содержит выходное отверстие, соединенное с выходным трубопроводом.

4. Измерительное устройство по п.1, в котором герметичный резервуар выполнен в форме многогранника, тела вращения или их комбинации.

5. Измерительное устройство по п.1, в котором герметичный резервуар выполнен с возможностью отклонения потока текучей среды от оси основного направления потока на угол от 10° до 170°.

6. Измерительное устройство по п.4, в котором герметичный резервуар выполнен с возможностью отклонения потока текучей среды от оси основного направления потока предпочтительно на угол 90°.

7. Измерительное устройство по п.1, в котором входное отверстие и выходное отверстие находятся на противоположных сторонах резервуара относительно оси основного направления потока.

8. Измерительное устройство по п.1, в котором входное отверстие и выходное отверстие находятся на одной оси с осью основного направления потока.

9. Измерительное устройство по п.1, в котором поперечное сечение трубчатого элемента имеет форму, выбранную из группы, содержащей: круг, овал, квадрат, прямоугольник, многоугольник, криволинейную форму или их комбинацию.

10. Измерительное устройство по п.1, в котором трубчатый элемент имеет криволинейную форму в продольном направлении.

11. Измерительное устройство по п.1, в котором трубчатый элемент имеет площадь поперечного сечения, по существу равную площади поперечного сечения трубопровода.

12. Измерительное устройство по п.1, в котором трубчатый элемент имеет площадь поперечного сечения больше площади поперечного сечения трубопровода.

13. Измерительное устройство по п.1, в котором трубчатый элемент имеет площадь поперечного сечения меньше площади поперечного сечения трубопровода.

14. Измерительное устройство по п.1, в котором измерительный участок находится под углом от 10° до 170° к соединительному участку трубчатого элемента.

15. Измерительное устройство по п.14, в котором один конец трубчатого элемента, к которому примыкает измерительный участок, является отрытым, а другой конец на соединительном участке через выходное отверстие выходной части соединен с трубопроводом, при этом измерительный участок трубчатого элемента проходит параллельно боковым стенкам отклоняющей части и находится под углом предпочтительно 90° к соединительному участку трубчатого элемента.

16. Измерительное устройство по п.1, в котором длина измерительного участка больше, чем длина соединительного участка.

17. Измерительное устройство по п.1, в котором длина измерительного участка меньше, чем длина соединительного участка.

18. Измерительное устройство по п.1, в котором длина измерительного участка равна длине соединительного участка.

19. Измерительное устройство по п.1, в котором поток текучей среды содержит газ, нефть, воду или их комбинации.

20. Измерительное устройство по п.1, в котором герметичный резервуар дополнительно содержит по меньшей мере один успокоитель потока.

21. Измерительное устройство по п.1, в котором входная часть представляет собой соосный трубопроводу входной патрубок резервуара, соединенный с входным трубопроводом, выходная часть представляет собой соосный трубопроводу выходной патрубок резервуара, соединенный с выходным трубопроводом, а отклоняющая часть выполнена в виде расположенной между входным патрубком резервуара и выходным патрубком резервуара цилиндрообразной выступающей части, имеющей закрытый конец.

22. Измерительное устройство по п.21, в котором входной патрубок, выходной патрубок и цилиндрообразная выступающая часть имеют отличающуюся или одинаковую площадь поперечного сечения.

23. Измерительное устройство по п. 21, в котором расстояние между точкой присоединения входного трубопровода к входному патрубку и точкой присоединения выходного трубопровода к выходному патрубку равно от 2 до 4 диаметров трубопровода.



 

Похожие патенты:

Изобретение относится к устройству для измерения скорости текучей среды в трубе. Устройство для измерения скорости текучей среды в трубе содержит турбину и гидродинамический подшипник, содержащий подвижный полый стакан (30), один конец которого является глухим и который соединен с лопастями (10.1, 10.2, 10.3), и зафиксированный относительно трубы ствол (32), расположенный в полом стакане и содержащий, по меньшей мере, один первый канал (320), называемый каналом для впуска смазочной жидкости, и, по меньшей мере, один второй канал (325), называемый каналом для отвода смазочной жидкости.

Использование: в приборостроении, а именно, в технике измерения параметров ветра, в частности для измерения горизонтальных скоростей и направления ветра, для вертикальной компоненты скорости ветра, а также в аэропортах для обеспечения безопасности полетов воздушных судов.

Изобретение относится к области сельского хозяйства, а именно к почвоведению и экологии, в частности к способам измерения эмиссии парниковых газов из почвы и растений с использованием камер для отбора проб.

Изобретение относится к устройствам для измерения воздушных сигналов вертолета. Система воздушных сигналов вертолета содержит многоканальный аэрометрический приемник, имеющий 2n трубок полного давления и 2n приемных отверстий статического давления, выходы 2n трубок полного давления сообщены пневмопроводами со входами пневмоэлектрических преобразователей с электроизмерительными схемами, которые подключены к мультиплексору, выход которого через последовательно соединенные АЦП и микропроцессор подключен к системе отображения информации, выход которой является выходом системы по высотно-скоростным параметрам.

