Алюминиевый сплав

Изобретение относится к металлургии алюминиевых сплавов и может быть использовано преимущественно для изготовления катанки электротехнического назначения, а также деформированных полуфабрикатов, используемых в строительстве, машиностроении и других областях народного хозяйства. Сплав содержит следующие компоненты, мас.%: цирконий 0,15-0,40, кремний 0,03-0,15, железо 0,15-0,35, магний 0,01-0,60, медь 0,005-0,01, цинк 0,005-0,02, бор 0,001-0,003, сумму примесей титана, хрома, ванадия, марганца до 0,030, алюминий - остальное. Использование предлагаемого сплава дает возможность расширения технологических возможностей изготовленных из него изделий за счет требуемого комплекса прочностных, электрических и эксплуатационных свойств, что приводит к энергосбережению электроэнергии и увеличению срока службы изготовленных из этого сплава изделий. 2 табл.

 

Изобретение относится к металлургии алюминиевых сплавов и может быть использовано для изготовления катанки электротехнического назначения со специальными физическими свойствами, удовлетворяющей требованиям потребителей, и деформированных полуфабрикатов, используемых в строительстве, машиностроении и других областях народного хозяйства.

Известен сплав, содержащий, мас.%: алюминий 4-8, хром 16-24, кремний 0,05-1, марганец 0,001-0,5, иттрий 0,02-0,2, цирконий 0,1-0,3 или цирконий 0,1-0,3 и гафний 0,02-0,2, углерод 0,003-0,05, магний 0,0002-0,05, кальций 0,0002-0,05, азот макс. 0,04, фосфор макс. 0,04, серу макс. 0,01, медь макс. 0,5, железо и обычные, обусловленные плавкой, примеси остальное. Гафний может быть полностью или частично заменен одним или несколькими из элементов, выбранных из группы: скандий, титан, ванадий, ниобий, тантал или церий (RU, патент РФ №2344192, МПК C22C 38/28, опубл. 20.01.2009).

Однако уровень прочностных свойств данного сплава не достаточен для того, чтобы использовать эти материалы для изготовления из них конструкций и деталей, работающих в условиях одновременного воздействия значительного механического нагружения и высоких температур. Кроме того, конструкции и изделия из таких сплавов характеризуются недостаточной электропроводностью.

Известен также сплав на основе алюминия, содержащий, мас.%: кремний 0,01-0,1, железо 0,08-0,20, цирконий 0,01-0,08, сумма примесей титана, хрома, ванадия и марганца 0-0,1, алюминий - остальное (CN, патент №1428449 A, МПК C22C 21/00, опубл. 09.07.2003).

Однако температурный уровень эксплуатации таких алюминиевых сплавов обычно не превышает 100°C, что является не достаточным для использования этих материалов в изделиях, длительно работающих в условиях высоких температур.

Наиболее близким аналогом к заявляемому изобретению является алюминиевый сплав, содержащий мас.%: цирконий 0,10-0,19; кремний 0,11-0,15; железо 0,21-0,35 и сумму примесей титана, хрома, ванадия и марганца до 0,015 мас.% (RU, патент РФ №2458151, МПК C21C 1/02, опубл. 10.08.2012).

Однако во многих случаях эксплуатация проводов из таких сплавов, особенно для линий электропередач (ЛЭП), требует комплекса потребительских свойств при температурах 230°C и значительных механических нагрузках, который не достигается при применении данного сплава.

В основу изобретения положена задача расширения арсенала алюминиевых сплавов, характеризующихся высокими прочностными свойствами при повышенных температурах и высокой электропроводностью.

При этом техническим результатом является реализация этого назначения.

Технический результат достигается тем, что алюминиевый сплав, содержащий цирконий, кремний, железо, примеси титана, хрома, ванадия и марганца, дополнительно содержит магний, медь, цинк и бор при следующем соотношении компонентов, мас.%:

цирконий 0,15-0,40;

кремний 0,03-0,15;

железо 0,15-0,35;

магний 0,01-0,60;

медь 0,005-0,01;

цинк 0,005-0,02;

бор 0,001-0,003;

примеси титана, хрома, ванадия и марганца до 0,030;

алюминий - остальное

Дополнительное введение в алюминиевый сплав магния, меди, цинка и бора при указанном соотношении компонентов обеспечивает его высокие прочностные свойства при повышенных температурах и высокую электропроводность.

В качестве легирующего элемента, повышающего термостойкость алюминия, выбран цирконий в концентрациях 0,15-0,40 мас.%. Снижение содержания циркония в количествах меньше 0,15 мас.% приводит к снижению термостойкости. Увеличение содержания циркония в количествах выше 0,40 мас.% приводит к увеличению удельного электросопротивления и незначительному росту термостойкости.

При содержании в алюминиевом сплаве железа, кремния и магния в концентрациях 0,15-0,35 мас.%, 0,03-0,15 мас.% и 0,01-0,60 мас.% соответственно повышаются прочностные свойства сплава. Их заявляемое количество в комплексе приводит к оптимальным показателям по прочностным свойствам сплава и электросопротивлению при высокой термостойкости (до 230°C), которую обеспечивает цирконий в заявленных концентрациях 0,15-0,40 мас.%. Снижение содержания железа меньше 0,15 мас.%, кремния меньше 0,03 мас.% и магния меньше 0,01 мас.% приводит к уменьшению прочностных характеристик сплавов и, в первую очередь, снижению временного сопротивления разрыву. Увеличение содержания железа в количествах выше 0,35 мас.%, кремния выше 0,15 мас.% и магния выше 0,60 мас.% приводит к значительному увеличению удельного электросопротивления. Поэтому указанные количественные пределы являются оптимальными для сочетания высоких прочностных свойств и термостойкости при удовлетворительных показателях электросопротивления.

Содержание в сплаве меди в количествах 0,005-0,01 мас.% и цинка в количествах 0,005-0,02 является оптимальным и способствует повышению прочностных и пластических свойств сплава. Повышение их содержания, меди выше 0,01 мас.% и цинка выше 0,02 мас.%, нецелесообразно в связи с повышением электросопротивления, а ниже 0,005 мас.% не приводит к увеличению прочностных свойств.

Бор в количествах 0,001-0,003 мас.% используется в качестве модификатора и обеспечивает мелкозернистую структуру в литых сплавах. Примеры наилучшей реализации изобретения. Было разработано несколько типов сплавов с различным содержанием компонентов. Эксперименты производились на литейно-прокатном агрегате, позволяющем получить катанку диаметром 9,5 мм из сплавов по прототипу (1, 2) и заявляемых сплавов (3-7), химический состав которых приведен в табл.1.

Термостойкость катанки определяли при температуре 230°C, с выдержкой в соответствии с требованиями IEC 62004. Остальные испытания проводили в соответствии с ГОСТ 20967.

Влияние содержания на термостойкость сплавов, удельное электросопротивление и механические характеристики сплавов приведены в табл.2.

Из таблицы видно, что заявленные концентрации циркония, железа, магния и кремния при наличии в небольших количествах меди, цинка и бора, обеспечивают высокую термостойкость и прочностные характеристики при сравнительно низких показателях удельного электросопротивления.

Таким образом, использование заявляемого сплава дает возможность расширения технологических возможностей изготовленных из него изделий за счет требуемого комплекса прочностных, электрических и эксплуатационных свойств, что приводит к энергосбережению электроэнергии и увеличению срока службы изготовленных из предлагаемого сплава изделий.

Алюминиевый сплав, содержащий цирконий, кремний, железо, алюминий и примеси титана, хрома, ванадия и марганца, отличающийся тем, что он дополнительно содержит магний, медь, цинк и бор при следующем соотношении компонентов, мас.%:

цирконий 0,15-0,40
кремний 0,03-0,15
железо 0,15-0,35
магний 0,01-0,60
медь 0,005-0,01
цинк 0,005-0,02
бор 0,001-0,003
примеси титана, хрома, ванадия и марганца до 0,030
алюминий остальное



 

Похожие патенты:
Изобретение относится к антифрикционным сплавам на основе алюминия и способам их получения. Сплав содержит компоненты в следующем соотношении, мас.%: свинец 20-40, цинк 5-15, алюминий - остальное.
Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано для изготовления изделий электротехнического назначения, а именно для изготовления проводов, предназначенных для высоковольтных ЛЭП при эксплуатации в районах со сложными климатическими условиями.
Изобретение относится к области металлургии, а именно к литейным композиционным материалам (ЛКМ) на основе алюминия и его сплавов, и может применяться для изготовления деталей с повышенной жаропрочностью, твердостью и износостойкостью.