Изобретение относится к измерительной технике, в частности к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости летательного аппарата.

Изобретение относится к судовым средствам измерения скорости, основанным на излучении электромагнитных волн и приеме отраженных волн от подстилающей поверхности (вода, суша, лед), преимущественно для судов ледового плавания.

Изобретение относится к области авиационного приборостроения и может быть использовано при разработке навигационного оборудования летательных аппаратов. .

Изобретение относится к буровой технике, а именно к способам определения дебитов и плотности пластового флюида нефтяных пластов и слоев пониженной, низкой и ультранизкой продуктивности, объединенных в общий эксплуатационный объект скважины.

Изобретение относится к области авиационного приборостроения и может быть использовано для получения информации о высотно-скоростных параметрах полета ЛA. .

Изобретение относится к методам расчета экстремальных значений гидрометеорологических параметров окружающей среды, которые используются при оценках риска индустриальной деятельности человека. Первый вариант предложенного способа определения режимных характеристик высот ветровых волн включает в себя построение вероятностной функции обеспеченности F(W0) по гистограмме H(Wi), полученной по данным многолетнего временного ряда высот волн Wi, и дальнейшую экстраполяцию функции F(W0) за пределы максимальных величин используемого ряда. При этом экстраполяцию функции F(W0) осуществляют путем построения оптимальной аналитической аппроксимации для гистограммы H(Wi), которую задают в виде известной функции плотности распределения вероятности P(W), а в качестве критерия оптимальности выбора функции P(W) накладывают условие, что относительное отличие низших статистических моментов функции Р(W) от соответствующих моментов гистограммы H(Wi) не превышает среднюю относительную ошибку измерений самих значений ряда высот волн. Второй вариант предложенного способа определения режимных характеристик скорости ветра включает в себя построение вероятностной функции обеспеченности F(W0) по известной гистограмме H(Wi), полученной по данным многолетнего временного ряда скорости ветра Wi, и дальнейшую экстраполяцию функции F(W0) за пределы максимальных величин используемого ряда. При этом экстраполяцию функции F(W0) осуществляют путем построения оптимальной аналитической аппроксимации для гистограммы Η(Wi), которую задают в виде известной функции плотности распределения вероятности P(W), а в качестве критерия оптимальности выбора функции P(W) накладывают условие, что относительное отличие низших статистических моментов функции P(W) от соответствующих моментов гистограммы H(Wi) не превышает среднюю относительную ошибку измерений самих значений ряда скорости ветра. Заявленное изобретение позволяет повысить достоверность и ускорить процедуру определения режимных характеристик высот ветровых волн. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения скорости ветра над морской поверхностью. Технический результат - обеспечение возможности учитывать вклад поверхностного течения в уровень отраженных водной поверхностью радиосигналов, что повышает точность определения скорости ветра. Сущность: установленным на космическом аппарате радиоальтиметром облучают водную поверхность, регистрируют отражённый назад сигнал, по фронту радиоимпульса определяют значимую высоту поверхностных волн, по времени прохождения сигнала до поверхности и обратно определяют крупномасштабный рельеф поверхности, по нему рассчитывают поле поверхностного течения, и определяют скорость ветра по величине отраженного назад сигнала с учётом значимой высоты волн и влияния поля течения на величину отражённого назад сигнала.

Изобретение относится к технической физике и может быть использовано для исследования измерителей потока насыщенного и влажного пара. Заявлен способ определения истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе после узла смешения потоков перегретого пара и воды, включающий измерение расхода, статического давления и температуры входящего в узел смешения потока перегретого пара, измерение расхода, статического давления и температуры входящего в узел смешения потока воды, измерение статического давления и температуры в паропроводе после узла смешения потоков перегретого пара и воды. Способ также включает измерение динамического разрежения в паропроводе после узла смешения потоков перегретого пара и воды, изменение режима течения влажного пара по параметрам теплового и/или массового расходов при сохранении значения статического давления, или пассивное ожидание момента возникновения такого обстоятельства, или выбор из памяти контроллера параметров течения влажного пара в прошлый момент времени с требуемым значением статического давления, теплового и массового расходов, определение в выбранном режиме всех параметров, измеряемых в исходном режиме, вычисление по совокупности всех измерений. Технический результат - повышение точности и достоверности получаемых данных. 1 ил.