Изобретение относится к электрохимическому получению лигатурных алюминий-титановых сплавов и может быть использовано для получения коррозионно-стойких алюминиевых сплавов.

Изобретение относится к алюминиевым сплавам, применяемым по военному назначению, в частности к способам старения алюминиевых сплавов для достижения улучшенных баллистических характеристик.
Изобретение относится к области металлургии, в частности к легированию алюминия и сплавов на его основе. В способе осуществляют введение в расплав легирующего компонента в составе порошковой смеси путем продувки смесью в струе транспортирующего газа.

Изобретение относится к цветной металлургии, в частности к производству сплавов на основе алюминия с несмешивающимися компонентами. Способ получения контактным плавлением сплавов на основе алюминия с несмешивающимися компонентами включает приведение в контакт с алюминием двух или более несмешивающихся компонентов и пропускание через зону контакта импульсного тока с плотностью (1-4)×103 А/см2 и длительностью 0,01-1,00 с.

Изобретение относится к электрохимическому получению лигатурных алюминий-циркониевых сплавов. В способе осуществляют анодную гальваностатическую поляризацию циркония с плотностью тока 0,5-4,0 мАсм-2 в течение 1-5 часов в расплавленных хлоридах щелочных металлов или смеси хлоридов щелочных и щелочноземельных металлов, содержащих расплавленный алюминий или алюминий-магниевый сплав, при температуре 700-750°С в атмосфере аргона.

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов с металлической матрицей из алюминия или его сплавов, армированных керамическим наполнителем из нитридов или карбидов бора и вольфрамом.
Изобретение относится к области металлургии цветных металлов, в частности к получению сплавов алюминия с редкоземельными металлами. Способ получения лигатуры алюминий-скандий включает расплавление алюминия, алюминотермическое восстановление скандия из исходной шихты, содержащей фторид скандия, хлорид калия и фторид натрия под покровным флюсом и последующую выдержку полученного расплава.
Изобретение относится к материалу для кабелей на основе алюминиевого сплава и способу его получения. Сплав на основе алюминия содержит, мас.%: 0,3-1,2 Fe, 0,03-0,10 Si, 0,01-0,30 редкоземельных элементов Ce и La, неизбежные примеси - менее 0,3 и алюминий - остальное, причем содержание в примесях Ca составляет 0,02%, а содержание любого другого примесного элемента - 0,01%. Способ получения сплава включает приготовление расплава путем расплавления 92-98 мас.ч. алюминиевого сплава, содержащего 0,07-0,12% Si и 0,12-0,13% Fe, и 0,73-5,26 мас.ч. сплава Al-Fe с содержанием Fe - 20-24%, нагревание расплава до 720-760°С, добавление 1-3 мас.ч. сплава Al - 9-11% редкоземельных элементов Ce и La и 0,17-0,67 мас.ч. сплава Al - 3-4% B, добавление 0,04-0,06 мас.ч. рафинирующего агента и рафинирование в течение 8-20 мин, выдержку при температуре в течение 20-40 мин, литье и последующий полуотжиг при температуре 280-380°С в течение 4-10 часов с естественным охлаждением до температуры окружающей среды. Проводник, изготовленный из алюминиевого сплава, имеет высокую степень удлинения и обладает хорошей безопасностью и стабильностью при применении. 2 н. и 4 з. п. ф-лы. 4 пр.

Изобретение относится к деформируемым сплавам на основе алюминия, предназначенным для применения в паяных конструкциях. Сплав содержит, мас.%: марганец 0,3-1,2, кремний 0,35-1,5, магний 0,4-1,4, медь 0,3-4,8, железо - 0,05-0,7, бериллий 0,0001-0,1, хром, титан, цирконий, ванадий - 0,1-1,0 каждого, алюминий - остальное, при отношении Si:Mg>0,6, причем при содержании хрома, титана, циркония, ванадия в диапазоне 0,1-0,25% каждого сплав получен путем обработки слитка, а при содержании указанных компонентов в количестве 0,25-1,0% каждого сплав получен по порошковой технологии. Технический результат заключается в получении однородной мелкозернистой структуры и улучшении технологических свойств сплава. 2 з.п. ф-лы, 3 пр., 1 ил.

Изобретение относится к области порошковой металлургии сплавов на основе алюминия, используемых в подшипниках скольжения. Cпособ получения антифрикционного износостойкого сплава на основе алюминия включает получение смеси чистых порошков алюминия и олова, содержащей 35-45% вес. олова, формирование брикетов с пористостью 12-18%, их спекание в безокислительной атмосфере при температуре 585-615°С в течение 45-60 минут с последующим угловым прессованием спеченного сплава с сохранением ориентации плоскости течения материала во время пластической обработки при интенсивности деформации не менее 100%. Техническим результатом изобретения является обеспечение максимальной износостойкости сплава при сухом трении. 4 ил., 1 табл.
Изобретение относится к области металлургии и может быть использовано для обработки расплавов медных сплавов и чугуна. Модифицирующая смесь содержит, мас.%: углекислый барий 40-50, кальцинированную соду 10-20, карбонат стронция 40-45. Изобретение позволяет повысить физико-механические свойства обрабатываемых расплавов высокопрочного чугуна и медных сплавов. 1 табл.

Изобретение относится к производству изделий из алюминиевых сплавов, в частности к изготовлению алюминиевой фольги, которая может быть использована в качестве бытовой фольги, для изготовления упаковочной тары и т.д. Фольгу из алюминиевого сплава получают путем литья полосы толщиной менее 6 мм, прокатки в горячем состоянии без промежуточных отжигов до толщины менее 1 мм и последующего полного отжига, при этом алюминиевый сплав представляет собой алюминиевый сплав серии 1ххх, 3ххх или 8ххх. В результате такой обработки получают алюминиевый сплав, свободный от интерметаллических частиц бета-фазы, при этом фольга имеет толщину от около 5 мкм до около 150 мкм и имеет структуру, по существу свободную от пор, вызванных осевой ликвацией интерметаллических частиц. Изобретение направлено на повышение предела прочности на разрыв, относительного удлинения и давление Муллена после полного отжига. 1 з.п. ф-лы, 4 ил.,2 табл., 2 пр.

Изобретение относится к способу изготовления многослойного материала для высокотемпературной пайки и может быть использовано, например, для изготовления тонких листов в теплообменниках. Способ включает обеспечение сердцевинного слоя из первого алюминиевого сплава, содержащего, мас.%: 0,5-2,0% Mn, ≤1,0% Mg, ≤0,2% Si, ≤0,3% Ti, ≤0,3% Cr, ≤0,3% Zr, ≤0,2% Cu, ≤3% Zn, ≤0,2% In, ≤0,1% Sn и ≤0,7% (Fe+Ni), остальное - Al и ≤0,05% каждой из неизбежных примесей; обеспечение барьерного слоя из второго алюминиевого сплава, содержащего, мас.%: ≤0,2% Mn+Cr, ≤1,0% Mg, 1,6-5% Si, ≤0,3% Ti, ≤0,2% Zr, ≤0,2% Cu, ≤3% Zn, ≤ 0,2% In, ≤0,1% Sn и ≤1,5% (Fe+Ni), остальное - Al и ≤0,05% каждой из неизбежных примесей; совместную прокатку слоев; термическую обработку при температуре от 300 до 550 °С в течение времени, необходимого для выравнивания содержания Si до 0,4-1% как в сердцевинном слое, так и в барьерном слое; прокатку многослойного материала до конечной толщины со степенью обжатия от 8 до 33%. Изобретение направлено на повышение прочностных свойств, особенно ползучести и усталости, и коррозионной стойкости многослойного материала. 3 н. и 21 з.п. ф-лы, 7 ил., 4 табл., 3 пр.