Изобретение относится к области для регистрации микроперемещений морской воды. Устройство для реализации заявленного способа для измерения скорости течений и волновых процессов в океане выполнено в виде прямоугольного отрезка, открытого с торцов для воды, на одной стороне отрезка находится плоский оптический излучатель, а на противоположной стороне выполнены отверстия разного диаметра для оптических датчиков. При этом отверстия различного диаметра для частиц одного размера расположены на параллельных линиях, перпендикулярных торцам отрезка. Кроме того, при реализации заявленного способа регистрируют времена прохождения одной частицы между тремя точками, которые находятся на одной линии направления течения на равном расстоянии друг от друга, и при их равенстве делают отсчет скорости. Технический результат - регистрация инфранизкочастотных колебаний на любых глубинах и водах любой солености. 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата. Устройство содержит два клиновидных тела, установленные своими основаниями встречно набегающему потоку, два устройства регистрации частот вихреобразования за телами и устройство обработки, выход которого является выходом датчика. Клиновидные тела расположены на одной оси друг над другом, на верхнем и нижнем основаниях перпендикулярно к общей оси клиновидных тел установлены струевыпрямители в виде тонких пластин, выделяющих зоны вихреобразования клиновидных тел. На верхней поверхности одного, например верхнего, струевыпрямителя установлен отверстие-приемник, который через пневмоканал связан с входом пневмоэлектрического преобразователя (датчика) абсолютного давления, выход которого подключен к входу устройства обработки. Устройство обработки выполнено в виде вычислителя, реализующего как алгоритмы определения аэродинамического угла и истинной воздушной скорости, так и алгоритмы определения других высотно-скоростных параметров. 3 ил.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата, определяющих движение относительно окружающей воздушной среды. Устройство содержит генератор ионных меток, канал регистрации ионных меток в виде системы приемных электродов, расположенных по окружности с центром в точке генерации ионных меток, и блока предварительных усилителей, измерительной схемы в виде канала определения рабочего сектора, являющегося каналом грубого отсчета, канала точного измерения угла в рабочем секторе и канала истинной воздушной скорости, подключенных ко входу вычислительного устройства, выходы которого являются цифровыми выходами по аэродинамическому углу и истинной воздушной скорости. На металлической пластине-маске системы приемных электродов установлено отверстие-приемник для забора статического давления набегающего воздушного потока, которое пневмоканалом связано со входом датчика абсолютного давления, выход которого подключен ко входу вычислительного устройства. Вычислительное устройство выполнено в виде вычислителя, реализующего как алгоритмы определения аэродинамического угла и истинной воздушной скорости, так и алгоритмы определения других высотно-скоростных параметров движения относительно окружающей воздушной среды согласно уравнениям: где i - номер рабочего сектора грубого канала, в котором находится ионная метка; αo - угол, охватывающий рабочий сектор грубого канала отсчета аэродинамического угла (при αo = 90°); Asinαi и Acosαi - значения синусоидального и косинусоидального информативных сигналов, регистрируемых каналом точного отсчета угла в i-м рабочем секторе; R - расстояния от точки генерации ионной метки до окружности с приемными электродами; τν - интервал времени пролета ионной метки расстояния от точки генерации ионной метки до окружности с приемными электродами; α и VB, Н, ρH, Vпр, М - определяемые высотно-скоростные параметры; Р0 = 101325 Па = 760 мм рт.ст. и Т0 = 288,15 К - среднее абсолютное давление и средняя абсолютная температура стандартной атмосферы при Н = 0; τ = 0,0065 К/м - температурный градиент, определяющий изменение абсолютной температуры воздуха TH при изменении высоты H; R = 29,27125 м/К - газовая постоянная; k = 1,4 - показатель адиабаты воздуха; ρ0 = 0,125 кгс2/м4 - массовая плотность воздуха на высоте Н = 0. 4 ил.

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора истинной воздушной скорости, а также других высотно-скоростных параметров летательного аппарата (ЛА), определяющих движение ЛА относительно окружающей воздушной среды. Технический результат - расширение функциональных возможностей. Предложенное устройство содержит генератор ионных меток, канал регистрации ионных меток в виде системы приемных электродов, расположенных по окружности с центром в точке генерации ионных меток, и блока предварительных усилителей, измерительную схему в виде канала определения рабочего сектора, являющегося каналом грубого отсчета, канала точного измерения угла в рабочем секторе и канала истинной воздушной скорости, подключенных ко входу вычислительного устройства, выходы которого являются цифровыми выходами по аэродинамическому углу и истинной воздушной скорости. 4 ил.

Изобретение относится к области метеорологии и касается способа определения профиля ветра в атмосфере. Способ включает в себя излучение приемопередатчиком длинных когерентных импульсов, регистрацию отраженного сигнала, получение доплеровского сигнала на различных высотах в различных направлениях зондирования. Уточнение профиля скорости ветра в пределах длинного участка проводят с учетом полной формы доплеровских спектров по двум или нескольким направлениям зондирования, в которых ширина спектра максимальна и с учетом закона ослабления принимаемой мощности от расстояния до приемопередатчика. Технический результат заключается в повышении чувствительности измерительной системы. 1 ил.

Изобретение относится к области авиационного метеорологического оборудования. Бортовая система измерения параметров вектора скорости ветра содержит неподвижное ветроприемное устройство, преобразователи информативных сигналов, канал аналого-цифрового преобразования, вычислительное устройство, соединенные определенным образом. Ветроприемное устройство содержит неподвижный многоканальный проточный аэрометрический приемник, на наружной поверхности верхнего экранирующего диска которого расположен осесимметричный, например полусферический, аэрометрический приемник с определенным образом расположенными отверстиями. Вычислительное устройство содержит микропроцессор. Обеспечивается определение вектора скорости ветра на стоянке до запуска силовой установки, на стартовых и взолетно-посадочных режимах вертолета. 5 ил.
Наверх