Изобретение относится к деформируемым сплавам на основе алюминия, предназначенным для применения в паяных конструкциях. Деформируемый сплав на основе алюминия для паяных конструкций содержит, мас. %: цинк 3,4-5,0, магний 1,0-2,5, марганец 0,2-0,9, хром 0,1-1,0, цирконий 0,1-1,0, медь до 0,5, бериллий 0,0001-0,01, гафний - 0,1-1,5, титан 0,1-1,0, ванадий - 0,1-1,0, алюминий - остальное. Снижается склонность к рекристаллизации и сохраняется мелкозернистая структура после обработки по режиму пайки при температуре, близкой к солидусу. Обеспечиваются высокие характеристики механических свойств и коррозионной стойкости паяных соединений. 6 ил., 3 пр.
Изобретение относится к области металлургии и может быть использовано при переработке цирконийсодержащих оксидных материалов для получения алюминий-циркониевого сплава. Способ включает подготовку шихты путем дозирования и последующего смешивания оксидного цирконийсодержащего материала: диоксида циркония, смеси диоксида циркония с оксидами тугоплавких металлов, цирконийсодержащего шлака от производства ферросиликоциркония или ферроалюминоциркония, с алюминием и флюсующей добавкой, в качестве которой используют смесь щелочноземельных металлов и их фторидов, или смесь оксидов щелочноземельных металлов и их фторидов, или смесь щелочноземельных металлов, их оксидов и фторидов, при поддержании в шихте соотношения диоксида циркония, алюминия, щелочноземельного металла и/или оксида щелочноземельного металла, фторида щелочноземельного металла по массе 1:(0,4-1,4):(0,18-0,6):(0,07-0,2), проведение восстановительной плавки шихты в воздушной или нейтральной атмосфере при температурах 1450-1750°С в печах сопротивления, индукционных или дуговых электропечах и отделение алюминий-циркониевого сплава от шлака. Техническим результатом изобретения является повышение качества алюминий-циркониевого сплава, полученного при переработке оксидных материалов. 3 н.п. ф-лы, 4 пр., 1 табл.

Изобретение относится к литейному производству, в частности к карбонатным смесям, используемым при рафинировании и модифицировании алюминиевых сплавов. Карбонатная смесь содержит, мас.%: 50-95 карбоната кальция и 5-50 карбоната стронция, при этом смесь состоит из частиц фракции 40-60 мкм. Изобретение направлено на получение экологически чистого материала для обработки алюминиевых сплавов с целью повышения их механических свойств за счет удаления газовых и неметаллических включений и улучшения микроструктуры. 1 пр., 5 табл., 6 ил.

Изобретение относится к получению литого композиционного материала на основе алюминиевого сплава для изготовления деталей сложной формы. Расплавляют основу, вводят в нее композицию, включающую армирующие частицы Аl2О3, на поверхности которых механической активацией предварительно сформирован слой Аl, и разливают в форму. Слой Аl в процессе механической активации подвергают нагартовке, а частицы Аl2O3 формируют размером 50-40 мкм и вводят в расплав предварительно разогретыми до температуры t = t п о − 10 % , где tпо - температура плавления алюминия, в количестве 15-20% массы расплава. В качестве основы может быть использован силумин. Обеспечивается повышение предела прочности литого композиционного материала. 4 з.п. ф-лы, 3 табл.

Изобретение относится к металлургии алюминиевых сплавов и может быть использовано преимущественно для изготовления катанки электротехнического назначения, а также деформированных полуфабрикатов, используемых в строительстве, машиностроении и других областях народного хозяйства. Сплав содержит следующие компоненты, мас.: цирконий 0,15-0,40, кремний 0,03-0,15, железо 0,15-0,35, магний 0,01-0,60, медь 0,005-0,01, цинк 0,005-0,02, бор 0,001-0,003, сумму примесей титана, хрома, ванадия, марганца до 0,030, алюминий - остальное. Использование предлагаемого сплава дает возможность расширения технологических возможностей изготовленных из него изделий за счет требуемого комплекса прочностных, электрических и эксплуатационных свойств, что приводит к энергосбережению электроэнергии и увеличению срока службы изготовленных из этого сплава изделий. 2 табл.

Наверх